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Some Remarks on the Classi�cation of Poisson

Lie Groups

MICHEL CAHEN, SIMONE GUTT AND JOHN RAWNSLEY

Abstract. We describe some results in the problem of classifying the bial-

gebra structures on a given �nite dimensional Lie algebra. We consider

two aspects of this problem. One is to see which Lie algebras arise (up to

isomorphism) as the big algebra in a Manin triple, and the other is to try

and determine all the exact Poisson structures for a given semisimple Lie

algebra. We follow here the presentation of the talk that one of us gave

at the Yokohama Symposium; in particular, we recall many well known

properties so that it is essentially self-contained.

1. Introduction

A Poisson structure on a manifoldM is a Lie algebra structure on C1(M ),

denoted by f ; g, satisfying fuv;wg = ufv; wg + vfu;wg. It is de�ned by a

contravariant skew symmetric 2-tensor P on M by fu; vg = hdu ^ dv; P i. This
satis�es [P; P ] = 0 where [ ; ] is the Schouten bracket { the natural extension to

contravariant tensor �elds of the usual bracket of vector �elds; for instance:

[X^Y; Z^T ] = X^[Y; Z]^T�X^[Y; T ]^Z�Y ^[X;Z]^T+Y ^[X;T ]^Z (1)

for X;Y; Z; T vector �elds on M .

Definition 1.1 ([4]). A Poisson Lie group (G;P ) is a Lie group G with a

Poisson structure P such that the multiplication (m : G�G! G, (x; y) 7! xy)

is a Poisson map (where G�G is endowed with the product Poisson structure).

This is equivalent to the fact that P is multiplicative:

Pxy = Lx�Py + Ry�Px 8x; y 2 G
where Lx (resp. Rx) denotes the left (resp. right) translation by x in G and Lx�
(resp. Rx�) denotes the di�erential of this map applied to contravariant tensors.

Observe that, if (G;P ) is a Poisson Lie group, then

1
�
) Pe = 0 where e is the identity of G;

2
�
) the inverse map � : G! G, x 7! x�1 is a Poisson map.
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Example.

1) Any Poisson Lie structure on the abelian group R
n
has the form

Px = 1=2

nX
i;j;k=1

P
ij

k
xk@i ^ @j

where the P
ij

k
are the structure constants of an n-dimensional Lie alge-

bra.

2) The only Poisson Lie structure on the torus Tn
is the trivial zero struc-

ture.

Definition 1.2 ([4]). A Lie bialgebra (g; p) is a Lie algebra g with a 1-cocycle

p : g ! �
2
g (relative to the adjoint action) such that p� : g� � g

� ! g
�
(�; �) !

[�; �] with

h[�; �]; Xi = h� ^ �; p(X)i
is a Lie bracket on g

�
. One also denotes the bialgebra by (g; g�).

Proposition 1.1 (Drinfeld [4]). If (G;P ) is a Poisson Lie group and g =

Lie(G) then p : g ! �
2
g given by X ! (LeXP )(e) is a Lie bialgebra (said to be

associated to (G;P )). Here eX is the left invariant vector �eld on G corresponding

to X 2 g ' TeG.

If (g; p) is a Lie bialgebra and G is the connected simply-connected Lie group

with Lie algebra g, then there exists a unique structure of Poisson Lie group on

G, (G;P ) such that (g; p) is the associated Lie bialgebra.

Definition 1.3 ([4]). A Lie bialgebra (g; p) is said to be exact if the 1-cocycle

p is a coboundary, p = @Q, for Q 2 �
2
g.

This means that @QX = [X;Q] and then the condition for (g; @Q) to be a Lie

bialgebra is that the bracket [Q;Q] be invariant under the adjoint action in �
3
g

where the bracket in �
2
g is obtained by a formula similar to (1):

[X^Y; Z^T ] = X^[Y; Z]^T�X^[Y; T ]^Z�Y ^[X;Z]^T+Y ^[X;T ]^Z (1
0
)

for X;Y; Z; T 2 g.

In the case (G;P ) is an exact Poisson Lie group (i.e a Lie group whose asso-

ciated Lie bialgebra is exact) then

Px = Lx�Q� Rx�Q:

Proposition 1.2 (De Smedt [3]). Any Lie algebra g admits a structure of

Lie bialgebra (g; p) with p 6= 0.

Definition 1.4 ([4]). AManin triple consists of three Lie algebras (L; g1; g2)

and a symmetric invariant non-degenerate bilinear form hh ; ii on L such that

1) g1 and g2 are subalgebras of L;

2) L = g1 + g2 as vector spaces;

3) g1 and g2 are isotropic for hh ; ii.
We shall call the Lie algebra L the associated Manin algebra.

