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1 IntroductionIn this paper, we present in a purely �Cech cohomology context some of the results given byDeligne [6] concerning cohomology classes associated to equivalence classes of di�erentialstar products on a symplectic manifold.Star products were introduced in [1] to give a deformation approach to quantization.A star product is a formal deformation of the algebraic structure of the space of smoothfunctions on a Poisson manifold, both of the associative structure given by the usual prod-uct of functions and the Lie structure given by the Poisson bracket. We consider here onlydi�erential star products (i.e. de�ned by a series of bidi�erential operators) on a symplec-tic manifold. Although the question makes sense more generally for Poisson manifolds,Deligne's method depends crucially on the Darboux theorem and the uniqueness of theMoyal star product on R2n so the methods do not extend to general Poisson manifolds.Di�erent methods are used by Kontsevich [17] to construct and classify di�erential starproducts on a Poisson manifold.The existence of a di�erential star product on any symplectic manifold was �rst provenin 1983 by De Wilde and Lecomte [8] whilst the fact that equivalence classes of di�erentialstar products are parametrized by series of elements in the second de Rham cohomologyspace of M appeared �rst in Nest and Tsygan [20], in Bertelson, Cahen and Gutt [3, 4]and in Deligne [6]. In the �rst two cited papers, the correspondence relies on Fedosov's [10]geometrical construction of a star product; Fedosov takes a symplectic connection, extendsit as a connection in the Weyl bundle whose curvature lies in the centre and builds fromthis a star product whose equivalence class is determined by the cohomology class of thiscentral curvature. The classi�cation then depends on showing that every di�erential starproduct is equivalent to a Fedosov star product.In his paper, Deligne de�nes two cohomological classes associated to di�erential starproducts on a symplectic manifold. The �rst class is a relative class; �xing a star product onthe manifold, it intrinsically associates to any equivalence class of star products an elementin H2(M ;R)[[�]] (i.e. a series of elements in the second de Rham cohomology space of M).This is done in �Cech cohomology by looking at the obstruction to gluing local equivalences(and is thus a globalisation of the old step by step techniques which showed that, at eachorder in the parameter, equivalence classes were parametrized by H2(M ;R)).Deligne's second class is built from special local derivations of a star product. Thesame derivations played a special role in the �rst general existence theorem [8] for a starproduct on a symplectic manifold. Deligne used some properties of Fedosov's constructionand central curvature class to relate his two classes and to see how to characterise anequivalence class of star products by the derivation related class and some extra data1



obtained from the second term in the deformation. We do this here by direct methods.The content of our paper is as follows:Section 2 includes de�nitions of star products and equivalence on symplectic manifoldsas well as a brief study of the di�erential Hochschild cohomology of the algebra of smoothfunctions on a manifold.Section 3 collects some basic results on the topological conditions for the equivalence oftwo star products. We determine when a self-equivalence is inner and what are the �-linearderivations of a star product on a symplectic manifold (M;!).Section 4 describes the relative �Cech cohomology class introduced by Deligne as theobstruction to piecing together local equivalences between two di�erential star products ona symplectic manifold.Section 5 describes the intrinsic derivation-related �Cech cohomology class associated toa star product; it is obtained by comparing local \�-Euler" derivations of this star product.The relation between the relative class of two star products and their intrinsic derivationrelated classes is found.Section 6 introduces the characteristic class, de�ned from the intrinsic derivation re-lated class and the second term of the deformation. We show directly some equivarianceproperties of this class (relative to di�eomorphisms and to changes of the deformation pa-rameter) and the fact that it characterises equivalence classes of star products. The proofof the fact that this class is the same as Fedosov's central curvature class is not includedin these notes, see Deligne [6].Section 7 includes the De Wilde proof [7] of the existence of a star product on anysymplectic manifold. To whit a simultaneous construction of a star product and a familyof local �-Euler derivations of it yielding a given intrinsic derivation related class. Thisemploys the techniques of the previous sections, re�ning the Neroslavsky and Vlassov [19]step-by-step techniques to apply to the De Wilde{Lecomte proof [8].Section 8 gives the �rst and second di�erential cohomology space for a star-deformedassociative algebra viewed as an R[[�]]-algebra. In particular, it gives an elementary proofof the fact that the second di�erential Hochschild cohomology space for a star-deformedalgebra (C1(M)[[�]]; �) is isomorphic to Z2(M ;R) � �H2(M ;R)[[�]] where Z2(M ;R) is thespace of closed 2-forms on the manifold (see also [25]).Section 9 gives all automorphisms and derivations of a star product which are continuousfor the �-adic topology; in particular, we show that a symplectomorphism of a symplecticmanifold (M;!) can be extended to a �-linear automorphism of a given di�erential starproduct on (M;!) if and only if its action on H2(M ;R)[[�]] preserves its characteristic class.Section 10 explains some of the steps to get from the Deligne's de�nition of a deformation2



[6] to the usual one considered in the �rst part of these notes. In his paper Delignededuces this and other results from the algebraic geometrical approach to deformationtheory; in these notes we give equivalent low-brow proofs based around partitions of unityand coverings by contractible Darboux charts to go between local and global structures.Let us close the introduction by emphasising that the results in these pages are notnew, except for Section 9, and can be found mostly in Deligne [6]. We decided to writethese notes in view of the large number of people who asked for a written account of theseminar on the subject. The interest of the presentation is that it is self-contained andthe proofs are done in an elementary way. Similar presentations of some of this materialexist; in particular De Wilde [7] and Karabegov [16] give purely �Cech-theoretic accountsof Deligne's intrinsic derivation-related class (see Section 5) and De Wilde shows by �Cechmethods how this class and a 2-form induced by the skew-symmetric part of the secondterm of the deformation characterise the equivalence class of the deformation.Acknowledgement These notes were written whilst the �rst author was a member ofthe D�epartement de Math�ematiques, Universit�e de Metz. The second author thanks theUniversity of Metz for its hospitality in the Autumn of 1997 whilst the �rst author thanksthe University of Warwick for its hospitality in the Spring of 1998 when these notes werecompleted. We thank Yves Laszlo for pointing an incomplete proof in an early version ofthis paper.2 PreliminariesThis section contains a basic introduction to the setting for the rest of the paper. It includesde�nitions of star products and equivalence on symplectic manifolds as well as a brief studyof the di�erential Hochschild cohomology of the algebra of smooth functions on a manifold.De�nition 2.1 Let M be a smooth manifold then a symplectic structure on M is aclosed 2-form ! on M which is non-degenerate as a bilinear form on each tangent space. Asymplectic manifold is a pair (M;!) consisting of a smooth manifold M together witha symplectic structure ! on M .De�nition 2.2 Let (M;!) be a symplectic manifold then a symplectic vector �eld onM is a vector �eld X whose (local) ow preserves ! or, equivalently, ifLX! = 0:The Cartan identity for the Lie derivative yieldsLX! = i(X)d! + d(i(X)!) = d(i(X)!)3



since ! is closed. Hence X is symplectic if and only if i(X)! is a closed 1-form.De�nition 2.3 If (M;!) is symplectic manifold then a vector �eld X for which i(X)! isexact is called a Hamiltonian vector �eld. If u 2 C1(M), then Xu denotes the uniqueHamiltonian vector �eld with i(Xu)! = du:Obviously, the space of symplectic vector �elds modulo the Hamiltonian vector �elds isisomorphic to the space of closed 1-forms modulo the exact 1-forms and hence to H1(M ;R).Locally the Poincar�e Lemma implies each symplectic vector �eld is a Hamiltonian vector�eld; as a consequence symplectic vector �elds are also called locally Hamiltonian vector�elds.De�nition 2.4 If (M;!) is symplectic manifold and u; v 2 C1(M) then the Poissonbracket of u and v is de�ned byfu; vg = Xu(v) = !(Xv; Xu):The Poisson bracket makes C1(M) into a Lie algebra. The Poisson tensor � is thealternating 2-vector �eld with fu; vg = �(du ^ dv):Remark 2.5 In coordinates the components �ij form the inverse matrix of the components!ij of !. The Jacobi identity for the Poisson bracket Lie algebra is equivalent to thevanishing of the derivative d! or to the Schouten bracket [�;�].In what follows we shall consider deformations of both the associative and Lie algebrastructures of real-valued smooth functions N = C1(M); similar results hold for complexsmooth functions. All deformations considered will be formal in the sense that they willbe de�ned on N [[�]] the space of formal power series in an indeterminate � with coe�cientsin N . Questions of convergence of these formal series will not be considered.De�nition 2.6 (Bayen et al. [2]) A star product on (M;!) is a bilinear mapN �N ! N [[�]]; (u; v) 7! u � v = u �� v =Xr�0 �rCr(u; v)such that� when the map is extended �-linearly to N [[�]] �N [[�]] it is formally associative:(u � v) � w = u � (v � w);4



� (a) C0(u; v) = uv, (b) C1(u; v)� C1(v; u) = fu; vg;� 1 � u = u � 1 = u.Remark 2.7 In this de�nition we follow Deligne's normalisation for C1, that its skewsymmetric part is 12f ; g. In the original de�nition it was equal to the Poisson bracket.Remark 2.8 Property (b) above implies that the centre of N [[�]], when the latter is viewedas an algebra with multiplication �, is a series whose terms Poisson commute with allfunctions so is an element of R[[�]] when M is connected.De�nition 2.9 If � is a star product on (M;!) then we de�ne the star commutator by[u; v]� = u � v � v � uwhich obviously makes N [[�]] into a Lie algebra with star adjoint representationad�u(v) = [u; v]�:Remark 2.10 Properties (a) and (b) of De�nition 2.6 imply[u; v]� = �fu; vg+ : : :so that repeated bracketing leads to higher and higher order terms. This makes N [[�]] anexample of a pronilpotent Lie algebra. See Section 4 for some consequences of this.De�nition 2.11 Two star products � and �0 on (M;!) are said to be equivalent if thereis a series T = Id+ 1Xr=1 �rTrwhere the Tr are linear operators on N , such thatT (f � g) = Tf �0 Tg: (1)In studying star products on N [[�]] modulo equivalence we use the Gerstenhaber theoryof deformations [12] of N which requires a knowledge of the Hochschild cohomology of Nwith values in N . So we begin by studying this.A p-cochain on N is a p-linear map from N � : : :�N (p copies) to N . The Hochschildcoboundary operator for the algebra N of smooth functions on a manifoldM is denotedby @:(@C)(u0; : : : ; up) =u0C(u1; : : : ; up) + pXr=1(�1)rC(u0; : : : ; ur�1ur; : : : ; up) + (�1)p+1C(u0; : : : ; up�1)up5



