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Abstract

We propose an equivalent system (C̃, L) for studying the set of eventually periodic

points, Per(Tβ), for the beta-transformation of the unit interval, when β is a Pisot or

a Salem number. This system is defined by a map C̃, which is closely related to the

companion matrix C of the minimal polynomial of β (of degree d ≥ 2), and by a set of

points L ⊂ Qd.

The systems (C̃, L) and
(
Tβ, [0, 1) ∩Q(β)

)
are semi-conjugate and furthermore

the semi-conjugacy is one-to-one. Given that Per(Tβ) ⊆ [0, 1) ∩ Q(β), we say that

(C̃, L) is an equivalent system as far as the study of periodic points is concerned.

We define symbolic dynamics for (C̃, L), which is related to the beta-expansions

of numbers in the unit interval. We show that C̃ can be factored to the toral automor-

phism defined by C and we also study the geometry of (C̃, L).

The main motivation for this work is Schmidt’s paper [Sch80], and in particular

the theorem that Per(Tβ) = [0, 1)∩Q(β) when β is a Pisot number, and the conjecture

that the same should be true when β is a Salem number. We compare the different

dynamical behaviours of (C̃, L) when β is Pisot and when β is Salem , and state some

of the implications of Schmidt’s theorem and conjecture.

Finally, we use computer simulations and plots for a particular Salem case of

degree 4, with a view to gaining further insight about the general Salem case.
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Chapter 1

Introduction

The representation of real numbers in decimal base is a rather familiar notion to most

people. In order to determine the decimal digits which represent any non-negative real

number in base 10, we choose the highest possible integers between 0 and 9, which

are associated to each power of 10, starting from the highest power to the lowest. For

example if x = 100
√

2 ≈ 141.4213 . . ., then:

x = 1×102 +4×101 +1×100 +4×10−1 +2×10−2 +1×10−3 +3×10−4 + . . . . (1.1)

This way of generating the integer coefficients is called the greedy algorithm, since in

each iterative step it chooses the highest integer possible. The generalization to any

other integer base β > 1 is straightforward. If we want to define this algorithm explicitly,

it helps to normalize any non-negative real number to the unit interval [0, 1), dividing

it by a suitable power of the base.

For any integer β > 1 we define the greedy expansion in base β of x ∈ [0, 1) as

x :=
a1(x)

β
+
a2(x)

β2
+
a3(x)

β3
+ . . . =

∞∑

k=1

ak(x)

βk
, (1.2)

where ak(x) ∈ {0, 1, . . . , β − 1} are determined as ak(x) := [β T k−1
β (x)], with:

Tβ : [0, 1) −→ [0, 1)

x 7−→ βx− [βx]
(1.3)
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and [x] := max{n ∈ N0 | n ≤ x}.

The symbolic dynamics associated to the map Tβ is defined in terms of the

one-sided shift on β-symbols. This one-sided space of sequences is trivially defined, and

it is known that the sequences which have periodic tails (that is, which are eventually

periodic under the shift map) correspond to the rational numbers in the unit interval.

In [Ren57], Rényi suggested generalizing the expansion of a number to any non-

integer base β > 1. In this case, the corresponding expanding map of the unit interval

is called the beta-transformation. The symbolic dynamics associated to this map are

related to a subshift of the full shift on [β] symbols, but it is not immediate to give a

description of that subshift. In [Par60], Parry characterized this subshift, describing the

sequences which belong to it.

In [Ber77] and [Sch80], an important result concerning the eventually periodic

points of the β-transformation was proved. It brought about a connection with the the-

ory of algebraic numbers, with crucial results related to two special classes of algebraic

numbers: Pisot and Salem numbers. The Pisot case is completely understood, but the

Salem case presents additional difficulties, and therefore there is still an open conjecture

concerning the Salem case. As far as we know, the only published works directly ad-

dressing the conjecture stated in Schmidt’s paper, were Boyd’s articles [Boy89], [Boy96]

and [Boy97]. Despite the interest and the partial results obtained by Boyd, Schmidt’s

conjecture still remains unanswered.

We attempted to deal with this difficult open problem, going back to the original

paper by Schmidt. We relied on some of the original ideas used by Schmidt, and when

β > 1 is Pisot or Salem , we were able to explicitly define a dynamical system which is

semi-conjugate to a restriction of the β-transformation to a subset of the unit interval

which is suitable for studying eventually periodic points. This system is defined in a

subset of Qd, and its definition is related to the linear map defined by the companion

matrix of β.

This system can be factored to the toral automorphism defined by the companion

2



matrix. The way in which the periodic orbits are mapped into the torus follow a different

pattern, according to whether β is Pisot or Salem . We also show how the main result

by Schmidt is translated into this new setting. Finally, our system also allows us to

explicitly define the points in Qd which represent an eventually periodic point, defined

by its sequence.
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Chapter 2

The beta-transformation and

symbolic dynamics

2.1 Introduction

In this chapter, we summarize some classical results concerning a particular way of repre-

senting real numbers in an arbitrary non-integer base β > 1. Following the analogy with

the representation of real numbers in an integer base, we will apply the greedy algorithm

in order to obtain sequences of symbols representing real numbers x ∈ [0, 1), and we

will call these sequences β-expansions.

The dynamical way of defining the greedy algorithm is connected to a map of

the unit interval which is called the β-transformation. The dynamical properties of this

map are related to the allowed sequences generated by the greedy algorithm. The study

of β-transformations was first carried out by Rényi and Parry in [Ren57] and [Par60].

In [Par60], Parry described the sequences generated by the greedy algorithm applied to

numbers x ∈ [0, 1). This description is related to the expansion in base β of the number

1 and uses the notion of lexicographic inequality between sequences. We will introduce

some of the classical concepts and results from [Par60], while using the most recent

terminology which in the mean time has become standard. We introduce a sequence of

4



steps which prove these results.

The study of periodic orbits for the β-transformation (or equivalently, the study of

periodic sequences generated by the greedy algorithm) is one of the non-trivial problems

in which we will be interested in the following chapters.

2.2 The beta-expansion

Let β > 1 be a non-integer real number. Following the motivation of the representation

of real numbers in integer base, we would like to express any x ∈ [0, 1) as a sum of

terms consisting of negative powers of β weighted by non-negative integer coefficients:

x =
ε1
β

+
ε2
β2

+
ε3
β3

+ . . . =

∞∑

k=1

εk
βk
. (2.1)

We say that (2.1) is an expansion of x in base β and that the sequence of integers

ε := (ε1, ε2, . . .) represents x in base β. There exist many ways of representing x with

sequences such that (2.1) holds, but we shall be concerned with a particular one which

is called the β-expansion.

The example of the integer base expansion of real numbers suggests that the

integers εk should satisfy 0 ≤ εk < β. If we define the notation for the integer part of

a real number x as:

[x] := max{n ∈ Z | n ≤ x}, (2.2)

then εk ∈ {0, 1, . . . , [β]}, and we write ε ∈ Σ+
[β] := {0, 1, . . . , [β]}N.

We also define the fractional part of x as: {x} := x− [x].

We shall now describe an algorithm that for each x ∈ [0, 1) uniquely determines

coefficients εk which satisfy (2.1).

Given any x ∈ [0, 1), multiply (2.1) by β:

βx = ε1 +
(ε2
β

+
ε3
β2

+ . . .
)
, (2.3)

and compare it with:

βx = [βx] + {βx}. (2.4)

5



Comparing (2.3) and (2.4) suggests that:

ε1 := [βx], {βx} =
ε2
β

+
ε3
β2

+ . . . . (2.5)

This defines ε1 ∈ {0, 1, . . . , [β]}, and the coefficients (ε2, ε3, . . .) still need to be de-

termined. But we can apply the same method to the number {βx} ∈ [0, 1) in order

to determine ε2, and this will define the coefficients {εk}k∈N by induction. In order to

simplify the description of this algorithm, we introduce the following map:

Definition 2.2.1. For any non-integer β > 1, we define the β-transformation of the

unit interval:

Tβ : [0, 1) −→ [0, 1)

x 7−→ βx− [βx].
(2.6)

The β-transformation relates to the algorithm that we’re describing in the fol-

lowing way:

T kβ (x) =
εk+1

β
+
εk+2

β2
+
εk+3

β3
+ . . . . (2.7)

With this new notation, we can define:

εk := [β T k−1
β (x)] ∀k ∈ N. (2.8)

This algorithm is known as the greedy algorithm, because the choice of each

term εk corresponds to be the greatest possible integer in each step of the iterative

process. Therefore, an equivalent way of defining the algorithm is the following: if the

integers {εi}0<i<k have already been determined, then define εk as the greatest possible

integer such that the sum of the first k terms in the expansion in base β doesn’t exceed

x:

εk := max
{
ε ∈ {0, 1, . . . , [β]} |

∑

0<i<k

εi
βi

+
ε

βk
≤ x

}
. (2.9)

For each x ∈ [0, 1), the expansion (2.1) determined by the greedy algorithm is

called the β-expansion of x. Very often in the literature, it became a common practice

6



to call the sequence (ε1, ε2, ε3, . . .) generated by the greedy algorithm the β-expansion

of x as well. This is a slight abuse of language (with respect to the original definition

by Rényi and Parry, [Par60]), but given that it is usually clear from the context whether

we are referring to the sequence of symbols determined by the greedy algorithm, or to

the actual sum (2.1) with those symbols replaced, we will follow the same practice.