Proposition 1.3 (Drinfeld [4]).There is a bijective correspondence between

Lie bialgebras and Manin triples:
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� if (g; p) is a Lie bialgebra then L = g+g
� with hh ; ii and bracket de�ned

by

hh(X;�); (Y; �)ii = h�; Y i + h�;Xi
[(X;�); (Y; �)]

= ([X;Y ]� ad
� � �X + ad

� � � Y; [�; �] + ad
�X � � � ad

� Y � �)
(�; � 2 g

�; X; Y 2 g);

� if (L; g1; g2) is a Manin triple and g2 is identi�ed with g
�
1 via hh ; ii then

hh ; ii and [ ; ] on L are given as above; the fact that L is a Lie algebra

implies that (g1; g
�
1) is a bialgebra.

An open problem is to classify all bialgebra structures on a given Lie algebra

g (up to isomorphisms of g)
1
.

2. A notion of isomorphism between Manin triples

Remark 2.1. If g is any Lie algebra with p = 0 then the corresponding Manin

triple is

L ' Lie(T �G) �= g� g
�; g1 = g; g2 = g

�;

with [(X;�); (Y; �)] = ([X;Y ]; ad�X � � � ad
� Y � �) and hh(X;�); (Y; �)ii =

h�; Y i + h�;Xi.
If instead the Poisson-Lie structure is exact p = @Q with [Q;Q] = 0 one also

has L �
= Lie(T �G) with the same symmetric invariant non degenerate bilinear

form.

We want to see when two bialgebra structures on a given Lie algebra g yield

isomorphic algebras L in the corresponding Manin triple. To see this we consider

a larger class of Lie algebras containing g as a subalgebra: the set of Manin pairs

(L; g) 2
.

Let g be a Lie algebra of dimension n. Consider any vector space L of dimension

2n with a nondegenerate symmetric bilinear form hh ; ii and a skewsymmetric

bilinear map [ ; ] : L� L! L such that

i) L contains g;

ii) the bracket restricted to g� g is the Lie bracket of g;

iii) g is isotropic;

iv) hh[X;Y ]; Zii+ hhY; [X;Z]ii = 0, 8X;Y; Z 2 L.

Then, choosing an isotropic subspace supplementary to g in L and identifying it

with g
�
via hh ; ii, L = g+ g

�
as vector spaces and one has:

1) hh(X;�); (Y; �)ii = h�; Y i+ h�;Xi;
2) [(X;�); (Y; �)] = ([X;Y ] + C1(�; Y ) � C1(�;X) + �S(�; �); ad�X � � �

ad
� Y ��+ T (�; �)).

The invariance condition becomes:

3) S(�; �; )
def
= h; �S(�; �)i is totally skewsymmetric;

4) hT (�; �); Zi = h�;C1(�; Z)i.
1This has been studied for small dimensional groups by Dazord, Ohn, Zakrzewski...
2We thank the referee for introducing us to ref [5].
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The bracket de�ned on L is then a Lie bracket (i.e. satis�es Jacobi's identity) if

and only if:

5) @p = 0 where p = tT : g ! �
2
g;

6) [X;S](�; �; ) + h �
��

T (T (�; �); )); Xi = 0 where � denotes the sum

over cyclic permutations;

7) �
��

(S(T (�; �); ; �) + S(T (�; �); �; )) = 0.

Notation. Let LS;p, where p =
tT , denote L = g + g

�
with hh ; ii and [ ; ]

de�ned by 1 and 2 with the conditions 3 and 4.

Definition 2.1 ([5]). A Manin pair is a pair of Lie algebras (L; g) and a non

degenerate symmetric bilinear form hh ; ii on L such that the conditions i), ii),

iii) and iv) are satis�ed.

A quasi Lie bialgebra is a triple (g; p; S) where g is a Lie algebra, p : g! �
2
g

is a cocycle and S 2 �
3
g with the equations 6) and 7) satis�ed.

From the expressions above, we get:

Lemma 2.1 (Drinfeld, [5]). If (L; g) is a Manin pair, then a choice of an

isotropic subspace in L supplementary to g identi�es L with a Lie algebra LS;p

so that (g; p; S) is a quasi Lie bialgebra. Reciprocally, any quasi Lie bialgebra

(g; p; S) yields a Manin pair (LS;p; g).