On 1- and 2-cochains @ is given by(@F )(u; v) = uF (v)� F (uv) + F (u)v;(@C)(u; v; w) = uC(v; w)� C(uv; w) + C(u; vw)� C(u; v)w:A cochain C is called a cocycle if @C = 0, and a coboundary if C = @B for some (p�1)-cochain B. A p-cochain C is called di�erential if it is given by di�erential operators oneach argument and k-di�erential if the di�erential operators have order at most k. It issaid to vanish on constants if it is zero whenever any argument is a constant function. 1-di�erential cochains vanishing on constants are always cocycles. 1-cocycles are derivationsof C1(M), so are vector �elds and hence are 1-di�erential cochains vanishing on constants.The Hochschild coboundary operator sends di�erential cochains to di�erential cochains.De�nition 2.12 The p-th di�erential Hochschild cohomology of N is the spaceHpdi�(N;N) of di�erential p-cocycles modulo di�erential p-coboundaries.If C and D are p- and q-cochains, respectively, then we can de�ne a (p+ q)-cochain by(C 
D)(u1; : : : ; up+q) = C(u1; : : : ; up) �D(up+1; : : : ; up+q):@ acts as a graded derivation:@(C 
D) = @C 
D + (�1)pC 
 @D:If D is a di�erential operator of order k, then we may view it as a k-di�erential 1-cochain. For a vector �eld X we have @X = 0, and if k � 2 a repeated application ofLeibniz' Rule then shows that @D is a bi-di�erential operator of order k � 1.We de�ne the support suppC of a cochain C to be the union of the supports of itscoe�cients when written in coordinates.Proposition 2.13 If C is a 1-di�erential p-cochain on Rn and A is its alternating partthen C = @B+A where B is 2-di�erential, and determined by C so that suppB � suppC.Proof If C is a 1-di�erential p-cochain vanishing on constants, then C has the formC(u1; : : : ; up) = Xi1;:::;ipCi1;:::;ip @u1@xi1 : : : @up@xipwhere the coe�cients are given byCi1;:::;ip = C(xi1 ; : : : ; xip):If � is a permutation of f1; : : : ; pg and C a p-cochain then we set(� .C)(u1; : : : ; up) = C(u��1(1); : : : ; u��1(p))6



which is an action on cochains. It is not, however, compatible with the Hochschild cobound-ary.If � is a transposition of consecutive integers, say the interchange of i and i + 1 and Ca 1-di�erential p-cochain vanishing on constants then we de�ne a (p� 1)-cochain �� (C) by�� (C)(u1; : : : ; up�1) = (�1)iXr;s C(u1; : : : ; ui�1; xr; xs; ui+1; : : : ; up�1) @2ui@xr@xs :Then, using the Leibniz formula for second derivatives and the derivation property of C ineach argument, a straightforward computation shows that@�� (C) = C + � .C:If �1 and �2 are each transpositions of consecutive integers then we have@ (��1(�2 .C)� ��2(C)) = C � �1�2 .C:It is clear that if we keep composing such transpositions we build up any element � of thesymmetric group and we manufacture a 2-di�erential (p� 1)-cochain ��(C) which is com-pletely determined by C once we �x a decomposition of � into a product of transpositionsof consecutive integers and @��(C) = C � sign(�)� .C:If we set �(C) = 1p! X�2Sp ��(C)then C = @�(C) + 1p! X�2Sp sign(�)� .Cso that C is cohomologous to its skewsymmetric part.Note that the explicit nature of � means that supp�(C) � suppC. 2Proposition 2.14 If C is a di�erential p-cocycle on C1(Rn) then there is a di�erential(p� 1)-cochain B and a skewsymmetric 1-di�erential p-cocycle A with C = @B + A. If Cvanishes on constants then B (and hence A) can be chosen to vanish on constants. We canchoose B and A so that suppB and suppA are contained in suppC.Proof Any 1-cocycle is a vector �eld so the result is trivially true for p = 1.Assume the result true for r-cocycles with r < p and let C be a di�erential p-cocyclewith p � 2. Consider C(u1; : : : ; up) as a di�erential operator in u1. Suppose it has order7



k > 1 then we shall show that we can subtract a coboundary to reduce the order. Aninduction then shows the order can be reduced to 1.We consider the terms of highest order in u1C(u1; : : : ; up) = Xi1;:::;ik @ku1@xi1 : : : @xikDi1;:::;ik(u2; : : : ; up) + : : :where the Di1;:::;ik are (p � 1)-cochains, symmetric in i1; : : : ; ik. In other words, in multi-index notation i = (i1; : : : ; ik), C = Xjij=k @i 
Di + : : : :It follows from the derivation property with respect to tensor products above that@C = �Xjij=k @i 
 @Di + : : : :so that, when C is a p-cocycle, the coe�cients of the highest order derivatives of u1 are(p�1)-cocycles. By induction Di = @Ei+Fi with Fi a skewsymmetric 1-di�erential cocycleand supports in suppC if needed. SetG = Xjij=k @i 
 Eithen an easy calculation givesC 0 def= C + @G = Xjij=k @i 
 Fi +Hwhere H only has terms involving derivatives of the �rst argument of order strictly lessthan k and C 0 is still a cocycle.Taking the coboundary of this equation we have0 = Xjij=k @(@i)
 Fi + @H; (2)and since @(@i)(u; v), for jij = k, only has terms @i0u@i00v with ji0j+ ji00j = k and both ji0j, ji00jnon-zero, the highest order terms in the �rst argument which can occur are of order k � 1and these terms in @(@i)
Fi will be of order 1 in the second and remaining arguments. Sothe leading terms in @(@i) 
 Fi are of multi-order (k � 1; 1; : : : ; 1). We examine how suchterms can arise from @H.If we expand H =Pi1;:::ip�1 Hi1;:::ip�1@i1 
 : : :
 @ip�1 , where each ir is a multiindex andthe coe�cients are symmetric in each multiindex separately, then@H = Xi1;:::ip�1Hi1;:::ip�1Xr (�1)r�1@i1 
 : : :
 @(@ir) : : : @ip�18



and so terms of order (k � 1; 1; : : : ; 1) can only come from labels i1; : : : ; ir; : : : ip�1 whereji1j = k�1, exactly one multiindex ir has jirj = 2 for some r � 2 and all other multiindiceshave length 1.Thus, if we take the terms of order (k � 1; 1; : : : ; 1) in equation (2) and write out allmultiindices fully, we havekF(i1:::ik�1j1);j2;:::;jp + 2H(i1:::ik�1);(j1j2);:::;jp + : : :+ 2H(i1:::ik�1);j1;:::;(jp�1jp) = 0with the H terms symmetric in the bracketed pairs of indices. Denoting by Sp the group ofpermutations of (1; : : : ; p) and �(�) the signature of a permutation �, if we antisymmetriseover the last p indices, all the H terms drop out and we get a relation among the F 'sX�2Sp �(�)F(i1:::ik�1j�(1));j�(2);:::;j�(p) = 0which implies, since F is skewsymmetric in its last p� 1 indices,F(i1:::ik�1j1);j2;:::;jp = pXs=2(�1)sF(i1:::ik�1js);j1;:::bjs:::;jpwhere b: denotes omission and, since F is symmetric in its �rst k labels,kF(i1:::ik);j2;:::;jp = kXr=1 pXs=2(�1)sF(i1:::bir:::ikjs);ir;j2;:::bjs:::;jp:Thus (k + p� 1)F(i1:::ik);j2;:::;jp = pXs=2(�1)sKi1:::ik;js;j2;:::bjs:::;jpwhere Ki1:::ik;js;j2;:::bjs:::;jp = kXr=1 F(i1:::bir:::ikjs);ir;j2;:::bjs:::;jp + F(i1:::ik);js;j2;:::bjs:::;jpis symmetric in its �rst k + 1 indices.One can write(k + p� 1)F(i1:::ik);j2;:::;jp = pXs=2(�1)sKi1:::ik;js;j2;:::bjs:::;jp= pXs=2(�1)s�(�1)s�2Ki1:::ik ;j2;j3;:::;jp+ sXt=3 (�1)s�t�Ki1:::ik;jt;j2;:::;jt�1;bjt;:::;jp +Ki1:::ik;jt�1;j2;:::;djt�1;jt;:::;jp��= (p� 1)Ki1:::ik;j2;j3;:::;jp+ pXt=3 (�1)t(p+ 1� t)�Ki1:::ik;jt;j2;:::;jt�1;bjt;:::;jp +Ki1:::ik;jt�1;j2;:::;djt�1;jt;:::;jp�9



so that the terms corresponding to the �rst line in the last equation coincide with the termsof order k in the �rst variable of the coboundary of a constant multiple ofKi1:::ik;j2;j3;:::;jp@i1:::ikj2 
 @j3 
 : : :
 @jpand the terms corresponding to each summand in the second line in the last equationcoincide with the terms of order k in the �rst variable of the coboundary of a constantmultiple of(Ki1:::ik;jt;j2;:::;jt�1;bjt;:::;jp +Ki1:::ik;jt�1;j2;:::;djt�1;jt;:::;jp)@i1:::ik 
 @j2 
 : : :
 @jt�1jt 
 : : :
 @jp:Combining the above results, we can build a p� 1 cochain G0 so that C � @(G0) is a multidi�erential operator with terms involving derivatives of the �rst argument of order less thank. Iterating, we can reduce the order in the �rst argument to 1.Now assume that C = nXi=1 @@xi 
Dithen @C = � nXi=1 @@xi 
 @Diso C being a cocycle is equivalent to the Di being cocycles. In this case we have Di =@Ei + Fi with Fi 1-di�erential andC + @ nXi=1 @@xi 
 Ei = nXi=1 @@xi 
 Fiand the RHS is now 1-di�erential in all arguments.Using the previous Proposition, this 1-di�erential cocycle is equal to its total skewsym-metrization plus a coboundary.Hence the induction proceeds. 2Theorem 2.15 Every di�erential p-cocycle C on a manifoldM is the sum of the cobound-ary of a di�erential (p-1)-cochain and a 1-di�erential skewsymmetric p-cocycle A:C = @B + A:If C vanishes on constants then B can be chosen to vanish on constants also.Proof Take a locally �nite covering fU�g�2� ofM by charts with a subordinate partitionof unity ��. Then any p-cocycle C is a locally �nite sum of p-cocyclesC =X�2� ��C10



with supports in charts. By the preceding two Propositions��C = @B� + A�with the supports of B� and A� in U�. It follows that the sumsB =X�2�B�; A =X�2�A�are locally �nite, so globally de�ned, and C = @B + A as required. 2Corollary 2.16 Hpdi�(N;N) = �(Vp TM).Proof It remains to show that the alternating part of a coboundary is zero and we leavethis to the reader. 2Remark 2.17 This is a smooth version of the Hochschild{Kostant{Rosenberg Theorem[15]. It was �rst mentioned in the context of smooth functions by Vey [24] who consideredthe proof well-known. Other classes of cochains than di�erential have been considered,such as distributional cochains, with essentially the same result [22]. But for completelygeneral cochains the full cohomology is not known.Remark 2.18 The proofs of the above results work globally on a manifold if we use aconnection to write the cochain in terms of its symbol and do the induction with respectto the degree. Then we see that all the choices can be made explicit, and the inductionsare �nite, so the method can be made constructive.Remark 2.19 In the symplectic case the 1-di�erential skewsymmetric p-cocycle A in The-orem 2.15 can be rewritten in terms of the Hamiltonian vector �elds and a smooth p-form� as C(u1; : : : ; up) = (@B)(u1; : : : ; up) + �(Xu1; : : : ; Xup): (3)De�nition 2.20 A star product � on (M;!) is called di�erential if the 2-cochainsCr(u; v)giving it are bi-di�erential operators.De�nition 2.21 Two di�erential star products � and �0 on (M;!) are said to be di�er-entially equivalent if there is a seriesT = Id+ 1Xr=1 �rTrwhere the Tr are di�erential operators on N , such thatT (f � g) = Tf �0 Tg: (4)11