2.3 Symbolic dynamics

Define πβ : Σ+
[β] → R as:

πβ(ε1, ε2, ε3, . . .) :=

∞∑

k=1

εk
βk
. (2.10)

We also define the following notation: X+
β ⊂ Σ+

[β] is the set of all possible

sequences which are β-expansions of numbers x ∈ [0, 1).

Definition 2.3.1. We call dβ the function which maps each x ∈ [0, 1) to the sequence

ε which is the β-expansion of x:

dβ : [0, 1) −→ X+
β

x 7−→ ε := dβ(x).
(2.11)

This means that ε = (ε1, ε2, ε3, . . .) is determined by the greedy algorithm, as

defined in (2.8), or equivalently in (2.9).

Note that πβ ◦ dβ(x) = x, that is to say, the restriction of πβ to X+
β is the

inverse of dβ .

Definition 2.3.2. The one-sided full shift on Σ+
[β] is the pair (Σ+

[β], σ), where σ is:

σ : Σ+
[β] −→ Σ+

[β]

(ε1, ε2, ε3, . . .) 7−→ (ε2, ε3, ε4, . . .).
(2.12)

The restriction of σ to X+
β is well defined, because X+

β is σ-invariant: for any

ε ∈ X+
β , there exists x ∈ [0, 1) such that ε = dβ(x) and σ(ε) = dβ(y), with y := Tβ(x).

Therefore σ(ε) ∈ X+
β .

7



Proposition 2.3.3. The dynamical system (σ,X+
β ) is semi-conjugate to (Tβ , [0, 1)):

[0, 1) [0, 1)
Tβ

//

X+
β

[0, 1)

πβ

��

X+
β X+

β

σ // X+
β

[0, 1)

πβ

��

(2.13)

Proof. πβ : X+
β → [0, 1) is a continuous surjective map.

Let us check that the diagram commutes.

πβ ◦ σ(ε1, ε2, . . .) = πβ(ε2, ε3, . . .)

=
ε2
β

+
ε3
β2

+ . . . . (2.14)

On the other hand,

Tβ ◦ πβ(ε1, ε2, . . .) = Tβ

(ε1
β

+
ε2
β2

+ . . .
)

=
ε2
β

+
ε3
β2

+ . . . , (2.15)

therefore the diagram is commutative.

This means that the orbits of points x ∈ [0, 1) under Tβ are in one-to-one cor-

respondence with the orbits of sequences ε ∈ X+
β under the shift map σ. An eventually

periodic point x ∈ [0, 1) corresponds to a sequence ε ∈ X+
β which has a periodic tail of

symbols.

2.4 Lexicographic order

The order of real numbers in [0, 1) is carried by dβ to an order between sequences in

X+
β , which is called the lexicographic order.

Definition 2.4.1. We say that a sequence of integers (ε1, ε2, ε3, . . .) is lexicographically

less than a different sequence (ε′1, ε
′
2, ε

′
3, . . .), and we write

(ε1, ε2, ε3, . . .) <lex (ε′1, ε
′
2, ε

′
3, . . .), (2.16)
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if and only if:

εm < ε′m, where m := min{k ∈ N | εk 6= ε′k}.

Proposition 2.4.2. Consider β-expansions of x, y ∈ [0, 1):

(ε1, ε2, ε3, . . .) := dβ(x) and (ε′1, ε
′
2, ε

′
3, . . .) := dβ(y). (2.17)

Then:

x < y ⇔ (ε1, ε2, ε3, . . .) <lex (ε′1, ε
′
2, ε

′
3, . . .). (2.18)

Proof. Choose x, y ∈ [0, 1), such that x < y and let (ε1, ε2, ε3, . . .) and (ε′1, ε
′
2, ε

′
3, . . .)

be defined as in (2.17). Since x 6= y, then dβ(x) 6= dβ(y) and we can define a positive

integer m := min{k ∈ N | εk 6= ε′k}.

x =
∑

0<k<m

εk
βk

+
∞∑

k=m

εk
βk
. (2.19)

y =
∑

0<k<m

ε′k
βk

+

∞∑

k=m

ε′k
βk
. (2.20)

Since ∀0<k<m εk = ε′k, then
∑

0<k<m
εk−ε

′

k

βk = 0. Subtracting (2.20) from (2.19) we

obtain:

x− y =

∞∑

k=m

εk
βk

−
∞∑

k=m

ε′k
βk

(2.21)

But x− y < 0, therefore:

∞∑

k=m

εk
βk

<

∞∑

k=m

ε′k
βk
, and so

∞∑

i=1

εm−1+i

βi
<

∞∑

i=1

ε′m−1+i

βi
, (2.22)

where (εm, εm+1, . . .) = dβ(T
m−1
β (x)) and (ε′m, ε

′
m+1, . . .) = dβ(T

m−1
β (y)). According

to (2.22), Tm−1
β (x) < Tm−1

β (y), and the greedy algorithm implies that

εm := [βTm−1
β (x)] ≤ ε′m := [βTm−1

β (y)]. (2.23)

But εm 6= ε′m and so εm < ε′m, which proves that (ε1, ε2, ε3, . . .) <lex (ε′1, ε
′
2, ε

′
3, . . .).

Finally, assume that (ε1, ε2, ε3, . . .) := dβ(x) <lex (ε′1, ε
′
2, ε

′
3, . . .) := dβ(y).

Given that (ε1, ε2, . . .) 6= (ε′1, ε
′
2, . . .) and that these sequences are obtained using the
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greedy algorithm for some x, y ∈ [0, 1), then x 6= y. Therefore either x < y or y < x.

But if y < x, then dβ(y) <lex dβ(x), which is a contradiction. This proves that

x < y.

2.5 Lexicographic supremum

The set Σ+
[β] is bounded in the lexicographic sense:

∀ ε := (ε1, ε2, ε3, . . .) ∈ Σ+
[β], ε ≤lex ([β], [β], . . .). (2.24)

Given that X+
β ⊂ Σ+

[β], it makes sense to investigate the lexicographic supremum of

X+
β . We shall see that the sequence which is the lexicographic supremum of X+

β always

defines an expansion of 1 in base β (although not necessarily the one that would be

obtained if we applied the greedy algorithm to 1). Furthermore, this sequence plays an

important role in the description of the possible sequences in X+
β through a countable

number of lexicographic inequalities.

Definition 2.5.1. The lexicographic supremum of the set X+
β is defined as:

sup
lex

X+
β := ω = (ω1, ω2, ω3, . . .), (2.25)

where {ωk}k∈N is defined inductively as:

ωk := max
{
ω ∈ {0, 1, . . . , [β]} |

∑

0<i<k

ωi
βi

+
ω

βk
< 1.

}
(2.26)

Furthermore,

πβ(ω) =
∞∑

k=1

ωk
βk

= 1. (2.27)

Proof. We will start by proving (2.27). Consider the non-decreasing sequence of points

{xk}k∈N ⊂ [0, 1):

xk := πβ(ω1, . . . , ωk, 0, 0, . . .) =

k∑

i=1

ωi
βi
. (2.28)
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Note that (2.28) is the β-expansion of xk, or equivalently:

dβ(xk) = (ω1, . . . , ωk, 0, 0, . . .), (2.29)

because each integer coefficient ωi up to order k is the greatest possible according to

the definition (2.26), and this corresponds to the greedy algorithm. This means that

in step k, we choose ωk to be as big as possible. Therefore if we added β−k in the

expansion, we would obtain:

k∑

i=1

ωi
βi

+
1

βk
≥ 1, and so

∣∣∣1 −
k∑

i=1

ωi
βi

∣∣∣ ≤ 1

βk
. (2.30)

This implies:

lim
k→∞

|1 − xk| = 0, and so
∞∑

k=1

ωk
βk

= 1, (2.31)

which proves (2.27).

Let us now prove that ∀x∈[0,1) dβ(x) <lex ω. If x ∈ [0, 1), then x 6= 1 therefore

dβ(x) := (ε1, ε2, ε3, . . .) 6= ω. Let m := min{k ∈ N | εk 6= ωk}. By definition, ωk is the

maximum possible integer which implies that εm < ωm. This proves that dβ(x) <lex ω,

therefore ω is a lexicographic upper bound for X+
β .