A map ' : LS;p ! LS0;p0 which is linear, maps g to g and preserves hh ; ii is
necessarily of the form

'(X;�) = (A(X + bQ(�)); tA�1(�))
where A : g ! g is linear and bijective and where bQ : g

� ! g is induced by an

element Q 2 �
2
g through

h�; bQ(�)i = Q(�; �):

Then '[(X;�); (Y; �)]S;p = ['(X;�); '(Y; �)]S0;p0 if and only if

i) A is a Lie automorphism of g;

ii) A�1 � p0 � p = �@Q;
iii) (A�1 � S0 � S)(�; �; ) = �

��
(Q(T (�; �); ) + h�; [ bQ(�); bQ()]i)

= 1=2[Q;Q](�; �; )+ �
��

Q(T (�; �); )

where (A�p0)X(�; �) = p0
A�1(X)(

tA�;tA�) and (A�S)(�; �; ) = S(tA�;tA�;tA).

We then say that LS;p and LS0;p0 are isomorphic under '.

Remark 2.2. In particular, if LS;p is a Lie algebra (i.e. (g; p; S) is a quasi Lie

bialgebra), if A is an automorphism of g and if Q 2 �
2
(g), then LS0;p0 where

� p0 = A(p � @Q)

� S0(�; �; ) = (S + 1=2[Q;Q])(tA�;tA�;tA) + �
��

Q(tp(tA�;tA�);tA)

is a Lie algebra (i.e. (g; p0; S0) is a quasi Lie bialgebra).

The (g; p0; S0) obtained as above withA = Id is called by Drinfeld [5] a twisting

of (g; p; S) by Q.
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Remark 2.3. A Manin pair (L; g) yields a Manin triple (L; g; g�) if and only if

there is an isotropic subspace supplementary to g in L which is a subalgebra of

L. Hence, a bialgebra structure on g yields as its corresponding Manin algebra

an algebra LS;p0 which is isomorphic to a Lie algebra L0;p and vice versa.

Observe that L0;p is a Lie algebra if and only if

1) @p = 0;

2) �
��

T (T (�; �); ) = 0

and that 2) means that (g
�; T ) is a Lie algebra and we get back the conditions

for (g; p) to be a bialgebra (de�nition 2).

Remark 2.4. LS;0 is a Lie algebra if and only if S 2 (�
3
g)

inv
. Furthermore

LS;0 is isomorphic to LS0;�@Q for any Q 2 �
2
g with S0 = S + 1=2[Q;Q].

L0;@Q is isomorphic to L�1=2[Q;Q];0 and is a Lie algebra if and only if [Q;Q] 2
�
3
g is invariant under g and we get back the condition to have an exact Lie

bialgebra (de�nition 3).

Remark 2.5. Observe that if (L; g) is a Manin pair for a nondegenerate sym-

metric invariant bilinear form, it is also a Manin pair for any nonzero multiple

of that form. Choosing an isotropic subspace supplementary to g in L, this

amounts to say that if LS;p is a Lie algebra (i.e. (g; p; S) is a quasi Lie bialgebra

) then Ls2S;sp is also a Lie algebra (i.e. (g; sp; s
2S) is a quasi Lie bialgebra ) for

any nonzero real number s and they are related by scaling on g
�
:

if '(X;�) = (X; s�)

then ['(X;�); '(Y; �)]S;p = '([(X;�); (Y; �)]s2S;sp):

We shall allow these further isomorphisms of the Manin algebra L correspond-

ing to a Manin triple.

Definition 2.2. We shall say that two bialgebra structures on a given Lie

algebra g yield isomorphic Manin algebras L and L
0
if and only if there exists a

map ' : L! L
0
which

� is an isomorphism of Lie algebras,

� maps g to g,

� is a homothetic transformation from L to L
0
, i.e. hh'(X); '(Y )ii0 =

shhX;Y ii, 8X;Y 2 L for some nonzero real s.

Lemma 2.2. Two Lie bialgebra structures on a given Lie algebra g, (g; p) and

(g; p0) , yield isomorphic Manin algebras if and only if there are Q 2 �
2
g, A an

automorphism of g and s a nonzero real number such that8<
:
p0 = sA(p � @Q);

1=2[Q;Q](�; �; )+ �
��

Q(tp(�; �); ) = 0:

In particular, two exact Lie bialgebra structures on g, (g; @Q) and (g; @Q0) yield

isomorphic Manin algebras if and only if [Q0; Q0] = s2A[Q;Q] for some auto-

morphism A of g and some s 6= 0 2 R.
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Let g be compact simple; since any 1-cocycle p : g ! �
2
g is exact, and since

(�
3
g)

inv
is 1-dimensional then any Lie bialgebra structure on g is of the form

(g; @Q) with

[Q;Q] = �
 where �(3)(X ^ Y ^ Z;
) = �(X; [Y; Z])

for any X;Y; Z in g (�(3) is the extension of � to �
3
g).