In fact for di�erential star products there is no di�erence between the two notions ofequivalence as the following result shows [6, 18]:Theorem 2.22 Let � and �0 be di�erential star products and T (u) = u+Pr�1 �rTr(u) anequivalence so that T (u � v) = T (u) �0 T (v) then the Tr are di�erential operators.Proof Suppose we know that the �rst k operators T1; : : : ; Tk in T are di�erential op-erators and set T 0(u) = u +P1�r�k �rTr(u). Then T 00 = T 0�1 � T is an equivalence be-tween the di�erential star products � and �00 where u �00 v = T 0�1(T 0(u) �0 T 0(v)). T 00has the form T 00(u) = u + �k+1T 00k+1(u) + � � �. Taking the terms of degree k + 1 inu�v = T 00�1(T 00(u)�00T 00(v)) we see that (@T 00k+1)(u; v) = T 00k+1(u)v+uT 00k+1(v)�T 00k+1(uv)is a bidi�erential symmetric 2-cocycle. By Theorem 2.15 @T 00k+1 is the coboundary of adi�erential 1-cochain plus a 1-di�erential skewsymmetric cochain. Since both exact termsare symmetric, the skewsymmetric term vanishes. Thus there is a di�erential 1-cochain Bsuch that @(T 00k+1�B) = 0. It follows that X = T 00k+1�B is a derivation of N and henceis a vector �eld. Thus T 00k+1 = B +X is di�erential. Tk+1 is a combination of T1; : : : ; Tkand T 00k+1 and hence is also di�erential. It follows now by induction that T is di�erential.2A simple application of Theorem 2.15 is:Proposition 2.23 A di�erential star product is equivalent to one with linear term in �given by 12fu; vg.Proof Let u � v = uv + �C1(u; v) + � � � be a star product then C1(u; v) is a Hochschildcocycle with antisymmetric part given by 12fu; vg. By Theorem 2.15 C1(u; v) = 12fu; vg+uB(v) � B(uv) + B(u)v for a di�erential 1-cochain B. If we set T (u) = u + �B(u) andu �0 v = T (T�1(u) � T�1(v)) then an easy calculation gives u �0 v = uv + 12�fu; vg+ � � �. Tis obviously a di�erential equivalence so that �0 is di�erential. 23 Local equivalences and �-linear derivationsIn this section we collect some basic results on the topological conditions for the equiva-lence of two star products [18]; when is a self-equivalence inner; and what are the �-linearderivations of a star product on a symplectic manifold (M;!).Proposition 3.1 Let � and �0 be two di�erential star products on (M;!) and suppose thatH2(M ;R) = 0. Then there exists a local equivalence T = Id+Pk�1 �kTk on N [[�]] suchthat u �0 v = T (T�1u � T�1v) for all u; v 2 N [[�]].12



Proof Let us suppose that, modulo some equivalence, the two star products � and �0coincide up to order k. Then associativity at order k shows that Ck � C 0k is a Hochschild2-cocycle and so by (3) can be written as(Ck � C 0k)(u; v) = (@B)(u; v) + A(Xu; Xv)for a 2-form A. The total skewsymmetrization of the associativity relation at order k + 1shows that A is a closed 2-form. Since the second cohomology vanishes, A is exact, A = dF .Transforming by the equivalence de�ned by Tu = u+�k�12F (Xu), we can assume that theskewsymmetric part of Ck � C 0k vanishes. Then (Ck � C 0k)(u; v) = (@B)(u; v) = uB(v) �B(uv) + B(u)v where B is a di�erential operator on N and using the equivalence de�nedby T = I + �kB we can assume that the star products coincide, modulo an equivalence, upto order k + 1.This gives the inductive step, and since two star products always agree in their leadingterm, it follows, by induction, that they are equivalent. 2Corollary 3.2 Let � and �0 be two di�erential star products on (M;!). Let U be acontractible open subset of M and NU = C1(U). Then there exists a local equivalenceT = Id+Pk�1 �kTk on NU [[�]] that u �0 v = T (T�1u � T�1v) for all u; v 2 NU [[�]].Proof A contractible open set has vanishing cohomology groups and a di�erentiable starproduct on M restricts to give a star product on any open set U of M , so the previousProposition can be applied. 2Proposition 3.3 Let � be a di�erential star product on (M;!) and suppose that H1(M ;R)vanishes. Then any self-equivalence A = Id+Pk�1 �kAk of � is inner: A = exp ad� a forsome a 2 N [[�]].Proof We build a recursively. The condition A(u � v) = Au � Av implies (taking thecoe�cient of �) that A1(uv)+C1(u; v) = A1(u)v+ uA1(v)+C1(u; v) so that A1 is a vector�eld. Taking the skew part of the terms in �2 we have that A1 is a derivation of the Poissonbracket. It follows that A1(u) = fa0; ug for some function a0. Then (exp � ad� a0) � A =Id+O(�2) as an easy calculation shows. Now we proceed by induction.Suppose we have found a(k�1) = a0+ � � �+ �k�1ak�1 such that A0 = (exp � ad� a(k�1)) �A = Id+�k+1A0k+1 +O(�k+2) then we can repeat the argument of the previous paragraphsince A0 also preserves �. The terms of degree k + 1 show that A0k+1 is a vector �eld andthe antisymmetric part of the the terms of degree k+2 show that it is a Hamiltonian vector�eld A0k+1(u) = fak; ug for some function ak. Taking a(k) = a(k�1) + �kak gives a formalfunction with (exp � ad� a(k)) � A = Id+O(�k+2) completing the induction step. 213



Again this yields directly:Corollary 3.4 Let � be a di�erential star product on (M;!). Let U be a contractible openset of M and NU = C1(U). If A = Id+Pk�1 �kAk is a formal linear operator on NU [[�]]which preserves the di�erential star product �, then there is a 2 NU [[�]] with A = exp ad� a.Proposition 3.5 Any �-linear derivation of a di�erential star product � on (M;!) is ofthe form D =Pi�0 �iDi where Di corresponds to a symplectic vector �eld Xi and is givenon a contractible open set U byDiujU = 1� �fUi � u� u � fUi �if XiujU = ffUi ; ugjU.Proof Assuming a derivation D is of the form Du = �kD0u + : : : (where k � 0), theequation D(u � v) = Du � v + u � Dv at order k in � yields D0(u:v) = D0u:v + u:D0v, soD0u = Xu where X is a vector �eld on M . Taking the skew part of terms in �k+1, we havethat X is a symplectic vector �eld on M , i.e. that LX! = 0. In that case, one can write,on a contractible open set U ,XujU = ffU ; ugjU where fU 2 C1(U):Since the Cr vanish on constants for r > 0, one can globally de�ne E:N ! N [[�]] byE(u) = 1� �fU � u� u � fU�and, by associativity of ��, E is a derivation of the star product. Notice that D � �kEstarts with terms of order k + 1. An induction gives the result. 2Corollary 3.6 With the same notation as in Corollary 3.4, any local �-linear derivationDU of a di�erential star product � on NU [[�]] for a contractible open set U is essentiallyinner: DU = 1� ad� dU for some dU 2 NU [[�]].4 The Relative ClassWe shall describe here the �Cech cohomology class introduced by Deligne when one considerstwo di�erential star products on a symplectic manifold. It is built from local equivalencesbetween those star products, using the property that any local self equivalence of a di�er-ential star product is of the form exp ad� a for some locally de�ned a.14



It is convenient to write the composition of automorphisms of the form exp ad� a interms of a. In a pronilpotent situation this is done with the Campbell{Baker{Hausdor�composition which is denoted by a �� b:a �� b = a + Z 10  (exp ad� a � exp t ad� b)b dtwhere  (z) = z log(z)z � 1 =Xn�1 �(�1)nn+ 1 + (�1)n+1n � (z � 1)n:Notice that the formula is well de�ned (at any given order in �, only a �nite number ofterms arise) and it is given by the usual seriesa �� b = a+ b + 12[a; b]� + 112([a; [a; b]�]� + [b; [b; a]�]�) � � � :The following results are standard [5]:Lemma 4.1� �� is an associative composition law;� exp ad�(a �� b) = exp ad� a � exp ad� b;� a �� b �� (�a) = exp(ad� a) b;� �(a �� b) = (�b) �� (�a);� ddt ����0 (�a) �� (a+ tb) = 1� exp (� ad� a)ad� a (b).Let (M;!) be a symplectic manifold. We �x a locally �nite open cover U = fU�g�2Iby Darboux coordinate charts such that the U� and all their non-empty intersections arecontractible, and we �x a partition of unity f��g�2I subordinate to U . Set N� = C1(U�),N�� = C1(U� \ U�), and so on.Now suppose that � and �0 are two di�erential star products on (M;!). We have seenthat their restrictions to N�[[�]] are equivalent so there exist formal di�erential operatorsT�:N�[[�]]! N�[[�]] such thatT�(u � v) = T�(u) �0 T�(v); u; v 2 N�[[�]]:On U�\U�, T�1� �T� will be a self-equivalence of � on N��[[�]] and so there will be elementst�� = �t�� in N��[[�]] with T�1� � T� = exp ad� t��:15



On U� \ U� \ U the element t�� = t� �� t� �� t��induces the identity automorphism and hence is in the centre R[[�]] of N�� [[�]]. The familyof t�� is thus a �Cech 2-cocycle for the covering U with values in R[[�]]. The standardarguments show that its class does not depend on the choices made, and is compatible withre�nements. Since every open cover has a re�nement of the kind considered it follows thatt�� determines a unique �Cech cohomology class [t��] 2 H2(M ;R)[[�]].De�nition 4.2 t(�0; �) = [t��] 2 H2(M ;R)[[�]]is Deligne's relative class.Proposition 4.3 If �, �0, �00 are three di�erential star products on (M;!) thent(�00; �) = t(�00; �0) + t(�0; �): (5)Proof Let the local equivalences between �0 and � be T� and between �00 and �0 be S�.On U� \ U� let T�1� � T� = exp ad� t��; S�1� � S� = exp ad�0 s��and set V� = S� � T� which are local equivalences between �00 and �. ThenV �1� � V� = exp ad� �t�� �� T�1� (s��)�and hence we can choose v�� = t�� �� T�1� (s��):Observe that v�� = �v�� sincet�� �� T�1� (s��) �� (�t��) = exp ad� t��(T�1� (s��)) = T�1� T�T�1� (s��) = �T�1� (s��):Then, on U� \ U� \ U, we haveT�1 (s�) �� t� = t� �� (�t�) �� T�1 (s�) �� t�= t� �� exp ad��t�(T�1 (s�))= t� �� (T�1� � T � T�1 )(s�)= t� �� T�1� (s�)
16



so v�� = v� �� v� �� v��= t� �� T�1 (s�) �� t� �� T�1� (s�) �� t�� �� T�1� (s��)= t� �� t� �� t�� �� T�1� (s� �� s� �� s��)= t�� �� T�1� (s��)= t�� �� s��= t�� + s��;the last two steps following since s�� is central. 2Proposition 4.4 The class t(�0; �) vanishes if and only if the two di�erential star productsare equivalent.Proof If � and �0 are equivalent, the equivalence being de�ned by T , we can choose therestriction of T to U� for T� and the class obviously vanishes.Now consider what happens if the class t(�0; �) vanishes. Then we can modify t�� byaddition of a central element (and so not changing its adjoint action) so that t�� = 0.But then t� is a cocycle and hence a coboundary, so there are functions t� 2 N�[[�]] witht� = (�t) �� t�.This is shown by the following standard inductive argument. At order zero, the cocyclecondition is t0� + t0� + t0�� = 0:De�ning tf0g� =X� ��t0��;yields t� = (�tf0g ) �� tf0g�up to order one in �. If there is a solutiontfkg� =Xr�k �rtr�so that t� = (�tfkg ) �� tfkg�up to order k + 1, then the cocyclec� = �tfkg �� t� �� tfkg�17