It remains to prove that ω is indeed the least lexicographic upper bound. Suppose

that ω′ ∈ Σ+
[β]

, ω′ <lex ω and ω′ is a lexicographic upper bound for X+
β . Let m :=

min{k ∈ N | ω′
k 6= ωk}. Since ω′ <lex ω, then ω′

m < ωm. But

(ω1, . . . , ωm, 0, 0, . . .) ∈ X+
β , (2.32)

and therefore ω′ <lex (ω1, . . . , ωm, 0, 0, . . .), which means that ω′ isn’t a lexicographic

upper bound for X+
β , which is a contradiction. This proves that ω ∈ Σ+

[β] is the least

lexicographic upper bound for X+
β .

We will now extend the definition of β-expansion to the number 1, according to

the greedy algorithm. If we extend the definition of Tβ to the point 1 as Tβ(1) := {β},
then we obtain the β expansion of 1 in a similar way as for any other x ∈ [0, 1):

dβ(1) = (δ1, δ2, δ3, . . .), where δk := [βT k−1
β (1)], (2.33)
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or equivalently:

δk := max
{
δ ∈ {0, 1, . . . , [β]} |

∑

0<i<k

δi
βi

+
δ

βk
≤ 1
}
. (2.34)

We note that the definitions of ω and dβ(1) in (2.26) and (2.34) only differ in the

inequality sign: in (2.34), it is possible that a finite number of terms might add up to

1, whereas in (2.26) the inequality is strict, and therefore that isn’t allowed. We should

distinguish two cases: if dβ(1) is an infinite expansion, that is:

dβ(1) = (δ1, δ2, δ3, . . .) and ∀N∈N ∃k>N : δk 6= 0,

then no finite number of terms in the β-expansion ever adds up to 1, and therefore

ω=dβ(1) because (2.26) and (2.34) define the same sequence.

However, if dβ(1) is a finite expansion, that is:

dβ(1) = (δ1, . . . , δm, 0, 0, . . .), with δm 6= 0,

then
m∑

k=1

δk
βk

= 1. (2.35)

According to (2.26) and (2.34), ∀0≤k<m ωk = δk, but ωm < δm, because otherwise
∑m

k=1
ωk

βk = 1, which is not allowed. The greatest integer ωm such that
∑m

k=1
ωk

βk < 1

is ωm = δm − 1. This means that:

∞∑

k=1

ωk
βk

=

( ∑

0<k<m

δk
βk

+
(δm − 1)

βm

)
+

∞∑

k=m+1

ωk
βk

= 1 ⇔ (2.36)

(
1 − 1

βm

)
+

∞∑

k=m+1

ωk
βk

= 1 ⇔
∞∑

i=1

ωm+i

βi
= 1. (2.37)

But (ωm+1, ωm+2, . . .) satisfies (2.26), therefore it is the lexicographic supremum of

X+
β . This proves that ω is related to dβ(1) = (δ1, . . . , δm, 0, 0, . . .) in the following

way: ω is the infinite repetition of a sequence of m integers, which we denote as
(
δ1, . . . , δm−1, (δm − 1)

)
.

We can sum up these results as follows:
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Theorem 2.5.2. Let dβ(1) := (δ1, δ2, δ3, . . .). The lexicographic supremum of X+
β is:

ω :=





(δ1, δ2, δ3, . . .) if dβ(1) is infinite

(
δ1, . . . , δm−1, (δm − 1)

)
if dβ(1) is finite.

(2.38)

The lexicographic supremum ω is some times called the modified β-expansion of

1, and often in the literature the following notation would be used to refer to it: d∗β(1).

2.6 The β-shift

We will now show how the lexicographic supremum ω can be used to describe the

sequences in X+
β . This problem was addressed in [Par60].

Lemma 2.6.1. If ε ∈ Σ+
[β] is a finite sequence, then:

∀k∈N σk−1(ε) <lex ω ⇒ 0 ≤ πβ(ε) < 1. (2.39)

Proof. We only need to prove that
∑∞

k=1
εk

βk < 1, given that this is a sum of non-

negative terms and therefore always non-negative.

Let ε ∈ Σ+
[β]

be a finite sequence and ∀k∈N (εk, εk+1, εk+2, . . .) <lex ω. Suppose

that
∑∞

k=1
εk

βk ≥ 1.

Let m1 ∈ N be m1 := min{k ∈ N | εk < ωk}.
∞∑

k=1

εk
βk

=
∑

0<k<m1

εk
βk

+
εm1

βm1
+

1

βm1

(εm1+1

β
+
εm1+2

β2
+ . . .

)
. (2.40)

Since εm1
< ωm1

and
∑m1

k=1
ωk

βk < 1, then:

m1∑

k=1

εk
βk

≤
m1∑

k=1

ωk
βk

− 1

βm1
< 1 − 1

βm1
, (2.41)

and therefore

∞∑

k=1

εk
βk

<
(
1 − 1

βm1

)
+

1

βm1

(εm1+1

β
+
εm1+2

β2
+ . . .

)
. (2.42)
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By hypothesis
∑∞

k=1
εk

βk ≥ 1, and together with (2.42) this implies that

εm1+1

β
+
εm1+2

β2
+ . . . ≥ 1. (2.43)

But the sequence (εm1+1, εm1+2, εm1+3, . . .) <lex ω, and we can apply the same argu-

ment inductively, defining

∀i∈N mi+1 := mi + min{k ∈ N | εmi+k < ωk}. (2.44)

The sequence {mi}i∈N is an increasing sequence of integers, therefore it is unbounded.

Since ε ∈ Σ+
[β] is a finite sequence, there exists some i ∈ N for which:

(εmi+1, εmi+2, εmi+3, . . .) = (0, 0, 0, . . .),

and therefore (2.43) is impossible.

Although in Lemma 2.6.1 we required the sequence ε to be finite, this condition

isn’t necessary:

Corollary 2.6.2. Let ε ∈ Σ+
[β]. Then

∀k∈N σk−1(ε) <lex ω ⇒ 0 ≤ πβ(ε) < 1. (2.45)

Proof. Let us first prove that
∑∞

k=1
εk

βk ≤ 1. In fact, if it was, there would exist some

m ∈ N such that:
m∑

k=1

εk
βk

> 1. (2.46)

But (ε1, . . . , εm, 0, 0, . . .) satisfies the conditions of Lemma 2.6.1, therefore (2.46) is

impossible. This proves that
∑∞

k=1
εk

βk ≤ 1.

Finally, let us prove that
∑∞

k=1
εk

βk < 1. By hypothesis ε <lex ω, so let us define

m := min{k ∈ N | εk < ωk}. Then:

∞∑

k=1

εk
βk

=
∑

0<k<m

εk
βk

+
εm
βm

+
1

βm

(εm+1

β
+
εm+2

β2
+ . . .

)
. (2.47)
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We’ve just proved that
∑∞

k=1
εm+k

βk ≤ 1, and together with the fact that εm + 1 ≤ ωm,

we obtain from (2.47):

∞∑

k=1

εk
βk

≤
∑

0<k<m

εk
βk

+
εm
βm

+
1

βm
≤

m∑

k=1

ωk
βk

< 1. (2.48)

Theorem 2.6.3. A sequence ε ∈ Σ+
[β] is the β-expansion of some x ∈ [0, 1) if and only

if:

∀k ∈ N σk−1(ε) <lex ω, (2.49)

where ω is the lexicographic supremum of X+
β . Therefore:

X+
β = {ε ∈ Σ+

[β] | ∀k∈N σk−1(ε) <lex ω}. (2.50)

Proof. Let ε ∈ Σ+
[β] be the β-expansion of some x ∈ [0, 1). This implies that:

σk−1(ε) = (εk, εk+1, εk+2, . . .) = dβ(T
k−1
β (x)). (2.51)

By definition, ω is the lexicographic supremum of X+
β , therefore dβ(T

k−1
β (x)) <lex ω,

hence (2.49) is a necessary condition for ε to be the β-expansion of some x ∈ [0, 1).

Let us now prove that (2.49) is also sufficient for ε ∈ X+
β . Suppose that ε ∈ Σ+

[β]

satisfies (2.49), but ε /∈ X+
β . By Corollary 2.6.2, we know that 0 ≤ x := πβ(ε) < 1. If

ε /∈ X+
β , dβ(x) := (ε′1, ε

′
2, ε

′
3, . . .) 6= ε := (ε1, ε2, ε3, . . .). Let

m := min{k ∈ N | εk 6= ε′k}.
∞∑

k=1

εk
βk

=

∞∑

k=1

ε′k
βk

and ∀0<k<m εk = ε′k ⇒
∞∑

k=m

εk
βk

=

∞∑

k=m

ε′k
βk

(2.52)

⇒
∞∑

k=1

εm+k−1

βk
=

∞∑

k=1

ε′m+k−1

βk
= Tm−1

β (x), (2.53)

where dβ(T
m−1
β (x)) = (ε′m, ε

′
m+1, ε

′
m+2, . . .).