De�ne � : �
2
g ! g, X ^ Y 7! [X;Y ]. Then �(3)([X ^ Y; U ^ V ];
) =

2�(�(X ^ Y ); �(U ^ V )). So �(3)([Q;Q];
) = 2�(�(Q); �(Q)). Hence:

Remark 2.6. For g compact, since � is negative de�nite,

[Q;Q] = �
 ) � � 0:

Using the possibility of scaling we mentioned above, one just has to consider

2 cases: [Q;Q] = 0, which yields for L the Lie algebra of T �G and one case

[Q;Q] = �
 with � > 0. Consider (as in Lu and Weinstein [7]) the Manin

triple given by the Iwasawa decomposition of g
C
: (L = g

C
= g + ig = g + a +

n ; g1 = g ; g2 = a+ n) with the invariant symmetric bilinear form de�ned by

the imaginary part of the Killing form. We get:

Lemma 2.3. For g compact simple, any bialgebra structure on g yields a

Manin triple whose corresponding Manin algebra L is isomorphic to Lie(T �G)

or g
C.

3. Exact Lie bialgebra structures

Let g be a Lie algebra and let Q 2 �
2
g. Then g

�
is endowed with the bracket

t@Q:

h[�; �]; Xi = h� ^ �; @Q(X)i = (@Q(X))(�; �)

= h[X;Q]; �^ �i
and it satis�es Jacobi's identity if and only if [Q;Q] 2 (�

3
g)

inv
. Introducing as

before bQ : g
� ! g by

h�; bQ(�)i = Q(�; �)

we get

[�; �] = ad
� bQ(�)� � ad

� bQ(�)�:
Properties.

1) bQ is a homomorphism of Lie algebras if and only if [Q;Q] = 0;

2) if g1 = Im bQ then Q 2 �
2
g1;

3) if [Q;Q] = 0 and Q is nondegenerate, then g
� �
= g and g admits a 2-form

F

F (X;Y ) = Q( bQ�1(X); bQ�1(Y )); such that �
��

F ([X;Y ]; Z) = 0:

In that case, if G is a connected Lie group with algebra g, G admits a

left invariant symplectic structure.

Hence one gets:
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Lemma 3.1. The study of solutions of [Q;Q] = 0 (Yang{Baxter equation) on g

is equivalent to the study of subalgebras g1 of g corresponding to symplectic groups

(i.e groups with an invariant symplectic structure) 3. Precisely, if Q is a solution

of Yang{Baxter equation on g then g1 = Im bQ is the Lie algebra of a connected

symplectic group (G1; !) where !e(X;Y ) = Q( bQ�1(X); bQ�1(Y )) 8X;Y 2 g1.

Reciprocally if g1 is a subalgebra of g which is the Lie algebra of a symplectic

group (G1; !), then it de�nes a solution Q 2 �
2
(g) of Yang{baxter equation by

Q(�; �) = !e((�(�))
#; (�(�))#) where � : g

� ! g1
� is dual to the inclusion

g1 � g and #
: g1

� ! g1 is such that !e(
#; Y ) = h; Y i (Y 2 g1;  2 g1

�
).

Suppose, in what follows, that g has a nondegenerate invariant symmetric

bilinear form �. Then Q determines a linear map eQ : g! g de�ned by

h�; eQ(X)i = �( bQ(�); X)

or equivalently

�( eQ(Y ); X) = �(2)(Q;X ^ Y ) = Q(b��1(X); b��1(Y ))
where b� : g

� ! g is such that �(b�(�); X) = �(X).

Lemma 3.2. If g is (real or complex) semisimple, the linear map � : (S2g�)inv !
(�

3
g)

inv de�ned by �(3)h�B;X^Y ^Zi = B([X;Y ]; Z) for X;Y; Z 2 g is a linear

isomorphism. [Again �(3)(�B;X ^ Y ^ Z) = �B(b��1(X); b��1(Y ); b��1(Z))].
Hence any bialgebra structure on g is de�ned by a Q 2 �

2
g such that [Q;Q] 2

(�
3
g)

inv so [Q;Q] = �B where B 2 (S2g�)inv is of the form B(X;Y ) = �(MX;Y ).

The equations on the corresponding eQ 2 End(g) are (using [Q;Q](�; �; ) =

2 �
��

h; [ bQ(�); bQ(�)]i and bQ(b��1(X)) = � eQ(X)):

�( eQX;Y ) = ��(X; eQY )
[ eQX; eQY ]� eQ[ eQX;Y ]� eQ[X; eQY ] = 2M [X;Y ]

(Modi�ed Yang{Baxter equation of coe�cient M).

In general M can be quite complicated. If g is complex simple, then M is a

multiple of the identity. In these note we shall look at this case only, but where

g is any semisimple Lie algebra. Thus we consider the equations(
�( eQX;Y ) = ��(X; eQY );
[ eQX; eQY ]� eQ[ eQX;Y ]� eQ[X; eQY ] = �[X;Y ]

(�)

for eQ 2 End(g), g a semisimple Lie algebra.