has �rst non vanishing term of order k + 1 withck+1� + ck+1� + ck+1�� = 0:De�ning tk+1� =X� ��ck+1��and tfk+1g� = tfkg� + �k+1tk+1�we have t� = (�tfk+1g ) �� tfk+1g�up to order k + 2 in �, hence the result by induction. SettingT 0� = T� � exp ad� t�we have T 0� = T 0� on U�\U� and hence there is a global equivalence T 0 on N with T 0 = T 0�on U�. 2Given a di�erential star product � we thus have a map from equivalence classes ofdi�erential star products to H2(M ;R)[[�]] given by[�0] 7! t(�0; �)and we have just shown that this map is injective.Proposition 4.5 Fixing a di�erential star product �, the map from equivalence classes ofdi�erential star products to H2(M ;R)[[�]] given by[�0] 7! t(�0; �)is surjective.Proof To see that the map is surjective we proceed in two steps. We �rst show thatgiven a 2-cocycle t��, we can �nd t�� 2 N��[[�]] so thatt�� = t� �� t� �� t��:We then construct a di�erential operator T� on U� starting with the identity so thatT�1� � T� = exp ad� t��.For the �rst step, we use, as above, the fact that the sheaf of functions is �ne. At orderzero, the cocycle condition takes the formt0�� � t0��� + t0�� � t0�� = 0:18



We de�ne t0�� =X �t0��so that t0�� = t0� + t0� + t0��:Assume now, by induction, that we have tfkg�� such that tfkg�� = �tfkg�� andt�� = tfkg� �� tfkg� �� tfkg��up to order k + 1. Let us de�ne c�� = tfkg� �� tfkg� �� tfkg��so that the coe�cients cr�� are constants 8r � k. Note that in a non-commutative situationc is not necessarily a cocycle. Nevertheless the ck+1�� are completely skewsymmetric in theirindices since ck+1�� = (tfkg�� �� c�� �� tfkg�� )k+1= ck+1��and c�� = tfkg� �� tfkg� �� tfkg��= (�tfkg� ) �� (�tfkg� ) �� (�tfkg�� )= �(tfkg�� �� tfkg� �� tfkg� ) = �c��:Furthermore, it can be checked that(c�� � c��� � c�� � c��)k+1 = ck+1�� � ck+1��� + ck+1�� � ck+1��= 0:Hence, if we de�ne tk+1�� =X �(tk+1�� � ck+1��)and tfk+1g�� = tfkg�� + �k+1tk+1�� ;then we have t�� = tfk+1g� �� tfk+1g� �� tfk+1g��up to order k + 2, and tfk+1g�� = �tfk+1g�� so the induction proceeds.19



For the second step, we need to �nd di�erential operators T� on N�[[�]], starting withthe identity, so that exp ad� t�� = T�1� � T�. This, again, is a recursive argument: Supposewe have found T (k)� such thatT (k)� � exp ad� t�� � T (k)� �1 = Id+�kS�� + � � � ;then it is easy to see that S�� is a 1-cocycle with values in the smooth di�erential operatorsvanishing on constants. Since these form a �ne sheaf, this 1-cocycle is a coboundary, sothere are di�erential operators S� on N�[[�]] vanishing on constants with S�� = S��S� onU� \ U�. Setting T (k+1)� = (Id+�kS�) � T (k)�we have T (k+1)� � exp ad� t�� � T (k+1)� �1 = Id+�k+1S 0�� + � � �and the recursion proceeds. Having found such operators T� we then twist � to yield �0 byde�ning u �0 v = T� �T�1� (u) � T�1� (v)� on U�:From the way we constructed �0 it is easy to see that the class of �0 will be t(�0; �). 2We summarise these results in a theorem.Theorem 4.6 Fixing a di�erential star product �, the class t(�0; �) in H2(M ;R)[[�]] de-pends only on the equivalence class of the di�erential star product �0, and sets up a bijectionbetween the set of equivalence classes of di�erential star products and H2(M ;R)[[�]].5 The Intrinsic Derivation-related ClassThe addition formula of Proposition 4.3 suggests that t(�0; �) should be a di�erence of classesc(�0); c(�) 2 H2(M ;R)[[�]]. Moreover by Proposition 4.5 the class c(�) should determinethe star product � up to equivalence. As a step in that direction we consider an intrinsicclass which is an obstruction to piecing together local derivations of the star product.We retain the notation of the previous section and continue to denote by U the coveringby contractible Darboux charts.De�nition 5.1 Say that a derivation D of N [[�]]; � is �-Euler on an open set U if it hasthe form D = � @@� +X +D0 (6)where X is conformally symplectic (LX! = !) andD0 =Pr�1 �rD0r with theD0r di�erentialoperators on U . 20



Proposition 5.2 Let � be a di�erential star product on (M;!) then for each U� 2 U wehave a �-Euler derivation D� = � @@� +X� +D0� of the algebra (N�[[�]]; �).Proof On an open set in R2n with the standard symplectic structure 
 denote thePoisson bracket by P . Let X be a conformal vector �eld so LX
 = 
 and hence thatthe Poisson tensor P satis�es LXP = �P . It follows that the power P r of P as a bi-di�erential operator satis�es LXP r = �rP r. The Moyal star product �M is given byu �M v = uv +Pr�1(�2 )r=r!P r(u; v). It is easy to see that D = � @@� +X is a derivation of�M .(U�; !) is symplectomorphic to an open set in R2n and any di�erential star producton this open set is equivalent to �M . We can then pull back D and �M to U� by asymplectomorphism to give a star product �0 with a derivation of the form � @@� +X�. If Tis an equivalence of � with �0 on U� then D� = T�1 � (� @@� +X�) � T is a derivation of therequired form. 2We take such a collection of derivations D� given by Proposition 5.2 and on U�\U� weconsider the di�erences D� � D�. They are derivations of � and the � derivatives cancelout, so D� �D� is a �-linear derivation of N��[[�]]. Any �-linear derivation is of the form1� ad� d, so there are d�� 2 N��[[�]] withD� �D� = 1� ad� d�� (7)with d�� unique up to a central element. On U� \U� \U the combination d� + d� + d��must be central and hence de�nes d�� 2 R[[�]]. It is easy to see that d�� is a 2-cocyclewhose �Cech class [d��] 2 H2(M ;R)[[�]] does not depend on any of the choices made.De�nition 5.3 d(�) = [d��] 2 H2(M ;R)[[�]] is Deligne's intrinsic derivation-relatedclass.Remark 5.4 In fact the class considered by Deligne is actually 1�d(�) but we prefer thepresent normalisation. De Wilde [7] and Karabegov [16] give purely �Cech-theoretic accountsof this class.Proposition 5.5 If � and �0 are equivalent di�erential star products then d(�0) = d(�).Proof Suppose T (u � v) = T (u) �0 T (v), and we have chosen local �-Euler derivationsD� for � then we can take D0� = TD�T�1 for �0. ThenD0� �D0� = T (D� �D�)T�1 = T �1� ad� d���T�1 = 1� ad�0 T (d��):Thus, for these choices of derivations, d0�� = T (d��) and so d0�� = T (d��) = d�� sincethe higher order terms of T are di�erential operators vanishing on constants. 221



Proposition 5.6 If d(�) = Pr�0 �rdr(�) then d0(�) = [!] under the de Rham isomor-phism, and d1(�) = 0.Proof For d0, consider the terms of degree zero in (7) using (6) applied to a functionu 2 N� (X� �X�)u = fd0��; ug:We set �� = i(X�)! then d�� = ! on U�. Hence(�� � ��)(Xu) = !(X� �X�; Xu)= �(X� �X�)u= �fd0��; ug= Xu(d0��)so �� � �� = d(d0��) on U� \ U�. Hence d0�� is the �Cech representative corresponding withthe closed 2-form ! under the de Rham isomorphism. Thus d0(�) = [!].For d1 we �rst observe that by Proposition 5.5 we can replace � by any equivalent starproduct. In particular, we may assume that � has C1(u; v) = 12fu; vg and the antisymmetricpart C�2 of C2 is given by a closed 2-form A, C�2 (u; v) = A(Xu; Xv). Nowad� d��u = d�� � u� u � d��= �fd��; ug+ 2�2C�2 (d��; u) + � � �= �fd0��; ug+ �2 �fd1��; ug+ 2C�2 (d0��; u)�+O(�3)for u 2 N��. Equating terms of degree one in (7) we have(D(1)� �D(1)� )u = fd1��; ug+ 2C�2 (d0��; u)= fd1��; ug+ 2A(Xd0��; Xu): (8)If we take the terms of degree one in � in D�(u � v) = D�(u) � v + u �D�(v) we see atonce that D(1)� = Y� is a vector �eld. If we take the antisymmetric part (in u and v) of theterms of degree two in � we obtain2C�2 (u; v) +X�(C�2 (u; v))� C�2 (X�(u); v)� C�2 (u;X�(v)) =12fD(1)� (u); vg+ 12fu;D(1)� (v)g � 12D(1)� (fu; vg)which can be rewritten in terms of the closed 2-form A as2 (LX�A) (Xu; Xv) = fY�(u); vg+ fu; Y�(v)g � Y�(fu; vg): (9)If we let B� = �i(Y�)! then B�(Xu) = Y�(u) so the right hand side of (9) becomes�Xv(B�(Xu)) +Xu(B�(Xv))�B�(Xfu;vg) = dB�(Xu; Xv)22



so LX�A = 12dB�:Since A is closed, then from Cartan's Identity, i(X�)A� 12B� is closed on U� and henceexact. There is thus a smooth function f� on U� withi(X�)A� 12B� = df�:Substituting into (8), and using Xd0�� = X� �X� we have(Y� � Y�)u = fd1��; ug+ 2A(X� �X�; Xu)= fd1��; ug+B�(Xu)�B�(Xu) + 2df�(Xu)� 2df�(Xu):Since Y�(u) = B�(Xu), these terms cancel leavingfd1��; ug = 2ff� � f�; ugand hence the class d1(�) = 0. 2Lemma 5.7 Consider two di�erentiable star products � and �0 on (M;!) with local equiv-alences T� and local �-Euler derivations D� for � . Then D0� = T� � D� � T�1� are local�-Euler derivations for �0. Let D��D� = 1� ad� d�� and T�1� �T� = exp ad� t�� on U�\U�.Then D0� �D0� = 1�ad�0d0�� whered0�� = T�d�� � �T� � �1� exp (� ad� t��)ad� t�� � �D�t��:Proof Since, for any (local) derivation D and any (locally de�ned) t 2 N [[�]], one hasD � ad� t = ad�(Dt) + ad� t �D so that inductivelyD � adn� t = adn� t �D + n�1Xi=0 adi� t � ad�(Dt) � adn�1�i� tand e� ad� t �D � ead� t = D + e� ad� t dds j0ead�(t+sDt)= D + �1� e� ad(ad� t)ad(ad� t) � ad�Dt= D + ad���1� exp (� ad� t)ad� t �Dt� :
23