But εm 6= ε′m, and so |εm − ε′m| ≥ 1, which implies:

∣∣∣
∞∑

k=1

εm+k

βk
−

∞∑

k=1

ε′m+k

βk

∣∣∣ ≥ 1. (2.54)
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But (2.54) is impossible, given that 0 ≤ ∑∞
k=1

εm+k

βk < 1 (because of Corollary 2.6.2)

and 0 ≤ ∑∞
k=1

ε′
m+k

βk < 1 (because (ε′m+1, ε
′
m+2, . . .) = dβ(T

m
β (x))). This proves that

the β-expansion of x cannot be another sequence different than (ε1, ε2, ε3, . . .) and

therefore (2.49) is a sufficient condition for ε ∈ X+
β .

We will consider the closure of X+
β and define a subshift of (Σ+

[β], σ), which is

known as the one sided β-shift:

Definition 2.6.4. The one sided β-shift (V +
β , σβ) is the subshift of (Σ+

[β], σ) defined by:

V +
β := X+

β = {ε ∈ Σ+
[β] | ∀k∈N σk−1(ε) ≤lex ω}. (2.55)

The closure of X+
β is obtained by replacing in (2.50) the strict inequality by a

less or equal inequality. Consider ε ∈ Σ+
[β] which is the limit of a sequence of finite

β-expansions in X+
β :

ε = lim
k→∞

(ε1, . . . , εk, 0, 0, . . .), (2.56)

but it isn’t the β-expansion of any x ∈ [0, 1):

∃k∈N (σk−1(ε)) ≥lex ω. (2.57)

Since (ε1, . . . , εk, 0, 0, . . .) <lex ω, given that ω is the lexicographic supremum of all

β-expansions, then limk→∞(ε1, . . . , εk, 0, 0, . . .) ≯lex ω. This means that if ε /∈ X+
β ,

then ∃k∈N such that σk+1(ε) = ω. We are dealing here with two alternative expansions

of x in base β:

ε1
β

+ . . . +
εk−1

βk−1
+
ω1

βk
+

ω2

βk+1
+ . . . =

ε1
β

+ . . .+
εk−1

βk−1
+

1

βk−1
= x,

but only one of them is the β-expansion of x: dβ(x) = (ε1, . . . , εk−1 + 1, 0, 0, . . .).

Hence V +
β contains the β-expansion of every x ∈ [0, 1), and additionally one

other sequence which is not in X+
β , for each x ∈ [0, 1) which as a finite β-expansion:

if x ∈ (0, 1) and dβ(x) = (ε1, . . . , εk, 0, 0, . . .), with εk 6= 0, then the alternative

ε′ := (ε1, . . . , εk − 1, ω1, ω2, ω3, . . .) ∈ V +
β is not a β-expansion, but πβ(ε

′) = x. The
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β-expansion of 0, dβ(0) = (0, 0, . . .) should be considered separately: we could consider

ω = (ω1, ω2, . . .) ∈ V +
β to be its alternative representation in base β, if we agree to

identify the end points of the unit interval.

Finally, we recall that:

dβ
(
[0, 1)

)
⊂ dβ

(
[0, 1)

)
⊆
{
0, 1, . . . , [β]

}N
, (2.58)

or equivalently, using the notation that we have defined:

X+
β ⊂ V +

β ⊆ Σ+
[β]
. (2.59)
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Chapter 3

Pisot numbers, Salem numbers

and periodic points

3.1 Introduction

In the previous chapter we have given a description of the sequences which are β-

expansions of numbers in the unit interval, when β > 1 and β /∈ N. We saw how non-

trivial this problem was, as opposed to the case when β > 1 was an integer. Despite

these results which had been obtained by Parry in [Par60], the periodic properties of the

β-transformation (or equivalently, of the β-shift) still remained an open problem. It was

well known that if β > 1 was an integer, then the set of eventually periodic points for Tβ

was the set of all rationals in the unit interval. Would it be possible then to describe the

set of eventually periodic points when β > 1 was not an integer? Or equivalently, which

numbers in the unit interval are represented by the eventually periodic β-expansions?

It was not until 1977 that Bertrand [Ber77] discovered a partial answer to this

question, giving a complete characterization of the set of periodic points when β > 1 was

an algebraic number of a particular type: a Pisot number. Almost at the same time,

Schmidt [Sch80] not only obtained the same result, but also completed the picture,

bringing into the answer another class of algebraic numbers: Salem numbers. Although
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Schmidt could not give a complete characterization of the set of eventually periodic

points for the β-transformation in the Salem case, he did however conjecture that a

similar statement could be made for the Salem case as in the Pisot case. This is a long

standing conjecture, which is often cited in the area, for instance in [Boy89], [Boy96],

[Boy97], [Har06], [BBLT06], [Sch06], [Aki98].

We will introduce the basic concepts from algebraic number theory that will be

needed for the exposition of the main results. After that, we will summarize the basic

ideas behind the description of the set of eventually periodic points, and the two main

theorems concerning eventually periodic points for the β-transformation, Pisot numbers

and Salem numbers, as well as the unsolved conjecture.

3.2 Algebraic numbers

A root of a non-zero polynomial with rational coefficients is called an algebraic number.

We say that a polynomial with rational coefficients is irreducible if it cannot be factored

as the product of non-trivial polynomials with rational coefficients. Each algebraic

number ξ determines a family of irreducible polynomials {ps(x)}s∈Q which are rational

multiples of each other, and ps(ξ) = 0. A polynomial whose leading coefficient is 1 is

called a monic polynomial, and there exists only one such polynomial in the family of

irreducible polynomials associated to ξ:

Definition 3.2.1. Given an algebraic number ξ, its minimal polynomial p(x) is the

unique irreducible monic polynomial:

p(x) = xd + ad−1x
d−1 + . . .+ a1x+ a0, ad−1, . . . , a0 ∈ Q, (3.1)

such that p(ξ) = 0. The degree of ξ is the degree d of the minimal polynomial p(x).

If all coefficients of the minimal polynomial of ξ are integers, then we say that

ξ is an algebraic integer. In this case, in order to emphasize that all coefficients are

integers, we write:

p(x) = xd + cd−1x
d−1 + . . .+ c1x+ c0, (3.2)
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and it is understood that c0, . . . , cd−1 ∈ Z.

3.3 Pisot numbers and Salem numbers

There are two types of algebraic integers in which we will be interested:

Definition 3.3.1. Let β > 1 be an algebraic integer with minimal polynomial (3.2) of

degree d ≥ 1. p(x) has d complex roots:

θ1, . . . , θd ∈ C, and p(x) =
∏

1≤i≤d

(x− θi). (3.3)

Let θ1 := β > 1. We say that:

1. β is a Pisot number if: ∀1<i≤d, |θi| < 1;

2. β is a Salem number if: ∀1<i≤d, |θi| ≤ 1 and ∃1<i≤d : |θi| = 1.

We point out that a Pisot number is sometimes equivalently called a Pisot-

Vijayaraghavan number, or a PV number.

Any integer number n > 1 is an algebraic integer with minimal polynomial

p(x) = x − n, which has no additional roots, and therefore all integers n > 1 are

Pisot numbers. In order to find non-trivial Pisot numbers, we need to consider minimal

polynomials of degree d ≥ 2. We present some examples of minimal polynomials p(x)

and the corresponding Pisot numbers β in Table 3.1.

p(x) β

x2 − x− 1 (1 +
√

5)/2

x3 − x− 1 1.3247 . . .

x3 − 2x2 + x− 1 1.7548 . . .

x2 − 4x+ 2 2 +
√

2

Table 3.1: Examples of Pisot numbers and their minimal polynomials
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Notice that 2 +
√

2 is an example of a Pisot number which has a minimal

polynomial with a coefficient |c0| 6= 1. In general, if β > 1 satisfies:

p(β) = βd + cd−1β
d−1 + . . .+ c1β + c0 = 0, (3.4)

then:

βd−1 + cd−1β
d−2 + . . .+ c1 + c0β

−1 = 0, (3.5)

and therefore we can express β−1 as:

β−1 = −c−1
0

(
βd−1 + cd−1β

d−2 + . . . + c1
)
. (3.6)

If c0 = ±1, then β−1 ∈ Z[β], and therefore β has an inverse in the ring Z[β], that is, β

is a unit. If |c0| > 1, then β is not a unit in Z[β].

Proposition 3.3.2. Let β > 1 be a Salem number with minimal polynomial p(x). The

roots of p(x) are:

θ1, θ2, θ3, . . . , θd ∈ C, (3.7)

for some even d ≥ 4. We define θ1 := β, θ2 := β−1. The remaining roots θ3, . . . , θd

are complex numbers with modulus 1 and there exists an even number of them (they

appear as complex conjugate pairs). Furthermore, p(x) is a reciprocal polynomial, that

is: p(x) = xdp(x−1).

Proof. Suppose that β > 1 is a Salem number with minimal polynomial (3.2). There

exists at least some θi ∈ C such that |θi| = 1 and p(θi) = 0. Furthermore, θi 6= ±1,

because p(x) is an irreducible polynomial. This proves that θi has a non-zero imaginary

part, and therefore the complex conjugate of θi, which we denote by θi, is another root

of p(x). This proves that the roots of p(x) with modulus 1 appear as complex conjugate

pairs, and there must exist at least one such pair.