A. The complex case.

This problem was solved, for g simple and � 6= 0, by Belavin and Drinfeld

[1]. We follow their approach with small modi�cations, but we also allow g to

be semisimple throughout.

3These have been partially studied by Lichnerowicz, Medina, Revoy.
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For each complex number � let g� denote the corresponding generalized eigen-

space of eQ
g� = fX 2 g j ( eQ� �)kX = 0 for some positive integer kg:

The second equation in (*) can be rewritten, for any �; � 2 C as

[( eQ� �)X; ( eQ� �)Y ]� ( eQ � �)[( eQ � �)X;Y ]� ( eQ� �)[X; ( eQ� �)Y ]

= (� � ��)[X;Y ] + (�+ �) eQ[X;Y ] (��)

so that one easily deduces:

1) If � 6= �� [g�; g�] � g� , for � =
����
�+� , and g�; g� are �-orthogonal;

2) [g�; g��] = 0 if �2 6= ��.
Let a2 = ��, then we conclude that

i) ga and g�a are subalgebras of g which are isotropic with respect to �;

ii) g
0
=

X
�6=�a

g� is a subalgebra;

iii) g�a + g
0 are subalgebras in which g�a are ideals.

Let Q� = eQ� a. Then Q� is invertible on g
0
+ g�a. It follows from (**) that

Q+
[Q�X;Q�Y ] = Q�[Q+X;Q+Y ] 8X;Y 2 g:

Thus, since Q� are invertible on g
0
,  = Q+jg0 � (Q�jg0)�1 is an automorphism

of g
0
without 1 as an eigenvalue (if  Z = Z then Q+Z = Q�Z ) 2aZ = 0 )

Z = 0).

Lemma 3.3 (Belavin{Drinfeld [1]). If  is an automorphism of a �nite

dimensional semisimple Lie algebra then it has 1 as an eigenvalue. If  is an

automorphism of a Lie algebra without 1 as an eigenvalue then the Lie algebra

is solvable.

Lemma 3.4 (Cartan [2]). If � is a faithful representation of a semisimple

Lie algebra g on a �nite dimensional vector space V , the trace form � is non-

degenerate on g. From this it follows that any subalgebra of a semisimple Lie

algebra which is isotropic with respect to the Killing form is solvable.

Corollary. ga, g�a, g
0, ga+g

0, g�a+g
0 are all solvable and g = ga+g

0
+g�a.

Proof ga and g�a are isotropic for � whilst g
0
has an automorphism without

1 as an eigenvalue. Since g�a are ideals in g�a + g
0
, the latter are also solvable.

Since each of g�a+ g
0
is solvable, it is contained in some Borel subalgebra b�

of g. Since b++b� contains ga ; g
0
and g�a we have b++b� = g so h = b+\b�

is a Cartan subalgebra of g. If n� is the nilradical of b� we have b� = h+n� and

n� is the Killing form-orthogonal of b+ (observe that n� consist of all elements

X in b� such that ad X is nilpotent as an endomorphism of g). But ga+ g
0
has

Killing form orthogonal ga so ga+g
0 � b+ implies n+ � ga. Since the only Borel

containing n+ is b+, it follows that b+ is the unique Borel containing ga + g
0
.

Likewise b� is the unique Borel containing g�a + g
0
. Also h = b+ \ b� � g

0
is

uniquely determined by eQ.
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Let � be the set of roots of g relative to the Cartan subalgebra h. If � 2 �

denote by g
�
the corresponding root space and choose b+ to determine the pos-

itive roots �
+
(b+ = h+ ��2�+g

�
). Then, since b+ + b� = g, n� corresponds

to the negative roots (n� = ��2�+g
��

).

Lemma 3.5 (cf [1]). eQ(b�) � b�, eQ(n�) � n�, eQ(h) � h.

Proof Consider l = fX 2 g j [X; ga] � gag; then n+ � ga so [l; n+] � b+. But

the maximal algebra which satis�es [l; n+] � b+ is b+ itself, so l � b+. However

ga � b+ so [b+; ga] � [b+; b+] � n+ � ga so b+ � l. Thus l = b+.

Now, if Y 2 ga, we have
eQY 2 ga so if X 2 l, (**) implies (taking � = � = a)

( eQ� a)[( eQ� a)X;Y ]� [( eQ� a)X; ( eQ� a)Y ] 2 ga

and a simple induction gives

( eQ� a)k[( eQ� a)X;Y ]� [( eQ� a)X; ( eQ� a)kY ] 2 ga:

Since Y 2 ga there is a k so that ( eQ � a)kY = 0 and then [( eQ � a)X;Y ] 2 ga.