One gets:D0� �D0� = T� �D� � T�1� � T� �D� � T�1�= T� � (D� � (T�1� T�) �D� � (T�1� T�)) � T�1�= T� � (D� �D�) � T�1� � T� � �ad� ��1� exp (� ad� t��)ad� t�� �D�t���� � T�1�= T� � ad��1� d�� � �1� exp (� ad� t��)ad� t�� �D�t��� � T�1�= ad�0 1� d0��:for the above de�ned d0��.Notice that d0�� = �d0��. Indeed,d0�� = T�d�� � �T� � �1� exp (� ad� t��)ad� t�� � �D�t��= T�d�� � �T�(T�1� T�) � �1� exp (� ad� t��)ad� t�� � �D�t��= T�d�� � �T� �exp (ad� t��)� 1ad� t�� �D�t��= T�d�� + �T� �1� exp (� ad� t��)ad� t�� �D�t��+�T� �1� exp (� ad� t��)ad� t�� � (D� �D�)t��Since �(D� �D�)t�� = ad� d��t�� = � ad� t��d��, the above givesd0�� = T�d�� + �T� �1� exp (� ad� t��)ad� t�� �D�t�� � T�d�� + T� exp (ad� t��)d��= �d0�� + T�d�� + T�T�1� T�d�� = �d0��: 2Lemma 5.8 In the situation of the lemma above and with the same notationd0�� = T�(d�� + �2 @@� t��)Proof We shall use the formula for the derivative of the exponential map:ddt ����0 (�a) �� (a+ tb) = 1� exp (� ad� a)ad� a (b):This also yieldsddt����0 (c �� �a) �� (a + tb) �� (�c) = exp ad� c1� exp (� ad� a)ad� a (b):24



Remark that if D is any (locally de�ned) derivation, one hasD(a �� b) = dds(a+ sDa) �� b����0 + dds(a) �� (b+ sDb)����0 :It follows that� @@� t�� = D(t� �� t� �� t��)= dds ����0 ((t� + sDt�) �� t� �� t��) + dds����0 (t� �� (t� + sDt�) �� t��)+ dds ����0 (t� �� t� �� (t�� + sDt��))= exp ad� t� 1� exp (� ad� t�)ad� t� Dt� + exp ad� t�� 1� exp (� ad� t�)ad� t� Dt�+1� exp (� ad� t��)ad� t�� Dt��= �1� exp (� ad� t�)ad� t� �Dt� + T�1� T� �1� exp (� ad� t�)ad� t� �Dt�+�1� exp (� ad� t��)ad� t�� �D�t�� + �1� exp (� ad� t��)ad� t�� � (D �D�)t��:On the other handd0� � d0� � d0�� = �T�d�� + �T� �1� exp (� ad� t��)ad� t�� �D�t���T�d� + �T� �1� exp (� ad� t�)ad� t� �Dt�+T�d� � �T��1� exp (� ad� t�)ad� t� �Dt�:Henced0� � d0� � d0�� = T�(�2 @@� t��)� T�d�� � T�d� + T�d� + T�(1� T�1� T�)d�= T�(�2 @@� t�� + d� + d�� + d�): 2This proves the Theorem:Theorem 5.9 The relative and intrinsic derivation-related classes of two di�erentiable starproducts � and �0 are related by�2 @@� t(�0; �) = d(�0)� d(�): (10)25



6 The Characteristic ClassFormula (10) of Theorem 5.9 gives the relation between the relative and intrinsic derivation-related classes of two di�erential star products � and �0. It shows that the information whichis \lost" in d(�0)� d(�) corresponds to the zeroth order term in � of t(�0; �). We computebelow what is this missing part.Take two di�erential star productsu � v = u:v + �C1(u; v) + �2C2(u; v) + � � �u �0 v = u:v + �C 01(u; v) + �2C 02(u; v) + � � �Since, by associativity at order 1, C 01 � C1 is a symmetric Hochschild 2-cocycle, we writeC 01(u; v) = C1(u; v)� u:E1(v)� E1(u):v + E1(u:v)where E1 is a di�erential operator on N de�ned up to a vector �eld. Then, by associativityat order 2 and 3 of the two star products:C 0�2 (u; v)� C�2 (u; v) = �12[fu;E1(v)g+ fE1(u); vg � E1(fu; vg)] + A(Xu; Xv)where A is a closed 2-form on M . Notice that the de Rham class [A] of A does not dependon the choice of E1. We write [A] = (C 0�2 � C�2 )#:A local equivalence T� on U� so thatu �0 vjU� = T�(T�1� u � T�1� v)is given by T� = Id+�E� + � � � whereE�(u) = E1(u) +B�(Xu)with A = �12dB� on U�. The �Cech class corresponding to [A] is calculated from 1-formsF� on U� with A = dF� on U�. If F� � F� = df�� on U� \ U� then a�� = f� + f� + f��is constant on U� \ U� \ U and [A] = [a��]. Here we can take F� = �12B�. Soexp ad� t�� = T�1� � T�= Id+�(E� � E�) + � � �= Id+�(B� � B�) + � � �
26



hence ft0��; ug = 2(F� � F�)(Xu)= 2df��(Xu)= �2ff��; ugand �nally [t0��] = �2[A]:Remark 6.1 In [14, 9] it was shown that any bidi�erential operator C, vanishing onconstants, which is a 2-cocycle for the Chevalley cohomology of (N; f ; g) with values inN associated to the adjoint representation (i.e. such thatSu;v;w[fu; C(v; w)g � C(fu; vg; w)] = 0where Su;v;w denotes the sum over cyclic permutations of u; v and w) can be written asC(u; v) = aS3�(u; v) + A(Xu; Xv) + [fu;Evg+ fEu; vg � E(fu; vg)]where a 2 R, where S3� is a bidi�erential 2-cocycle vanishing on constants which is never acoboundary and whose symbol is of order 3 in each argument, where A is a closed 2-formon M and where E is a di�erential operator vanishing on constants. HenceH2Chev;nc(N;N) = R �H2(M ;R)and the # operator is the projection on the second factor relative to this decomposition.The results above can be reformulated asProposition 6.2 Given two di�erential star products � and �0, the zeroth order term ofDeligne's relative class t(�0; �) =Pr�0 �rtr(�0; �) is given byt0(�0; �) = �2(C 0�2 )# + 2(C�2 )#:It follows from what we did before that the association to a di�erential star product of(C�2 )# and d(�) completely determines its equivalence class. Let us recall that d0(�) = [!]and d1(�) = 0 and let us observe that if C1 is just half the Poisson bracket, then C�2 (u; v) =A(Xu; Xv) where A is a closed 2-form and (C�2 )# = [A] so it \is" the skewsymmetric partof C2.We want now to de�ne a class c(�)(�) which will determine the equivalence class of �and be equivariant with respect to a change of parameter. By this, we mean the following:consider a star product � de�ned byu � v = u:v +Xr�1 �rCr(u; v)27



where C�1 (u; v) = 12fu; vg and consider its class c(�)(�).Consider a change of parameter f(�) = � +Pr�2 �rfr where fr 2 R and let �0 be thestar product obtained from � by this change of parameter, i.e.u �0 v = u:v +Xr�1(f(�))rCr(u; v) = u:v + �C1(u; v) + �2(C2(u; v) + f2C1(u; v)) + : : :Equivariance is the requirement thatc(�0)(�) = c(�)(f(�)):Remark that if D� = � @@� + LX� +D1�(�)is a local derivation of �, thenD0� = f(�)f 0(�) @@� + LX� +D1�(f(�))is a local derivation of �0. Hence a local �-Euler derivation of �0 is given by~D� = � @@� + �f 0(�)f(�) [LX� +D1�(f(�))]since �f 0(�)f(�) = 1 + f2� + � � �. With this choice, if (D� �D�)(�) = 1�ad�d��(�), one has:( ~D� � ~D�)(�) = �f 0(�)f(�) (D� �D�)(f(�))= �f 0(�)(f(�))2 ad�0d��(f(�))= 1� ad�0 ~d��(�)with ~d��(�) = �2f 0(�)(f(�))2 d��(f(�)). From this, we get:d(�0)(�) = �2f 0(�)(f(�))2 d(�)(f(�)): (11)Let us suppose that c(�) is a solution of@@� c(�)(�) = d(�)�2 :This de�nes c(�) up to its zeroth order term:c(�)(�) = �[!]� + c(�)0 + �d2(�) + � � �+ �kk dk+1(�) + � � �and the equation (11) becomes: @@� c(�0)(�) = @@� (c(�)(f(�)).28



Sincec(�)(f(�)) = �[!]f(�) + c(�)0 + f(�)d2(�) + � � �= �[!]� (1� f2� + (f 22 � f3)�2 + � � �) + c(�)0 + �d2(�) + � � �= �[!]� + f2[!] + c(�)0 + �(d2(�) + (f3 � f 22 )[!]) + � � �we shall have equivariance of c(�) under a change of parameter if and only if c(�0)0 =c(�)0 + f2[!]. Since C 0�2 = C�2 � f22 [!] (indeed, fu; vg = �!(Xu; Xv)), this is achieved forc(�)0 = �2(C�2 )#.De�nition 6.3 The characteristic class c(�) of a di�erential star product � on (M;!)is the element of the a�ne space �[!]� +H2(M ;R)[[�]] de�ned byc(�)0 = �2(C�2 )#@@� c(�)(�) = 1�2d(�)Theorem 6.4 The characteristic class has the following properties:� The relative class is given in terms of the characteristic class byt(�0; �) = c(�0)� c(�) (12)� The map C from equivalence classes of star products on (M;!) to the a�ne space�[!]� +H2(M ;R)[[�]] mapping [�] to c(�) is a bijection { provided one knows that thereexists a di�erential star product on (M;!).� If  :M !M 0 is a di�eomorphism and if � is a star product on (M;!) then u �0 v =( �1)�( �u� �v) de�nes a star product �0 = ( �1)�� on (M 0; !0) where !0 = ( �1)�!.The characteristic class is natural relative to di�eomorphisms:c(( �1)��) = ( �1)�c(�): (13)� Consider a change of parameter f(�) =Pr�1 �rfr where fr 2 R and f1 6= 0 and let�0 be the star product obtained from � by this change of parameter, i.e. u �0 v = u:v+Pr�1(f(�))rCr(u; v) = u:v+ f1�C1(u; v)+ �2((f1)2C2(u; v)+ f2C1(u; v))+ : : :. Then�0 is a di�erential star product on (M;!0) where !0 = 1f1! and we have equivarianceunder a change of parameter: c(�0)(�) = c(�)(f(�)): (14)29