If |θi| = 1 then θi = θ−1
i and so:

p(θi) = 0, and p(θ−1
i ) = 0. (3.8)
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Let us note that:

p(x−1) = 0 ⇔ xdp(x−1)︸ ︷︷ ︸
q(x)

= 0. (3.9)

Since q(x) is a polynomial of degree d and q(θi) = 0, then all other conjugate roots

of θi (that is, θj, for j 6= i such that p(θj) = 0) must also be roots of q(x). But

q(x) = 0 ⇔ p(x−1) = 0, which means that if θj is a root of p(x), so is θ−1
j . Since β

is the only root of p(x) with modulus greater than 1, then β−1 is the only root of p(x)

with modulus less than 1. Furthermore,

c0 = (−1)d
d∏

i=1

θi = β · β−1 = 1, (3.10)

since d is even and if |θi| = 1, then θi · θi = 1.

q(x) = xdp(x−1) = c0x
d + c1x

d−1 + . . .+ cd−1x+ 1, (3.11)

but c0 = 1, therefore q(x) is a monic polynomial of degree d and has the same roots as

p(x). This implies that p(x) = q(x), therefore p(x) = xdp(x−1), which is equivalent to

the following condition on the coefficients of p(x): ci = cd−i, for all 1 ≤ i < d. We say

that p(x) is a reciprocal polynomial.

Since the minimal polynomial of any Salem number has c0 = 1, then any

Salem number is a unit in the ring Z[β] (compare with our discussion of the Pisot case,

and in particular (3.6)). We present some examples of minimal polynomials p(x) and

the corresponding Salem numbers β in Table 3.2.

p(x) β

x4 − x3 − x2 − x+ 1 1.7220 . . .

x4 − 2x3 + x2 − 2x+ 1 1.8832 . . .

x4 − 10x3 − 10x+ 1 10.0971 . . .

x6 − x4 − x3 − x2 + 1 1.4012 . . .

Table 3.2: Examples of Salem numbers and their minimal polynomials
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3.4 Periodic points under the β-transformation

We are interested in the periodic properties of points of the unit interval under iteration

by the β-transformation.

Definition 3.4.1. The orbit of x ∈ [0, 1) under the map Tβ is defined as:

O(x) := {T kβ (x) : k ≥ 0} ⊂ [0, 1). (3.12)

If O(x) is an infinite set of points, then x is not a periodic point. Conversely, if

O(x) is a finite set, then x is an eventually periodic point:

Definition 3.4.2. The set of eventually periodic points for Tβ is defined as:

Per(Tβ) :=
{
x ∈ [0, 1) | ∃m≥0, p>0 : T p+mβ (x) = Tmβ (x)

}
. (3.13)

If m ≥ 0 and p > 0 are the minimum integers such that T p+mβ (x) = Tmβ (x),

then m is the pre-period and p is the period of x.

Let Q(β) be the smallest field extension of Q containing β. If β ∈ Q, then

Q(β) = Q, but if β is an algebraic number of degree d ≥ 2, then Q(β) is a non-trivial

algebraic field extension.

Proposition 3.4.3.

Per(Tβ) ⊆ [0, 1) ∩ Q(β). (3.14)

Proof. Let x ∈ [0, 1). If x ∈ Per(Tβ) then there exist n > m > 0 such that:

T nβ (x) = Tmβ (x). (3.15)

For all i > 0 let us write T iβ(x) = βT i−1
β (x) − εi, and εi := [βT i−1

β (x)].

T iβ(x) = β(. . . (β(βx− ε1) − ε2) . . .) − εi = βix−
i∑

k=1

εkβ
i−k. (3.16)

From (3.15) and (3.16) we obtain:

βnx−
n∑

k=1

εkβ
n−k = βmx−

m∑

k=1

εkβ
m−k, (3.17)
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and so

x =

∑n
k=1 εkβ

n−k −
∑m

k=1 εkβ
m−k

βn − βm
, (3.18)

which proves that x ∈ Q(β), and therefore Per(Tβ) ⊆ [0, 1) ∩ Q(β).

Taking into account Proposition 3.4.3, if we want to study the set of eventually

periodic points for the β-transformation, if suffices to consider the restriction of Tβ to

[0, 1) ∩ Q(β).

Definition 3.4.4. We define the set of β-expansions of every x ∈ [0, 1) ∩ Q(β) as

X̃+
β := dβ

(
[0, 1) ∩ Q(β)

)
. (3.19)

(σ, X̃+
β ) is a subshift of (σ,X+

β ) and we have the following:

Proposition 3.4.5. (σ, X̃+
β ) is semi-conjugate to

(
Tβ, [0, 1) ∩ Q(β)

)
:

[0, 1) ∩ Q(β) [0, 1) ∩ Q(β)
Tβ

//

X̃+
β

[0, 1) ∩ Q(β)

πβ

��

X̃+
β X̃+

β

σ // X̃+
β

[0, 1) ∩ Q(β)

πβ

��

(3.20)

and the semi-conjugacy πβ is a bijection.

Proof. This follows from Proposition 2.3.3 together with (3.19).

If β > 1 was an integer, Proposition 3.4.3 merely asserts that Per(Tβ) ⊆
[0, 1) ∩ Q. In fact, we actually know that in this case Per(Tβ) = [0, 1) ∩ Q. If β > 1

was an integer, then choose any rational p
q
∈ [0, 1)∩Q. As we work out the orbit T kβ (p

p
),

we realize that we are multiplying a rational number by an integer, and subtracting some

integer in order to keep the outcome in the unit interval. Therefore, the iterations under

Tβ of the rational p
q

are rationals with a minimum denominator which divides q. In other

words, T kβ (p
q
) ∈ {0, 1

q
, 2
q
, . . . , q−1

q
}, which is a finite set and this proves that the orbit of

any rational point must be eventually periodic.
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The natural question that follows is an attempt to generalize this result: do

there exist non-integer β > 1 for which Per(Tβ) = [0, 1) ∩ Q(β)? Two of Schmidt’s

theorems in [Sch80] give a partial answer to this question:

Theorem 3.4.6. Let β > 1 be a real number.

If [0, 1) ∩ Q ⊆ Per(Tβ), then β is either a Pisot or a Salem number.

Proof. See [Sch80], [pg. 272].

This theorem is consistent with the previously known description of Per(Tβ) =

[0, 1) ∩ Q(β) when β > 1 is an integer. If β > 1 is an integer, then the hypothe-

sis of Theorem 3.4.6 is satisfied, and it is true that any integer β > 1 is a (trivial)

Pisot number.

It turns out that when β is any Pisot number, a complete description of Per(Tβ)

can be given, as it was shown in [Ber77] and [Sch80]:

Theorem 3.4.7. Let β be a Pisot number. Then Per(Tβ) = [0, 1) ∩ Q(β).

Proof. See [Sch80] [pg. 274] or [Ber77].

We shall make a few remarks about the main idea behind the proof of Theorem

3.4.7. If β > 1 is an algebraic number and x ∈ [0, 1)∩Q(β), then the map Tβ multiplies

x by β and subtracts a suitable integer in {0, 1, . . . , [β]}. We can represent x in a unique

way as a sum of d powers of β weighted by rational coefficients. If we fix a minimum

denominator q > 0 and write x as:

p1 + p2β + . . .+ pdβ
d−1

q
, with p1, p2, . . . , pd ∈ Z, (3.21)

then as we iterate x under Tβ , we keep on obtaining points in the unit interval which

can be rewritten in the form (3.21). In fact, the minimum common denominator cannot

increase (and always divides q), and we can use the identity βd = −(cd−1β
d−1 + . . .+

c1β + c0) to reduce the sum of powers of β to another of type (3.21). The difficulty in

this case consists in the fact that there exist infinitely many d-tuples (p1, p2, . . . , pd) ∈
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Zd defining numbers in [0, 1) ∩ Q(β) for the same fixed denominator q. We need

some additional condition that will impose a constraint on the set of possible d-tuples

(p1, p2, . . . , pd) ∈ Zd corresponding to T kβ (x), namely, that such a set should be bounded

and hence finite. The Pisot condition, which implies that all other conjugate roots of β

have modulus strictly less than 1, provides a sufficient argument which guarantees the

finiteness of the orbit of any x ∈ [0, 1) ∩ Q(β).

However, if β is a Salem number, the existence of complex conjugate roots with

modulus 1 (whose powers always have modulus 1, and therefore don’t converge to zero)

doesn’t allow us to use the same algebraic argument that works in the Pisot case. It is

possible that if β is a Salem number then there might exist x ∈ [0, 1) ∩Q(β) such that

O(x) is an infinite set, hence Per(Tβ) 6= [0, 1) ∩ Q(β). However, in [Sch80] Schmidt

claimed the existence of computational evidence against that possibility, and made the

following conjecture:

Conjecture 3.4.8. Let β be a Salem number. Then Per(Tβ) = [0, 1) ∩ Q(β).