Thus [ eQX;Y ] 2 ga and we see eQl � l. This shows eQb+ � b+, and since eQ is

skew-symmetric, this implies eQn+ � n+.

A similar argument using g�a gives eQb� � b� and eQn� � n�. FinallyeQh = eQ(b+ \ b�) � b+ \ b� = h:

Now let c� = ImQ�. From (**) we see that both c� are subalgebras of g and

g�a + g
0 � c� so n� � c�. The proposition in the appendix implies that h+ c�

is a parabolic subalgebra of g containing b�.

Hence, there exist two subsets �+ and �� of the simple roots � in �
+
so that

c
+
= Im( eQ+ a) = n�+ �

X
�2b�+

(g
�
+ g

��
+ [g

�; g��])� V +

c
�
= Im( eQ� a) = n�� �

X
�2b��

(g
�
+ g

��
+ [g

�; g��])� V �

where

� b�+ (resp. b��) is the set of positive roots which can be written as integer

combinations of the simple roots in �+ (resp ��)

� n�+ =

X
�2�+nb�+

g
�; n�� =

X
�2�+nb��

g
��

� V � is a subspace of h in (

X
�2b��

H�)
?�

such that (V �)? � V �.

Then

Ker( eQ+ a) = Im( eQ� a)? = n�� + (V �)?

Ker( eQ� a) = Im( eQ+ a)? = n�+ + (V +
)
?

We have, as mentioned before,

( eQ+ a)[( eQ� a)X; ( eQ� a)Y ] = ( eQ� a)[( eQ+ a)X; ( eQ+ a)Y ]
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so ( eQ� a)( eQ + a)�1 induces a Lie algebra isomorphism

� : c
+=(c+)? =

X
�2b�+

(g
�
+ g

��
+ [g

�; g��]) + V +=(V +
)
?

! c
�=(c�)? =

X
�2b��

(g
�
+ g

��
+ [g

�; g��]) + V �=(V �)?:

This induces a map � : �+ ! �� (which are the simple roots of these reductive

algebras) such that

(� (�); � (�)) = (�; �); 8�; � 2 �+: (1)

Choosing compatible Weyl bases, one has:

�(H�) = H�(�)

�(E�) = E�(�)

�
8� 2 b�+:

Observe that ( eQ + a) : n+ ! n
+
must be a bijection. Indeed eQ, hence ( eQ + a)

and ( eQ�a), maps n
+
into n

+; n� into n
�
and h into h and Ker( eQ+a)\n+ = f0g,

Im( eQ + a) � n
+
and, in terms of � , one has

 = ( eQ� a)( eQ+ a)�1 : n
+ ! n

+
: E� 7! E�(�) 8� 2 b�+;
E 7! 0 8 2 �+nb�+:

Thus, on n
+; (1�  ) eQ = a( + 1). Also (1 �  ) = 2a( eQ+ a)�1 is an invertible

map on n
+
.

Lemma 3.6 (Belavin-Drinfeld [1]). (1� ) is invertible on n
+ if and only

if, for any � 2 �+, there is a positive integer k such that

�; � (�); : : : ; �k�1(�) 2 �+ and �k(�) 62 �+: (2)

Then eQ on n
+
is given from � satisfying (1) and (2) by eQ = a(1� )�1( +1) =

a(1 +  +  2 + : : :+  k + : : : )(1 +  ) so that8><
>:
eQ(E) = aE ; 8 2 �+nb�+;eQ(E�) = a(E� + 2

X
�>�

E�); 8� 2 b�+
where one writes � > � if �; � (�); : : : ; �k�1(�) 2 b�+ and �k(�) = � for some

integer k � 1.

Finally eQ is then completely determined on n
�
by

�( eQX;Y ) = ��(X; eQY )
since (n

+
)
?
= n

�
. Observe that eQjh : h! h must satisfy

(i) �( eQX;Y ) = ��(X; eQY ), 8X;Y 2 h;
(ii) ( eQ � a)H� = ( eQ+ a)H�(�), 8� 2 �+.
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(Indeed �(H�) = H�(�) so (
eQ�a)x = H�(�)+y for an x such that ( eQ+a)x = H�

and a y in Ker( eQ+ a)).