Remark 6.5 It is shown in Deligne [6] that c(�) is the characteristic class introduced byFedosov as the de Rham class of the curvature of a generalised connection (up to a signand factors of 2 coming from the assumption that the skewsymmetric part of C1 is takenhere to be half the Poisson bracket). The fact that d(�) and (C�2 )# completely characterisethe equivalence class of a star product is also proven by �Cech methods in De Wilde [7].7 The Existence of DeformationsThe method of De Wilde and Lecomte [8] for proving the existence of a star product on anysymplectic manifold employs the same techniques that we have been using in the previoussections. For completeness we include a proof here as re�ned by De Wilde in [7].Theorem 7.1 Given a class c 2 H2(M ;R)[[�]] there exists a star product � with c(�) = c.Proof Given a characteristic class c = Pr�0 �rcr we recursively build a star product �with C1 given by half the Poisson bracket and C�2 # = �12c0 such that its intrinsic derivation-related Deligne class is d = �2 @@� c. The method consists in building, at the same time, afamily of local �-Euler derivations D� of this star product on the open set U�D� = � @@� +X� +D0�where X� is a chosen conformal vector �eld on U� (LX�! = !), and D0� is a formaldi�erential operator vanishing on constants of the form Pr�1 �rD�r. We have assumed {to be in the correct equivalence class { thatC1(u; v) = 12fu; vg; C2(u; v)� C2(v; u) = A(Xu; Xv)where A is a closed 2-form in a given de Rham class (minus the 0-term in the characteristicclass) and that, on U� \ U�, we haveD� �D� = 1� ad� d��where d�� 2 N��[[�]] are such that on U� \ U� \ U d� + d� + d�� = d�� 2 R[[�]] isde�ning a 2-cocycle whose �Cech class [d��] 2 H2(M ;R)[[�]] is the class d.The construction is done inductively.Suppose we have a star product at orderK, i.e. u�v =Pr�K �rCr(u; v) with (u�v)�w =u � (v �w) at order K, with C0(u; v) = uv, C1(u; v) = 12fu; vg, and the skewsymmetric partof C2 given as above in terms of A. Suppose also that we have a family of local derivationson U� at order K � 1 given byD� = � @@� +X� + X1�r�K�1 �rD�r;30



such that, at order K � 1 on U� \ U�D� �D� = 1� ad� dfK�2g�� (15)where dfK�2g�� is the truncation at order K � 2 of d��, i.e. dfK�2g�� =P0�r�K�2 �rdr��. Notethat, for this induction, we can assume K � 3. Indeed, choose a symplectic connection r(r is torsion-free and r! = 0) and de�neu � v = uv + 12�fu; vg+ �2�18P 2(u; v) + 12A(Xu; Xv)�where P 2 is the covariant square of the Poisson bracket given by �i1j1�i2j2r2i1i2ur2j1j2v.Then � is a star product at order 2. It can always be extended to order 3 (see below;the skew part of E3 vanishes since P 2 is symmetric and A is closed). On the other handLX�P 2 = LX�P 2 on U�\U� since X��X� is symplectic and one can �nd (again, see below;the corresponding A2 is symmetric) a di�erential operator R such that @R = LX�P 2+2P 2.D� = � dd� +LX� + �D1�+ �2R is a derivation at order 2 (where D1�(u) = A(X�; Xu)) whichsatis�es D� �D� = LX� + �D1� � LX� � �D1�= fd0��; .g+ �A(Xd0�� ; X:)= ��1 ad� d0��at order 2.De�ne, in this setting, E(u; v; w) = (u � v) � w � u � (v � w) (16)and write E(u; v; w) = Pr �rEr(u; v; w) 8u; v; w 2 N . The fact that we have a starproduct at order K means that Er = 0, 8r � K. De�ne alsoA�(u; v) = D�u � v + u �D�v �D�(u � v): (17)and write similarly A�(u; v) = Pr �rA�r 8u; v 2 N�. The fact that the D� are localderivations at order K � 1 means that A�r = 0, 8r � K � 1.We haveu � E(v; w; x)� E(u � v; w; x) + E(u; v � w; x)� E(u; v; w � x) + E(u; v; w) � x = 0 (18)and u � A�(v; w) � A�(u � v; w) + A�(u; v � w)� A�(u; v) � w= D�E(u; v; w)� E(D�u; v; w)� E(u;D�v; w)� E(u; v;D�w): (19)31



Relation (18) at order K + 1 implies that EK+1 is a Hochschild 3-cocycle for N (with theassociative structure given by the usual product of functions) soEK+1(u; v; w) = BK+1(Xu; Xv; Xw) + @CK+1(u; v; w)where BK+1 is a 3-form on M and where @ denotes the Hochschild coboundary operatoron N . The total skewsymmetrization of relation (18) at order K + 2 yieldsdBK+1 = 0: (20)Relation (19) at order K gives @A�K = 0 soA�K(u; v) = G�K(Xu; Xv) + @D�K(u; v);where G�K is a 2-form on U�, and the skewsymmetrization at order K + 1 yieldsdG�K = 3((K + 1� 3)BK+1 + LX�BK+1) (21)using LX�Xu = XLX�u �Xu. Relation (15) implies that�(A�(u; v)� A�(u; v)) = E(d��; u; v)� E(u; d��; v) + E(u; v; d��);so its skew symmetric part at order K + 1 gives(G�K �G�K)(Xu; Xv) = 3BK+1(Xd0��; Xu; Xv)which can be reformulated asG�K �G�K = i(X� �X�)3BK+1: (22)This last formula (22) shows that there is a well-de�ned 2-form on MGK = G�K � i(X�)3BK+1:The relation (21) can be reformulated asdGK = 3(K � 2)BK+1: (23)Hence, BK+1 is an exact 2-form; modifying accordingly the cochain CK toC 0K(u; v) = CK(u; v) + 1K � 2GK(Xu; Xv) + FK(Xu; Xv)where FK is any closed 2-form on M , we still have a star product at order K but now thecorresponding E 0K+1 is given by E 0K+1(u; v; w) = EK+1(u; v; w)+ 12(f(C 0K �CK)(u; v); wg+32



(C 0K�CK)(fu; vg; w)�fu; (C 0K�CK)(v; w)g� (C 0K�CK)(u; fv; wg)) so that the vanishingof its skewsymmetric part givesB0K+1 = BK+1 � 13(K � 2)dGK � 13dFK = 0:Hence E 0K+1 is a Hochschild coboundary and there exists a C 0K+1 so thatu �0 v = Xr�K�1 �rCr(u; v) + �KC 0K(u; v) + �K+1C 0K+1(u; v)is a star product at order K + 1. Modifying D�K�1 by a 1-di�erential cochain we get newlocal derivations at order K � 1 on U�,D0�(u) = D�(u) + �K�1R�(Xu):Now the corresponding A0�K is given byA0�K(u; v) = A�K(u; v)� (K � 2)� 1(K � 2)GK + FK� (Xu; Xv)�LX� � 1(K � 2)GK + FK� (Xu; Xv) + 12dR�(Xu; Xv);so that, choosing 12R� = i(X�)FK + 1K � 2 i(X�)GK + (K � 2)f�Kwhere f�K are 1-forms on U� chosen in such a way that df�K = FKjU� , the skewsymmetricpart of A0�K vanishesG0�K = G�K � (K � 2)� 1(K � 2)GK + FK�� LX� � 1(K � 2)GK + FK� + dR�= �(K � 2)FK � LX�FK + 12dR� � 1K � 2di(X�)GK= 0:Hence A0�K is a Hochschild coboundary and there exists a D0�K so thatD0� = � @@� +X� + X1�r�K�2 �rD�r + �K�1D0�K�1 + �KD0�Kis a family of local derivations at order K of our new star product.Notice furthermore that at order K � 1 on U� \ U� we have:(D0� �D0�)(u) = 1� ad�0 dfK�2g�� (u)� �K�1(C 0K � CK)(d0��; u) + �K�1(C 0K � CK)(u; d0��)+�K�1(D0�K�1 �D�K�1 �D0�K�1 +D�K�1)(u)= 1� ad�0 dfK�2g�� (u)� 2�K�1� 1(K � 2)GK(Xd0��; Xu) + FK(Xd0��; Xu)�+�K�1(R� � R�)(Xu))= 1� ad�0 dfK�2g�� (u) + �K�12(K � 2)(f�K � f�K)(Xu)= 1� ad�0 dfK�1g�� (u) 33



if we choose f�K � f�K = � 12(K � 2)ddK�1�� ;i.e. the �Cech representation of FK is � 12(K�2)dK�1�� . Hence, at order K, we haveD0� �D0� = 1� ad�0 dfK�1g�� + �KS��where S�� is a 1-di�erential 1-cochain on N��. Remark that S��+S� +S� = 0 hence wecan de�ne the 1-di�erential 1-cochain S� onN� by S�(u) =P �S� so that S�� = S��S�.Modifying D0� by D0� � �KS�, we still have a derivation of �0 up to order K which nowsatis�es, at order K, D0� �D0� = 1� ad�0 dfK�1g�� :Hence the induction can proceed. 28 Hochschild cohomology of a star-deformed algebraA di�erential star product on M de�nes on C1(M)[[�]] the structure of an associativealgebra A = (C1(M)[[�]]; �). As such can it be considered either as an R- or as an R[[�]]-algebra. In this section, we study the �rst and second di�erential Hochschild cohomology ofA viewed as an R[[�]]-algebra. The consideration of A as an R-algebra is more complicatedand will be looked at in the next section. p-cochains C for A are linear in � and hencedetermined by p-multilinear maps from N to A, so by a series of p-cochains for NC(u1; : : : ; up) =Xr�0 �rCr(u1; : : : ; up):De�nition 8.1 We say a p-cochain for the R[[�]]-algebra A = (N [[�]]; �) is di�erential ifeach of the Cr is a di�erential p-cochain on N . We denote the Hochschild coboundary forA by @� and the corresponding cohomology groups computed from di�erential cochains byHp� (A;A).In this setting Proposition 3.5 can be reformulated as:Proposition 8.2 H1�(A;A) is isomorphic to Z1(M ;R) � �H1(M ;R)[[�]] where Z1(M ;R)denotes the space of closed 1-forms on M .To obtain a similar result for the second cohomology group we re�ne the relationshipbetween the characteristic class and the equivalence class of a star product at a given orderin � to a relationship between a representing 2-form and the cochains of the star product.34



Lemma 8.3 Given a di�erential star product � on (M;!), a closed 2-form F onM and aninteger k � 0, one can build a star product �0 with c(�0) = c(�)+�k[F ], such that �0 coincideswith � up to order k+1 and such that their di�erence at order k+2 is �12F (Xu; Xv). This�0 is unique up to an equivalence of the form T = I + �k+2LX + � � � where X is a vector�eld on M .Proof We �x, as before, a locally �nite contractible open cover U = fU�g�2I and chooseF = da� on U�, a� � a� = da�� on U� \ U� and a�� = a� + a� + a�� on U� \ U� \ Uso that fa��g is a representative of the �Cech class corresponding to [F ].A corollary of the proof of Proposition 4.5 is that we can �nd di�erential operators T�on U� with T�(u) = u+ �k+1a�(Xu) + � � �so that T�1� � T� = exp ad� t�� where the t�� 2 N��[[�]] are of the formt�� = �ka�� + � � �and satisfy a�� = t� �� t� �� t��:The di�erential star product �00 de�ned on U� byu �00 v = T�(T�1� u � T�1� v)coincides with � at order k+1 and the skewsymmetric part of their di�erence at order k+2is given by �12F (Xu; Xv). Combining with an equivalence T = I + �k+2E if the symmetricpart of their di�erence at order k + 2 is @E, we get a �0 as stated in the lemma.Now two such star products are equivalent since they have the same characteristic class.Let T =Pr�j �rTr be an equivalence between them. If j � k + 1, the equivalence relationat order j shows that Tj is a vector �eld and the antisymmetric part of the terms of degreej + 1 show that it is a Hamiltonian vector �eld Tj(u)jU� = fh�; ug for some locally de�nedfunction h�. Then ��1 ad� h� is globally de�ned and (exp ��j�1 ad� h�) �T = Id+O(�j+1)is again an equivalence between our two star products. By induction on j, we can assumethat the equivalence is of the form T = I + �k+2LX + � � � where X is a vector �eld on M .2Given a di�erential star product � on (M;!) and a formal series of closed 2-forms onMF = �kFk+Pr>k �rFr (k integer � 0), one can build as above a family �s of di�erential starproducts, depending smoothly on s, such that c(�s) = c(�) + s[F ], such that �s coincideswith � at order k + 1 in � for all s and such that their di�erence at order k + 2 in � is�12sFk(Xu; Xv). 35