This conjecture is quoted in [Boy89], [Boy96], [Boy97], [Har06], [BBLT06],

[Sch06], [Aki98], and it still remains an open problem. If it is indeed true, then to-

gether with Theorem 3.4.6 and Theorem 3.4.7 we could state the following (which was

formulated in [Sch80] as well):

Conjecture 3.4.9. Per(Tβ) = [0, 1) ∩ Q(β) if and only if β is either a Pisot or a

Salem number.
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Chapter 4

An equivalent system for studying

periodic points

4.1 Introduction

In this chapter, we assume that β > 1 is a non-trivial Pisot number (not an integer) or a

Salem number. Instead of considering the β-transformation defined on the unit interval,

we will only be concerned with its restriction to [0, 1)∩Q(β). This choice is justified by

the fact that Per(Tβ) ⊆ [0, 1)∩Q(β), therefore [0, 1)∩Q(β) is an appropriate domain

for studying the set of eventually periodic points for the β-transformation.

If β is an algebraic number of degree d, then any x ∈ Q(β) can be expressed as

the sum of d terms consisting of consecutive powers of β weighted by rational coeffi-

cients. For instance:

∀x ∈ Q(β), x = x1 + x2β + . . .+ xdβ
d−1, (4.1)

with coefficients xk ∈ Q. For each x ∈ Q(β), the coefficients x1, . . . , xd are uniquely

defined, because if there existed a different set of coefficients y1, . . . , yd ∈ Q such that:

x1 + x2β + . . . + xdβ
d−1 = y1 + y2β + . . .+ ydβ

d−1, (4.2)
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then β would be the root of a polynomial with rational coefficients (yi − xi) and of

degree less than d, which is impossible since β is an algebraic number of degree d.

We will show that Q(β) is a d-dimensional vector space (under scalar multi-

plication over the rationals) which is isomorphic to Qd (d-dimensional vector space

under scalar multiplication by rationals as well). Furthermore, we can choose a vector

space isomorphism between Q(β) and Qd and this will induce a field structure on Qd.

This isomorphism establishes a bijection between [0, 1) ∩ Q(β) ⊂ Q(β) and a subset

L ⊂ Qd, and therefore it induces a map C̃ : L→ L which is semi-conjugate to the map

Tβ : [0, 1) ∩ Q(β) → [0, 1) ∩ Q(β).

Although the dynamical systems (C̃, L) and (Tβ , [0, 1)∩Q(β)) are merely semi-

conjugate, this semi-conjugacy happens to be a bijection. Therefore we can say that

(C̃, L) is equivalent to (Tβ , [0, 1) ∩ Q(β)), as far as the study of periodic points is

concerned. Furthermore, C̃ : L → L is connected to the linear map defined by the

companion matrix of the minimal polynomial of β, which is defined as:

C =




0 . . . . . . 0 −c0
1 0 . . . 0 −c1
0

. . .
. . .

...
...

...
. . .

. . . 0 −cd−2

0 . . . 0 1 −cd−1




. (4.3)

The roots of a monic polynomial p(x) are the same as the eigenvalues of its companion

matrix C. If β > 1 is a Pisot or a Salem number, then the linear map C expands by

the eigenvalue β along the corresponding eigendirection, and contracts and/or rotates

on the remaining eigenspaces. This provides a geometric visualization in L ⊂ Qd of the

dynamics of Tβ restricted to Q(β) ∩ [0, 1).

If the companion matrix has determinant ±1, then C ∈ GL(d,Z) and it defines a

toral automorphism in Td = Rd/Zd. This is always the case when β is a Salem number,

but in the Pisot case we should require c0 = ±1 (this excludes the Pisot numbers which

aren’t units in Z[β]). When |detC| = 1 the dynamical system (C̃, L) can always be
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factored to the toral automorphism defined by C, and more specifically, to the restriction

of the toral automorphism to the points of the d-torus with rational coordinates.

4.2 Isomorphic fields

Let Q(β) be the algebraic field extension of Q by the Pisot or Salem number β. Q(β)

is a d-dimensional vector space with scalars Q, and we will choose an isomorphism to

represent elements of Q(β) by points in Qd.

Proposition 4.2.1. Let β be a Pisot or a Salem number with minimal polynomial of

degree d. Then Qd and Q(β) are d-dimensional vector spaces with scalar multiplication

over Q. Therefore they are isomorphic, and we define the following isomorphism:

f : Qd −→ Q(β)

x 7−→ x := β̄ · x
(4.4)

with β̄ = (1, β, . . . , βd−1) and x := (x1, x2, . . . , xd)
t ∈ Qd.

Proof. Let {v1, . . . ,vd} be the canonical basis for Qd:

Qd = {x1v1 + . . .+ xdvd | x1, . . . , xd ∈ Q}. (4.5)

Since β is an algebraic number of degree d, each x ∈ Q(β) admits a unique

decomposition of the type

x = x1 + x2β + . . .+ xdβ
d−1, with x1, . . . , xd ∈ Q. (4.6)

Let u1 = 1,u2 = β, . . . ,ud = βd−1, and so {u1, . . . ,ud} is a basis for Q(β):

Q(β) = {x1u1 + . . .+ xdud | x1, . . . , xd ∈ Q}. (4.7)

Define an isomorphism f : Qd → Q(β) by f(vk) = uk, ∀1≤k≤d. Therefore,
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∀ x := (x1, . . . , xd)
t ∈ Qd we have

f(x) = f(x1v1 + . . . xdvd)

= x1f(v1) + . . . + xdf(vd)

= x1 1 + x2 β + . . .+ xd β
d−1

= β̄ · x. (4.8)

Let us point out that although the isomorphism f : Qd → Q(β) has the explicit

definition (4.4), its inverse f−1 : Q(β) → Qd is defined implicitly: for each x ∈ Q(β),

f−1(x) is the unique x ∈ Qd such that x = β̄ · x (of course, if x had been defined in

the canonical form x = x1 + x2β + . . . xdβ
d−1, then f−1(x) = (x1, . . . , xd)

t).

Since Q(β) is not only a vector space but also a field, we can use the isomorphism

f−1 : Q(β) → Qd to define a multiplication ⊗ : Qd × Qd → Qd, such that
(
Qd,+,⊗

)

is a field isomorphic to
(
Q(β),+,×

)
:

Proposition 4.2.2. Define a multiplication ⊗ : Qd × Qd → Qd by

x ⊗ y := f−1(f(x) × f(y)), ∀x,y ∈ Qd. (4.9)

Then f : Qd → Q(β) is a field isomorphism between
(
Qd,+,⊗

)
and

(
Q(β),+,×

)
.

The unit element of
(
Qd,+,⊗

)
is 1 := (1, 0, . . . , 0)t ∈ Zd.

Proof. Since f : Qd → Q(β) is a vector space isomorphism, in order to endow Qd

with a multiplication ⊗ such that (Qd,+,⊗) is a field isomorphic to (Q(β),+,×), it is

necessary and sufficient to have:

f(x⊗ y) = f(x) × f(y)), (4.10)

which is equivalent to (4.9), since f is invertible.

Finally, the unit element of
(
Qd,+,⊗

)
is f−1(1) = (1, 0, . . . , 0)t ∈ Zd.
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The main reason why we are interested in the field
(
Qd,+,⊗

)
is in order to

reproduce in it the field operations of (Q(β),+,×). In particular, this should provide a

way of defining a map in a subset of Qd, which is equivalent to the β-transformation

applied to any x ∈ [0, 1)∩Q(β). Indeed, the β-transformation uses the multiplication by

β in the field Q(β), followed by a subtraction by an integer multiple of the unit element

of the field, and therefore we should expect a similar definition for an equivalent map

in (Qd,+,⊗). However, there are two technical difficulties: not only f−1(x) cannot

be defined explicitly, but also the definition of the multiplication in Qd seems rather

strange. We will shortly see how these apparent difficulties can be overcome.

Let Q(C) ⊂ GL(d,Q) be the field extension of Q by the matrix C (under matrix

addition, and matrix multiplication). The unit element of Q(C) is the identity matrix

Id ∈ GL(d,Q).

Proposition 4.2.3. Q(C) is a d-dimensional vector space with scalars Q, and admits a

basis {Id,C, . . . , Cd−1}:

Q(C) = {x1Id+ x2C + . . .+ xdC
d−1 | x1, . . . , xd ∈ Q}. (4.11)

Proof. According to the Cayley-Hamilton theorem (see [SM88]), C is a root of its

characteristic polynomial : Cd + cd−1C
d−1 + . . . + c1C + c0Id = 0. Therefore any

power of C greater than or equal to d can be rearranged as a sum of terms containing

non-negative powers of C such as (4.11). Furthermore, the minimal polynomial is

irreducible, hence {Id, C, . . . , Cd−1} are linearly independent.

Theorem 4.2.4. The fields
(
Q(β),+,×

)
and

(
Q(C),+,×

)
are isomorphic, and the

field isomorphism:

F : Q(β) −→ Q(C)

x 7−→ A := F (x),
(4.12)

is completely defined by the equation F (β) = C.