Hence we get:

Theorem 3.1 (Belavin{Drinfeld [1]). Let g be a complex semisimple Lie

algebra and let Q 2 �
2
g satisfy

�(3)([Q;Q]; X ^ Y ^Z) = �(
�

2

[X;Y ]; Z):

Then, there exist a Cartan subalgebra h of g, a system of positive roots �+ of

(g; h), two subsets �+ and �� of the set � of simple roots corresponding to �
+

and a map � : �+ ! �� satisfying

� h� (�); � (�)i = h�; �i, 8�; � 2 �+;

� 8� 2 �+, there exists a positive integer k such that � `(�) 2 �+, 8` < k

and �k(�) 62 �+ such that, for a choice of Weyl basis E� in g
� with

�(E�; E��) = 1:

Q = Q0 + a
� X
�2�+

E�� ^E� + 2

X
�2b�+;�<�E�� ^E�

�

where a2 = �� and Q0 2 �
2
h is determined by Q(�; �), 8�; � 2 � and

those must verify:

� Q(� (�); �) = Q(�; �)� a(h�; �i + h� (�); �i), 8� 2 �+, 8� 2 �.

Observe | as in Belavin{Drinfeld| that, reciprocally, any Q described above

gives a solution of the problem. Indeed, any eQ 2 End(g) which has the following

properties:

� �( eQX;Y ) = ��(X; eQY );
� Im( eQ� a) = c

�
are subalgebras such that c

� � (c
�
)
?
, (a2 = ��);

� ( eQ � a)( eQ+ a)�1 induces a Lie algebra isomorphism

� : c+=(c+)? ! c
�=(c�)?

satis�es

( eQ� a)[( eQ+ a)X; ( eQ+ a)Y ] = ( eQ+ a)[( eQ� a)X; ( eQ� a)Y ]

hence is a solution of (*).

B. The real case.

a. Let us �rst consider the case � = 0 when g is compact. Observe that if a Lie

algebra g has an invertible derivation then it is solvable.

Corollary 3.1. If Q 2 �
2
g is of maximal rank and [Q;Q] = 0 then g cannot

be semisimple since eQ�1 would be a derivation.

Corollary 3.2. If g is compact and Q 2 �
2
g satis�es [Q;Q] = 0, the image

of bQ is an abelian subalgebra.
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Indeed, g1 = Im bQ is compact so has an nondegenerate invariant bilinear form

but then the corresponding eQ�1 is an invertible derivation of g1 so g1 is solvable,

hence abelian.

Thus the solutions of [Q;Q] = 0 in the compact case are precisely the elements

of the second exterior powers of abelian subalgebras.

b. Consider now the case � 6= 0 when g is compact. As mentioned before, this

implies � > 0.

We use our study of the complex case for g
C
(the complex linear extension

of eQ is clearly a solution of (*) on g
C
). Observe that a is purely imaginary.

g�a = �ga (where � denotes the conjugation of g
C
relative to g) and the g� are

eigenspaces. Hence we get:

Proposition. If g is a compact semisimple Lie algebra and if eQ 2 End(g) is

a solution of

�( eQX;Y ) = ��(X; eQY )
[ eQX; eQY ]� eQ[ eQX;Y ]� eQ[X; eQY ] = �[X;Y ]

)
(�)

with � 6= 0, then � > 0, there exist a maximal toral subalgebra t of g, the corre-

sponding root space decomposition g
C
= t
C �

X
�2�

g
� and a choice of a system of

positive roots �+ so that8>>><
>>>:

eQjg� = i
p
�� Id jg�;

eQjg�� = �i
p
�� Id jg�� ;

9=
; 8� 2 �

+
;

eQ(tC) � t
C:

The corresponding Q 2 �
2
g is of the form

Q = R0 �
p��
2

X
�2�+

i(E� �E��) ^ (E� + E��)

where E� 2 g
�, �E� = E��, B(E�; E��) = �1 and R0 2 �

2
t.

(Indeed b� = b+, b\�b = t
C
so b = t

C
+

P
�2�+ g

�
for a choice of positive root

system �
+
. Then n =

P
�2�+ g

� � gi
p
�� so eQjg� = i

p�� Id jg� for � 2 �
+
.

Furthermore as eQb � b and eQ�b � �b, one has eQ(tC) � t
C
).

Combining this result with the corollary 2 of point a, we get the classi�cation

of all bialgebra structures on a compact simple Lie algebra g:

Theorem 3.2 ((Soibelman [8])). Let g be a compact simple Lie algebra.

Any bialgebra structure (g; p) on g is given by p = @Q where Q 2 �
2
g is of

the form

Q = R0 + r
X
�2�+

i(E� �E��) ^ (E� +E��)

where R0 2 �
2
t for some maximal toral subalgebra t of g, where r 2 Rand where

the E� are de�ned as before.
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c. Consider now the case where � < 0 and g is real semisimple. We want to �nd

any eQ 2 End(g) which is a solution of (*).

We use again our study of the complex case (the complex linear extension ofeQ is again clearly a solution of (*) on g
C
). Then a is real so that ga; g�a and g

0

are complexi�cations of real subalgebras of g, which we denote g
R
a , g
R
�a, g

0
R
. The

Borel b+ containing ga+g
0
is unique so b+ = �b+ (where � denotes the conjugation

of g
C
relative to g) and similarly for b�. Hence h = b+\b� is the complexi�cation

of a Cartan Lie subalgebra h
R
of g and b� are the complexi�cation of solvable

subalgebras b
R
� of g.