De�ne DF (u; v) = ��2 dds����s=0 u �s v:This is a 2-cocycle for the �-linear Hochschild cohomology of A. Its lowest order term is�12�kF (Xu; Xv). The class of this Hochschild 2-cocycle does not depend on the choice ofthe smooth family of star products �s since any other choice corresponds toue�sv = Ts(T�1s u �s T�1s v)with Ts = I + �k+2LXs + � � � andD0(u; v) = ��2 dds ����0 ue�sv = D(u; v) + @�E(u; v)where E(u) = ��2 dds ����0 T�1s u:This yields a map D:Z2(M ;R)[[�]] ! H2� (A;A).Let D be a �-linear di�erential 2-cocycle for the Hochschild cohomology of A. It isdetermined by its values on N � N . Assume its lowest order term is �kDk. Looking at@�D = 0 at order k and its skewsymmetric part at order k+ 1 shows that there is a closed2-form F onM such that Dk(u; v) = F (Xu; Xv)+S(u; v) where S is a symmetric cocycle forthe Hochschild cohomology of N . Hence S is a coboundary in that cohomology, S = @R,and �k@�R has lowest order term �kS. So D is cohomologous to D�2F 0 + D0, with DFas before for any F 0 = �kF + � � � and D0 with lowest order term of degree k + 1. If theclosed 2-form is exact, F = dB, and if k > 0, then D � @�E where E(u) = �k�1B(Xu) haslowest order term of degree k which is symmetric, hence can be removed by adding anothercoboundary. If D is a coboundary and has lowest order term �k(F (Xu; Xv)+S(u; v)), theneither k = 0 and F = 0, or k � 1 and F is exact. This yields:Proposition 8.4 H2�(A;A) is canonically isomorphic to Z2(M ;R)� �H2(M ;R)[[�]] whereZ2(M ;R) denotes the space of closed 2-forms on M . The isomorphism associates to theclass of F = Pr�0 �rFr where Fr 2 Z2(M ;R) the class of the 2-cocycle DF (u; v) =��2 dds����0 u �s v where �s is any family of di�erential star products, depending smoothlyin s, such that c(�s) = c(�) + s[F ], such that �s coincide with � at order 1 in � for all sand such that their di�erence at order 2 in � is �12sF0(Xu; Xv).Remark 8.5 If we replace R[[�]] by the ring of formal Laurent polynomials R[��1 ; �]] thenwe can also subtract an exact term from the leading closed 2-form and we obtain the resultof Weinstein and Xu, [25] that H2� (N [��1; �]]; N [��1; �]]) is isomorphic to H2(M ;R)[��1 ; �]].36



Remark 8.6 Proposition 8.4 is still true if �s is any family of di�erential star productsdepending smoothly on s such that c(�00) = c(�) and dds ��0 c(�s) = [F ], such that at order 1�s coincides with � for all s and at order 2 their di�erence is �12sF (Xu; Xv). In particular,if (u�sv)(�) = (u�v)(fs(�)) with f0(�) = � and dds ��0 fs(�) = �2 then dds ��0 u�sv correspondsto ! +Pk �kdk if d(�) = [!] +Pk �kdk.9 Derivations and automorphisms of a star productIn this section, we consider a star-deformed algebra as a real algebra and we study itsderivations and its automorphisms. We assume throughout this section that the manifoldM is connected. The results presented here were obtained with one of our students, DanielRauch [23].De�nition 9.1 A derivation of a di�erential star product � on (M;!) is an R-linearmap D:N [[�]] ! N [[�]], continuous in the �-adic topology (i.e. D(Pr �rur) is the limit ofPr�N D(�rur) ), such that D(u � v) = Du � v + u �Dv:Note thatD(�) � u = D(� � u)� � �D(u) = D(u � �)�D(u) � � = u �D(�)so that D(�) must be central and thus D(�) 2 R[[�]]. Hence D restricted to R[[�]] is aderivation D(g(�) = ~f(�) @@�g(�) where ~f(�) 2 R[[�]]. Hence D(g(�)u) = ~f(�) @@�g(�)u +g(�)D(u). The term of order zero in � of the derivation relation implies that ~f(�) = �f(�).Combining this with some previous results:Proposition 9.2 Any local derivation of a di�erential star product (on a contractible openset U�) is of the form D� = f(�)D0� +D00�where D00� is a �-linear local derivation of �, i.e.D00� = 1� ad� d� d� 2 N�[[�]]where f(�) 2 R[[�]] and where D0� is a chosen local �-Euler derivation.De�nition 9.3 An isomorphism from a di�erential star product � on (M;!) to a di�er-ential star product �0 on (M 0; !0) is an R-linear bijective map A:N [[�]] ! N 0[[�]], continuousin the �-adic topology, such that A(u � v) = Au �0 Av:37



Notice that if A is such an isomorphism, then A(�) is central for �0 so that A(�) = f(�)where f(�) 2 R[[�]] is without constant term to get the �-adic continuity. Let us denote by�00 the di�erential star product on (M;!1 = 1f1!) obtained by a change of parameteru �00 v� = u � vf(�) = F (F�1u � F�1v)for F :N [[�]] ! N [[�]]:Pr �rur 7! Pr f(�)rur. De�ne A0 : N [[�]] ! N 0[[�]] by A = A0 � F .Then A0 is a �-linear isomorphism between �00 and �0:A0(u �00 v) = A0u �0 A0v:At order zero in � this yields A00(u:v) = A00u:A00vso that there exists a di�eomorphism  : M 0 ! M with A00u =  �u. The skewsymmetricpart of the isomorphism relation at order 1 in � implies that  �!1 = !0. Let us denote by�000 the di�erential star product on (M;!1) obtained by pullback via  of �0:u �000 v = ( �1)�( �u �0  �v)and de�ne B : N [[�]] ! N [[�]] so that A0 =  � � B. Then B is �-linear, starts with theidentity and B(u �00 v) = Bu �000 Bvso that B is an equivalence { in the usual sense { between �00 and �000. Hence, we summarise:Proposition 9.4 Any isomorphism between two di�erential star products is the combi-nation of a change of parameter and a �-linear isomorphism. Any �-linear isomorphismbetween two star products � on (M;!) and �0 on (M 0; !0) is the combination of the actionon functions of a symplectomorphism  : M 0 ! M and an equivalence between � and thepullback via  of �0. In particular, it exists if and only if those two star products are equiv-alent, i.e. if and only if ( �1)�c(�0) = c(�), where here ( �1)� denotes the action on thesecond de Rham cohomology space.This implies immediately:Corollary 9.5 Two star products � on (M;!) and �0 on (M 0; !0) are isomorphic if and onlyif there exist f(�) =Pr�1 �rfr 2 R[[�]] with f1 6= 0 and  :M 0 !M , a symplectomorphism,such that ( �1)�c(�0)(f(�)) = c(�)(�). In particular [13]: if H2(M ;R) = R[!] then thereis only one star product up to equivalence and change of parameter.Remark 9.6 See also Omori et al. [21] who show that when reparametrisations are allowedthen there is only one star product on C P n .38



In particular, Proposition 9.4 gives:Corollary 9.7 A symplectomorphism  of a symplectic manifold (M;!) can be extendedto a �-linear automorphism of a given di�erential star product on (M;!) if and only if( )�c(�) = c(�).Notice that this is always the case if  can be connected to the identity by a path ofsymplectomorphisms (Fedosov, [11]).10 On Deligne's de�nition of a deformationIn this section we �ll in some of the steps to get from the de�nition of a deformation inDeligne's paper [6] to the usual one considered in the �rst part of these notes.10.1 Deformations of C1(M)We shall work just with real smooth functions on a manifold, the other cases considered byDeligne can easily be handled in a similar manner. Denote by N the R-algebra of smoothfunctions on a manifold and consider a pair (A;') consisting of an R[[�]]-algebra A and asurjective R-algebra homomorphism ':A! Nsuch that Ker ' = �A.N is commutative so '(a)'(b) = '(b)'(a) and hence ab � ba 2 �A. Thus there isan element which we denote by ��1(ab � ba) in A which is unique up to an element of Aannihilated by '. We shall shortly assume that A is free over R[[�]] so we feel free to abusenotation for now.Proposition 10.1 There is a unique Poisson structure on N such that'(��1(ab� ba)) = f'(a); '(b)gProof If u; v 2 N pick a; b 2 A such that '(a) = u, '(b) = v. Then de�ne fu; vg ='(��1(ab� ba)). This is well-de�ned since if '(a0) = u and '(b0) = v then and a� a0 = �cb� b0 = �d so(ab� ba) = (a0 + �c)(b0 + �d)� (b0 + �d)(a0 + �c)= a0b0 � b0a0 + �(cb0 � b0c+ a0d� da0) + �2(cd� dc):39



Thus '(��1(ab� ba)) = '(��1(a0b0 � b0a0) + cb0 � b0c+ a0d� da0 + �(cd� dc))= '(��1(a0b0 � b0a0)):The bracket f ; g on N obviously satis�es the Bianchi identity. It is a Poisson bracketsince if '(a) = u, '(b) = v, '(c) = w then '(ab) = uv sofuv; wg = '(��1(abc� cab))= '(��1(abc� acb + acb� cab))= '(a��1(bc� cb) + ��1(ac� ca)b)= '(a)'(��1(bc� cb)) + '(��1(ac� ca))'(b)= ufv; wg+ fu; wgv: 2De�nition 10.2 We say A is �-adically complete if, given any sequence ar, r � 0 ofelements of A, there is an element a 2 A such that for each k � 0 there is an elementbk+1 2 A with a� kXr=0 �rar = �k+1bk+1:a is denoted by Pr�0 �rar.Thus A is closed under taking formal power series in its elements. An example is, ofcourse, N [[�]].In order that the algebra A looks like N [[�]] we assume that A is �-adically complete andhas an R-linear subspace mapped bijectively onto N by ' which, together with �, freelygenerates A in the �-adic topology. In other words, we have an R-linear map �:N ! Awith ' � � = Id and such that the map b� :N [[�]] ! A given byb� Xr�0 �rur! =Xr�0 �r�(ur)induces a bijection of N [[�]] onto A (b� exists from the �-adic completeness of A). In thiscase, if u; v 2 N then there are functions Cr(u; v) 2 N with�(u)�(v) =Xr�0 �r�(Cr(u; v)): (24)We call such a map � a section of (A;'). 40