Proof. Q(β) is isomorphic to Q[x]/p(x), because p(β) = 0. But Q(C) is also isomorphic
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to Q[x]/p(x), because p(C) = 0 (according to the Cayley-Hamilton theorem). Therefore

we define a field isomorphism between Q(β) and Q(C) by sending β to C.

Although the product of matrices in not commutative in general, it is in the field

Q(C), because the powers of C commute.

If x ∈ Q(β) is defined as

x :=
n∑

i=−m

aiβ
−i, with ∀−m≤i≤n ai ∈ Q, (4.13)

then Theorem 4.2.4 gives a practical way to calculate F (x) ∈ Q(C):

F (x) =

n∑

i=−m

F (aiβ
−i) =

n∑

i=−m

ai F (β−i)

=
n∑

i=−m

aiF (β)−i =
n∑

i=−m

aiC
−i. (4.14)

An alternative way of defining F (x) is:

Proposition 4.2.5. Let x ∈ Q(β) be defined as x = x1 + x2β + . . . + xdβ
d−1, and

therefore x := f−1(x) = (x1, . . . , xd)
t ∈ Qd.

Then F (x) := x1Id+ x2C + . . .+ xdC
d−1 = A(x), with

A(x) =




| | |
x Cx · · · Cd−1x

| | |


 . (4.15)

Proof. Let us fix the following basis for Q(β):

{u1 = 1,u2 = β, . . . ,ud = βd−1}. (4.16)

According to [Wik07], each x ∈ Q(β) admits a unique representation by a d-dimensional

matrix A(x) = {aij}1≤i,j≤d with rational coefficients determined by:

∀1≤j≤d ujx =
d∑

i=1

aijui (4.17)

βj−1x =

d∑

i=1

aijβ
i−1, (4.18)
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and this is called the regular representation of Q(β). The column j of the matrix A(x)

contains the coordinates of βj−1x in the basis (4.16). Therefore if f(x) = x then the

first column of A(x) is equal to x. Furthermore

β f(x) = β(β̄ · x)

= β(x1 + x2β + . . .+ xdβ
d−1)

= −c0xd + (x1 − c1xd)β + . . .+ (xd−1 − cd−1xd)β
d−1 (4.19)

= β̄ · Cx

= f(Cx),

which proves that the second column of A(x) is Cx, and the same argument applies for

obtaining the following columns. This proves (4.15).

Finally, F (x) = A(x), because A(1) = Id, A(β) = C, . . . , A(βd−1) = Cd−1

hence the regular representation of Q(β) is the isomorphism F : Q(β) → Q(C).

Definition 4.2.6. Let

ψ : Q(C) −→ Qd

A 7−→ x := A1,
(4.20)

with 1 := (1, 0, . . . , 0)t ∈ Zd.

The map ψ : Q(C) → Qd sends each matrix A to the column vector contained

in its first column.

Proposition 4.2.7.
(
Q(C),+,×

)
,
(
Qd,+,⊗

)
and

(
Q(β),+,×

)
are d-dimensional iso-

morphic fields:

Q(C)

Q(β)

__

F
??

??
??

??
??

?
Q(C) Qdψ // Qd

Q(β)

f

����
��

��
��

��
�

(4.21)

and the isomorphisms are defined in (4.4), (4.12) and (4.20).
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Proof. We defined the field isomorphisms f : Qd → Q(β) and F : Q(β) → Q(C),

therefore the three of them are isomorphic. In order to prove that ψ : Q(C) → Qd is

the other field isomorphism it suffices to prove that:

ψ−1(x) = F ◦ f(x)

= F (β̄ · x)

= A(x), (4.22)

where A(x) contains the vector x in its first column.

4.3 The equivalent system

We will need two main results in order to define an equivalent system for studying peri-

odic points for the β-transformation of the unit interval. The first consists of choosing

a suitable phase space, with points which are in one-to-one correspondence with points

in [0, 1) ∩ Q(β). The second, requires carefully defining a map in that phase space, in

such a way that it reproduces (through a bijective semi-conjugacy) the dynamics of the

restriction of the β-transformation to [0, 1) ∩ Q(β).

Proposition 4.3.1. Let β be a Pisot number or a Salem number of degree d ≥ 2, and

β̄ := (1, β, . . . , βd−1) ∈ Rd. The isomorphism f : Qd → Q(β) is a bijection between

L := {x ∈ Qd | 0 ≤ β̄ · x < 1} and [0, 1) ∩ Q(β). (4.23)

Proof. Let us consider f : Qd → Q(β) as defined in (4.4), which is an isomorphism

between Qd and Q(β), according to Proposition 4.2.1. Since [0, 1) ∩ Q(β) is a subset

of Q(β), there exists a unique L ⊂ Qd such that f : L → [0, 1) ∩ Q(β) is a bijection.

Equivalently,

L := f−1
(
[0, 1) ∩ Q(β)

)

= {x ∈ Qd | 0 ≤ f(x) < 1}

= {x ∈ Qd | 0 ≤ β̄ · x < 1}, (4.24)
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which proves what we wanted.

This was the first step that we needed. Before defining a suitable map in L,

we should make some comments about the geometry of the set L ⊂ Qd ⊂ Rd. The

definition of L in (4.23) is equivalent to L := Y ∩ Qd, where

Y := {(y1, . . . , yd) ∈ Rd | 0 ≤ y1 + y2β + . . . + ydβ
d−1 < 1}. (4.25)

It is an elementary result from vector analysis that the inequalities in (4.25) defining

Y ⊂ Rd have the following geometrical meaning: Y is the set of points in Rd comprised

between two parallel (d−1)-dimensional planes (whose direction is defined by the orthog-

onal vector (1, β, . . . , βd−1) ∈ Rd), including the plane containing the origin, and ex-

cluding the other plane (which contains, for instance, the point 1 = (1, 0, . . . , 0)t ∈ Zd).

If we intersect Y with Qd we obtain L (and therefore, L is not closed).

The geometry of L is related to the geometry of the eigenspaces of the linear

map C : Rd → Rd (where C is the companion matrix of the minimal polynomial of β).

Let us decompose Rd into three C-invariant subspaces:

Rd = Es ⊕ Ec ⊕ Eu, (4.26)

where Eu is the 1-dimensional eigenspace associated to the unique expanding eigenvalue

β; Es is the stable subspace which is the direct sum of the eigenspaces associated to

the eigenvalues of C with modulus less than 1 (in the Salem case, Es is 1-dimensional);

and Ec is the direct sum of the eigenspaces associated to the eigenvalues of C with

modulus 1 (Ec = ∅ in the Pisot case).

Proposition 4.3.2. Let β be a Pisot or a Salem number of degree d ≥ 2. Consider the

decomposition of Rd as in (4.26). Then

Es ⊕ Ec ⊥ (1, β, . . . , βd−1). (4.27)

Proof. The vector β̄ = (1, β, . . . , βd−1) is a left eigenvector of C, associated to the
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eigenvalue β:

β̄ · C = (1, β, . . . , βd−1)




0 . . . . . . 0 −c0
1 0 . . . 0 −c1
0

. . .
. . .

...
...

...
. . .

. . . 0 −cd−2

0 . . . 0 1 −cd−1




= (β, . . . , βd−1,−c0 − c1β − . . .− cd−1β
d−1)

= (β, . . . , βd−1, βd)

= β β̄. (4.28)

Choose any x ∈ Rd and write x = xs,c + xu, with xs,c ∈ Es ⊕ Ec and xu ∈ Eu.

According to (4.28), we have

β̄ · C(x) = β β̄ · x

β̄ · C(xs,c + xu) = β β̄ · (xs,c + xu). (4.29)

Since xu ∈ Eu, which is the eigenspace associated to the eigenvalue β, we have C(xs,c+

xu) = C(xs,c) + βxu, and from (4.29) we obtain

β̄ · C(xs,c) + β̄ · (βxu) = ββ̄ · xs,c + ββ̄ · xu, (4.30)

which is equivalent to β̄ · C(xs,c) = β̄ · (βxs,c) and to:

β̄ ·
(
(C − βId)xs,c

)
= 0, (4.31)

for any xs,c ∈ Es⊕Ec. But the restriction of the linear map (C−βId) to the invariant

subspace Es ⊕ Ec is invertible, therefore from (4.31) it follows that

∀ v ∈ Es ⊕ Ec, β̄ · v = 0, hence Es ⊕ Ec ⊥ β̄. (4.32)

We can finally state the relation between the geometry of L and the C-invariant

subspaces of Rd:
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Corollary 4.3.3. The set L ⊂ Qd is contained in the region between two parallel planes

in Rd, which are:

Es ⊕ Ec and 1 +Es ⊕ Ec. (4.33)

Proof. The (d− 1)-dimensional planes which are the boundary of Y are orthogonal to

β̄, as we have seen in (4.25). Es⊕Ec is a (d−1)-dimensional subspace of Rd (because

Eu is 1-dimensional), and according to Proposition 4.3.2, this subspace is orthogonal

to β̄ . Therefore Es⊕Ec is the (d− 1)-dimensional plane which is orthogonal to β̄ and

contains the origin, whereas its translation by the vector 1 := (1, 0, . . . , 0)t ∈ Zd is the

other parallel plane (containing 1) which together form the boundary of Y .