Take a Cartan decomposition of g, g = k+ p so that h
R
= t+ a, t � k, a � p.

Denote by �
+
the set of roots of (g

C; h) so that the corresponding root spaces

are in b+. Denote by �
0
the restriction of the root � to h

R
.

Since g� = g
�
where �0 = �0, �0 cannot have purely imaginary values. This

shows that no root � is such that �0ja = 0. Hence the centralizer of a is abelian

and a is maximal abelian in p. Then b
R
+ is the minimal parabolic and it has to

be solvable or equivalently m (= centralizer of a in k) is abelian.

It is now a simple task to check the list of real forms in Helgason [6] and see

when m is abelian. This is obviously the case if g is split over R or complex.

Theorem 3.3. If � < 0 then g must be a sum of simple ideals which are either

split, complex or one of the following cases (using the notation in Helgason):

(i) SU (p; p); SU (p; p+ 1);

(ii) SO(p; p + 2);

(iii) EII.

For each case we have a solution given by

eQ(x) =
8>><
>>:

ax x 2 n
R
;

0 x 2 h
R
;

� ax x 2 n
R:

The only thing remaining is to check that eQ satis�es (*) but this is an easy

calculation.

Observe that any solution of this problem is now given | as in the complex

case | in terms of subset �+;�� and a map � which have to be compatible with

the conjugation of g
C
relative to g.

4. Appendix

We prove here the result (used in x3 ) that any subalgebra of a semisimple Lie

algebra which contains the nilradical of a Borel is normalized by the Borel and

hence is essentially a parabolic subalgebra. First we establish some notation.

Let g be a semisimple Lie algebra, h � g a Cartan subalgebra, � the set of

roots, �+ a positive root system, � the set of simple roots which we enumerate

as f�1; : : : ; �`g. Put

n =

X
�2�+

g�; n
�
=

X
�2�+

g��; b = h+ n:
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Any positive root � can be written as a positive integer combination

P`

c=1 ni�i

of simple roots and

P`

c=1 ni is called the height n(�) of �. If � + � is a root

then n(�+ �) = n(�) + n(�).

Proposition. If c � g is a subalgebra with n � c then [h; c] � c and h+ c is

a parabolic subalgebra of g.

Proof If [h; c]� c, h+ c is a subalgebra of g containing b so is parabolic.

To establish [h; c]� c it is enough to show that c is the direct sum of h\ c and

a sum of root spaces. Since g
� � c for all � 2 �+ we only need to show that for

any element � in c \ (h+ n�) if we write it as �0 +
P

�2�+
��� then �0 2 c and

��� 2 c for all � 2 �+.

Let us say that an element � of h + n� has height k if �0 +
P

�2�+
��� and

n(�) � k for all � with ��� 6= 0 and equality for at least one �. If we show

that, for an element � with height k � 1 and any � of height k with ��� 6= 0,

we have g
�� � c then a decreasing induction on k gives the result. Suppose

we have such a � and �. Then � can be expressed as a sum (with repetitions)

of simple roots so that each partial sum is also a root (see, e.g. Helgason [6]

p.460). Thus if we pick any simple root �i0 occurring in this expression, there

are simple roots �i1; : : : ; �ir and a root � with �; �+�i0 , �+�i0 +�i1 ; : : : ; �+

�i + �i0 + � � �+ �ir = � all roots. Then [[: : : [g��; g�ir ] : : : ; g�i1 ]; g�] = g
��i0

so that [[: : : [�; E�ir
] : : : ; E�i1

]; E�] is an element � of height 1 with a non-zero

component in g
��i0 (after removing terms in n). So � = �0 +

`X
i=1

���i 2 c where

���i0 6= 0. Bracketing with E�i0
(since the di�erence of two simple roots is

never a root), we conclude [g
��i0 ; g�i0 ] = CH�i0

� c.

Thus for each simple root �i with ���i 6= 0 we deduce H�i0
2 c. Bracketing

� with any such H�j we have

�
`X

i=1

�i(H�j )���i 2 c:

The set of simple roots where ���i 6= 0 form the simple roots of a semisimple

subalgebra of g with the span of the corresponding H�i as Cartan subalgebra.

In this Cartan we can choose a dual basis to the set of �i with ���i 6= 0 and

so conclude that each g
��i � c if ���i 6= 0. Thus we now know that if � has

the same height as � and ��� 6= 0 then for every simple root �i occurring in �

we have g
��i � c. Since c is an algebra, it follows g

�� � c. This completes the

proof.
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