Proposition 10.3 Given a section � and the Cr as above thenC0(u; v) = uv; C1(u; v)� C1(v; u) = fu; vg:Proof C0(u; v) = '(�(C0(u; v))= '(Xr�0 �r�(Cr(u; v)))= '(�(u)�(v))= '(�(u))'(�(v))= uvand C1(u; v)� C1(v; u) = '(�(C1(u; v))� '(�(C1(v; u))= '(Xr�1 �r�1�(Cr(u; v))�Xr�1 �r�1�(Cr(v; u)))= '(��1Xr�0 �r�(Cr(u; v))� ��1Xr�0 �r�(Cr(v; u)))= '(��1�(u)�(v)� ��1�(v)�(u))= fu; vg: 2If we de�ne '0:N [[�]]! N by '0 Xr�0 �rur! = u0then ' � b� = '0.Fixing a section � we can transfer the algebra structure from A to N [[�]] using b� anddenote the resulting multiplication by �:u � v = b��1 (b�(u)b�(v)) :If we restrict this to elements u, v of N thenu � v =Xr�0 �rCr(u; v); u; v 2 N:In view of the previous Proposition, � is a star product on N given by the cochains Cr.41



If �0 is a second section and �0 the star product it de�nesu �0 v =Xr�0 �rC 0r(u; v); u; v 2 Nwhere �0(u)�0(v) =Xr�0 �r�0(C 0r(u; v))then �0(u) =Xr�0 �r�(Tr(u))for some sequence of functions Tr(u). Applying ' to this equation we getu = T0(u)so that T0 = Id :If we set T (u) = u+Xr�1 �rTr(u)then Xr�0 �r�(Tr(u))Xs�0 �s�(Ts(v)) = Xp�0 �p Xr+s=p �(Tr(u))�(Ts(v))= Xp�0 �p Xr+s=pXq�0 �q�(Cq(Tr(u); Ts(v)))so that �0(u)�0(v) = Xr�0 �r�0(C 0r(u; v))= Xr�0 �rXs�0 �s�(Ts(C 0r(u; v))):Comparing coe�cients of powers of � we obtainXr+s=tTs(C 0r(u; v)) = Xp+q=t Xr+s=pCq(Tr(u); Ts(v))= Xr+s+q=tCq(Tr(u); Ts(v)):A straightforward calculation now shows thatT (u �0 v) = T (u) � T (v)42



so that �0 and � are equivalent.To obtain a di�erential star product we have to assume that there is a section � whichmakes the Cr into bidi�erential operators. We shall call such a � a di�erential section.Two di�erent sections �i, i = 1; 2 give rise to equivalent star products. Theorem 2.22says that if the two star products are di�erential then they are equivalent by a di�erentialoperator. Thus if a deformation A gives rise to a di�erential star product, then all thedi�erential star products it gives rise to are in a single di�erential equivalence class.De�nition 10.4 A (formal, di�erential) deformation of a symplectic manifold (M;!)is a pair (A;') consisting of an R[[�]]-algebra A and an R-algebra epimorphism ':A! N =C1(M) such that1. Ker ' = �A;2. the Poisson bracket induced on N by Proposition 10.1 coincides with that comingfrom the symplectic structure;3. there are R-linear maps �:N ! A (called sections of ') whose image freely generatesA as a �-adically complete R[[�]]-algebra;4. the cochains Cr(u; v) associated to such a section � by (24) are bidi�erential operators(� is a di�erential section).In the usual de�nition of star product 1 is assumed to be an identity for the starmultiplication. This can be made to be the case here.Proposition 10.5 Let ':A! N be a deformation then A has a unity 1A in '�1(1). Thereexist sections � with �(1) = 1A.Proof Pick a in A with '(a) = 1. Then left (or right) multiplication by a is a bijectionof A with itself. This follows easily by an induction after choosing a section � to representelements of A as formal power series. Thus a must be left multiplication of some element1A by a: a = a1A. Then any element b is ca for some c so b1A = ca1A = ca = b. Similarlythere is an element 10A with a = 10Aa. Then 10Ab = b for any b. Thus 10A = 10A1A = 1A so1A is a two-sided unity for A. Given any section �0 of ' then c = �0(1) is invertible with'(c) = '(c�1) = 1. Thus �(u) = c�1�0(u) is a section with �(1) = 1A. 2Remark 10.6 If we take a section � respecting unities then the cochains Cr it de�nesvanish on constants for r � 1. The corresponding star product then satis�es 1�u = u�1 = ufor all u in N [[�]]. 43



De�nition 10.7 Two (Ai; 'i), i = 1; 2 deformations of N are said to be equivalent ifthere is an R[[�]]-algebra isomorphism  :A1 ! A2 continuous in the �-adic topology suchthat '2 �  = '1.Here continuity means that  commutes with taking formal power series:  Xr�0 �rar! =Xr�0 �r (ar):Proposition 10.8 Equivalent deformations of N induce the same Poisson bracket on N .Proof Let (Ai; 'i), i = 1; 2 be two deformations of N with  :A1 ! A2 an isomorphismsuch that '2 �  = '1, and f ; gi the induced Poisson brackets. If u; v 2 N , pick ai; bi 2 Aiwith 'i(ai) = u, 'i(bi) = v then  (a1) � a2 = �c,  (b1) � b2 = �d. Thus  (a1b1 �b1a1) = a2b2 � b2a2 + �e for e = a2d � da2 + cb2 � b2c + �(cd � dc). Then '2(e) = 0so fu; vg2 = '2(��1(a2b2 � b2a2)) = '2(��1 (a1b1 � b1a1)) = '2( (��1(a1b1 � b1a1))) ='1(��1(a1b1 � b1a1)) = fu; vg1. 2Given equivalent deformations (Ai; 'i), i = 1; 2 of N with  :A1 ! A2 such that'2 �  = '1, if �1 is a section of '1 then �2 =  � �1 is a section of '2. Let �(i), i = 1; 2 bethe star products the two sections de�ne with cochains C(i)r . ThenXr�0 �r�2 �C(2)r (u; v)� = �2(u)�2(v)=  (�1(u)�1(v))=   Xr�0 �r�1 �C(1)r (u; v)�!= Xr�0 �r�2 �C(1)r (u; v)�so C(2)r = C(1)r . If we had used a di�erent section of '2 we would have obtained equivalentcochains so equivalent deformations lead to equivalent star products. This suggests thefollowing theorem.Theorem 10.9 Equivalent deformations (Ai; 'i), i = 1; 2 of N induce equivalent star prod-ucts on N [[�]]. This induces a bijection between the set of equivalence classes of deformationsand the set of equivalence classes of star products.Proof What remains to be proved is that the map constructed in the previous paragraphis bijective. To see this we take a star product � arising from sections �i of deformations(Ai; 'i), i = 1; 2 so thatXr�0 �r�i(Cr(u; v)) = �i(u)�i(v); i = 1; 2:44



De�ne  :A1 ! A2 by  = b�2 � b��11 .  is clearly a bijection from A1 to A2 and if we de�ne'0 �Pr�0 �rur� = u0 then 'i � b�i = '0, i = 1; 2 so'2 �  = '2 � b�2 � b��11 = '0 � b��11 = '1:It remains to show that  is an algebra isomorphism (it is R[[�]]-linear from the wayit is de�ned). But this follows since both algebras Ai are isomorphic to (N [[�]]; �) and  intertwines the two isomorphisms. 210.2 Deformations of the sheaf C1MThe fact that A '�! C1(M) has di�erential sections allows us to localise elements of A onM . More precisely, if � and �0 are two di�erential sections then b� and b�0 di�er by a formaldi�erential equivalence T such that b�0 = b� �T . If a = b� �Pr�0 �rur� = b�0 �Pr�0 �ru0r� thenPr�0 �rur = T �Pr�0 �ru0r�. Thus all functions ur vanish on an open set U if and only ifall the u0r do. Hence we can unambiguously make the following de�nition:De�nition 10.10 We say that a 2 A vanishes on the open set U if there is a di�erentialsection � such that a = b� �Pr�0 �rur� with all urjU = 0. We say a = b on U if a�b vanisheson U .De�nition 10.11 Given x 2 M we say a and b are equivalent at x if there is an openset U containing x with a = b on U . The equivalence class of a at x is called the germ ofa at x and denoted by a[x]. Ax denotes the set of germs of elements of A at x.We claim that Ax is an algebra over R[[�]] and has an R-algebra homomorphism ' ontoC1x , the algebra of germs of smooth functions at x. Here we use the fact that the sheaf ofsmooth functions is soft (mou): every local germ is the germ of a globally de�ned smoothfunction.Lemma 10.12 If a vanishes on U and b 2 A then ab vanishes on U .Proof Picking a di�erential section �, the multiplication in A is given by a di�erentialstar product and if one of the formal power series vanishes on an open set so does theproduct since it is given by di�erential cochains. 2This allows us to de�ne the product of two germs as the germ of the product of anytwo elements in the germs and Ax becomes an algebra as claimed. To construct a sheafwe topologise the disjoint union A = _[xAx by taking as a base for a topology the sets ofgerms of elements a in A over open sets U in M . A is then a sheaf of algebras and we have45



a morphism ':A ! C1M of sheaves of algebras which is clearly surjective. The kernel of':Ax ! C1x is found as follows: Suppose '(a[x]) = 0 then a = b� �Pr�0 �rur� with u0[x] = 0If we set b = a� �(u0) then b has the same germ as a at x and b = �b� �Pr�0 �rur+1� = �c.Thus a[x] = �c[x]. Hence Ker ' = �A.If A is the sheaf associated to a di�erential deformation ':A! C1(M), then consideran element a of A. Taking the germ a[x] of a at each x 2M , gives a global section ba of A.Lemma 10.13 The map a 7! ba, just de�ned, gives a bijection of A with �A.Proof If ba = 0 then a is equivalent to 0 on a neighbourhood of each point of M . Pick adi�erential section �, then a = b� �Pr�0 �rur� with each ur vanishing on a neighbourhoodof each point. It follows that ur = 0; 8r � 0 and hence that a = 0 so that the map isinjective.For surjectivity, �x a di�erential section �. Then given a section ba of A, it determinesa sequence of germs of functions ur at each point and varying the point we get a section ofthe sheaf of germs of functions. This must come from a global smooth function and hencefrom some element b� �Pr�0 �rur� of a. This proves the surjectivity. 2These observations allow us to pass back and forth between the global algebras ':A!C1(M) to the corresponding sheaves of algebras ':A ! C1M (or their presheaves) in sucha way that the original algebras are the spaces of global sections.References[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformationtheory and quantization, Lett. Math. Phys. 1 (1977) 521{530.[2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformationtheory and quantization, Ann. Phys. 111 (1978) 61{110.[3] M. Bertelson, Equivalence de produits star, M�emoire de Licence U.L.B. (1995).[4] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products, Class. Quan. Grav.14 (1997) A93{A107.[5] N. Bourbaki, Groupes et alg�ebres de Lie, �El�ements de Math�ematique. Livre 9, Chapitre2, x6.[6] P. Deligne, D�eformations de l'Alg�ebre des Fonctions d'une Vari�et�e Symplectique: Com-paraison entre Fedosov et De Wilde, Lecomte. Selecta Math. (New series). 1 (1995)667{697. 46
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