We now state the second main result which we need for the definition of our

equivalent system for studying periodic points for the β-transformation:

Theorem 4.3.4. The map defined by

C̃ : L −→ L

x 7−→ Cx− ε1(x)1,
(4.34)

with ε1(x) := [βf(x)] = [β β̄ · x] ∈ {0, 1, . . . , [β]} is semi-conjugate to the restriction

of the β-transformation to [0, 1) ∩ Q(β):

Tβ : [0, 1) ∩ Q(β) −→ [0, 1) ∩ Q(β)

x 7−→ βx− [βx].
(4.35)

The semi-conjugacy of the two systems is shown in the following commutative diagram:

[0, 1) ∩ Q(β) [0, 1) ∩ Q(β)
Tβ

//

L

[0, 1) ∩ Q(β)

f

��

L L
eC // L

[0, 1) ∩ Q(β)

f

��
(4.36)

where the semi-conjugacy f : L→ [0, 1) ∩ Q(β) is a bijection (as defined in (4.4)).
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Proof. According to (4.4), f : L→ [0, 1) ∩ Q(β) is a continuous bijection. Let us now

prove that the diagram (4.36) is commutative. Using the definition of C̃ (4.34), we

have:

f ◦ C̃(x) = f
(
Cx− ε1(x)1

)
. (4.37)

f is a linear map (vector space isomorphism) between Qd and Q(β) (with scalars Q).

Since ∀x ∈ L, ε1(x) ∈ {0, 1, . . . , [β]} ⊂ Q, we use the linearity of f to obtain:

f ◦ C̃(x) = f
(
Cx
)
− ε1(x)f

(
1
)
. (4.38)

Let us use (4.19) to simplify f
(
Cx
)

= βf(x). Furthermore, f(1) = β̄ · 1 = 1 and

ε1(x) := [βf(x)], therefore:

f ◦ C̃(x) = βf(x) − ε1(x)

= βf(x) − [βf(x)]. (4.39)

On the other hand,

Tβ ◦ f(x) = Tβ
(
f(x)

)

= βf(x) − [βf(x)], (4.40)

which proves that f ◦ C̃(x) = Tβ ◦ f(x) and the diagram is commutative.

Proposition 4.3.1 together with Theorem 4.3.4 provide us with a non-invertible

dynamical system (C̃, L) which is equivalent to the β-transformation of the unit interval,

as far as the study of periodic points is concerned.
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Figure 4.1: The set L and the map C̃
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Chapter 5

Periodic points

5.1 Introduction

In this chapter, we consider the dynamical system
(
C̃, L

)
which is semi-conjugate to

(Tβ , [0, 1)∩Q(β)). Given that the semi-conjugacy f is a bijection,
(
C̃, L

)
is an equivalent

system for studying periodic points for the β-transformation.

We assume that β > 1 is a Pisot number (having minimal polynomial p(x) with

c0 = ±1) or a Salem number, therefore |c0| = |detC| = 1 and C ∈ GL(d,Z). It is

a standard result in the theory of Dynamical Systems that the linear map C defines a

toral automorphism on the d-dimensional torus (see, for example, [KH95]):

Definition 5.1.1. Let β > 1 be a Pisot number (with a minimal polynomial p(x) having

c0 = ±1) or a Salem number. The companion matrix of the minimal polynomial of β

defines a toral automorphism in Rd/Zd:

C : Rd/Zd −→ Rd/Zd

x + Zd 7−→ Cx + Zd.
(5.1)

The similarity between (5.1) and (4.34) suggests that the map C̃ can be factored

to the toral automorphism C. Given that the domain of the map C̃ is L ⊂ Qd, when

we factor C̃ to C, it suffices to consider the restriction of the toral automorphism to

Qd/Zd ⊂ Td (which is the set of periodic points for the toral automorphism C):
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Proposition 5.1.2. The dynamical systems C̃ : L → L and C : Qd/Zd → Qd/Zd are

topologically semi-conjugate:

Qd/Zd Qd/Zd
C

//

L

Qd/Zd

π

��

L L
eC // L

Qd/Zd

π

��
(5.2)

and the semi-conjugacy is the projection into the torus:

π : L ⊂ Qd −→ Qd/Zd

x 7−→ x + Zd.
(5.3)

Proof. Let us prove that the diagram commutes. ∀x ∈ L, ε1(x)1 ∈ Zd, therefore

π ◦ C̃(x) = π
(
Cx− ε1(x)1

)

= Cx− ε1(x)1 + Zd

= Cx + Zd. (5.4)

On the other hand,

C ◦ π(x) = C(x + Zd)

= Cx + Zd, (5.5)

hence π ◦ C̃(x) = C ◦ π(x), ∀x ∈ L.

Finally, π : L → Qd/Zd is a continuous surjection, therefore π is a topological

semi-conjugacy.

We will be interested in the factorization of C̃-orbits to C-orbits by the semi-

conjugacy π. We recall that any C-orbit in Qd/Zd is periodic (in the strict sense),

and therefore any C̃-orbit (whether it is eventually periodic or possibly non-periodic) is

mapped by π into a periodic C-orbit.
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5.2 Partitioning L according to periodic properties

The map C̃ is not invertible, and we define the set of eventually periodic points as:

Definition 5.2.1. The set of eventually periodic points for C̃ is:

Per(C̃) :=
{
x ∈ L ⊂ Qd | ∃m≥0, p>0 : C̃p+m(x) = C̃m(x)

}
. (5.6)

If x ∈ Per(C̃) we are interested in the minimum number of iterates m that it

takes for C̃m(x) to be periodic in the strict sense:

Definition 5.2.2. Let x ∈ Per(C̃) ⊆ L. The pre-period of x is

m := min{k ∈ N0 | ∃p∈N : C̃p+k(x) = C̃k(x)}. (5.7)

If x ∈ Per(C̃) has pre-period m = 0, we say that x is strictly periodic.

For each x ∈ Per(C̃) we define its (minimum) period as the (minimum) period

of the periodic component of the C̃-orbit of x:

Definition 5.2.3. Let x ∈ Per(C̃) ⊆ L. The (minimum) period of x is

p := min{k ∈ N | ∃m∈N : C̃k+m(x) = C̃m(x)}. (5.8)

We can partition L into the disjoint union of three sets distinguishing points

according to their periodic properties:

Definition 5.2.4. The set L is the disjoint union of three sets:

L = P ∪ E︸ ︷︷ ︸
Per( eC)

∪ N, (5.9)

where:

1. P is the set of strictly periodic points (pre-period m = 0).

2. E is the set of eventually periodic points with pre-period 0 < m <∞.
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3. N := L \ Per(C̃) is the set of non-periodic points.

According to Theorem 3.4.7 and Theorem 4.3.4, if β is a Pisot number then

Per(C̃) = L and N = ∅. The same would be true in the Salem case, should Schmidt’s

Conjecture 3.4.8 be true. Since we do not know whether or not that is the case, we

assume the possibility that N 6= ∅ in the Salem case.

The set Per(C̃) = P ∪ E is C̃-invariant:

∀x ∈ Per(C̃), ∀n ∈ N, C̃n(x) ∈ Per(C̃), (5.10)

and so is N (though this is trivial in the Pisot case):

∀x ∈ N, ∀n ∈ N, C̃n(x) ∈ N. (5.11)

For each x ∈ E, there exists m ∈ N such that C̃m(x) ∈ P , therefore P can

be considered as an attractor (in the sense that we are suggesting) for the orbit of any

x ∈ Per(C̃).

If β is Salem and N 6= ∅, then the orbit of any x ∈ N is non-periodic and it

contains an infinite number of points. Moreover, as we choose x ∈ N ⊂ L ⊂ Qd we fix

a minimum common denominator q > 0 for the rational coordinates (x1, . . . , xd)
t ∈ Qd.

Given that C̃ does not increase q, we can say that for any n ∈ N, C̃n(x) ∈
(
Zd/q

)
∩L.

But
(
Zd/q

)
is a lattice, hence any non-periodic (infinite) orbit must be unbounded.

This proves that if N 6= ∅, then

∀x ∈ N, ∀K > 0, ∃k ∈ N : n > k ⇒ |C̃n(x)| > K. (5.12)

5.3 Symbolic dynamics

We can use the subshift (σ, X̃+
β ) to describe the dynamics of (C̃, L).
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If we consider Proposition 3.4.5 and Theorem 4.3.4 together, we have:

[0, 1) ∩ Q(β) [0, 1) ∩ Q(β)
Tβ

//

X̃+
β

[0, 1) ∩ Q(β)

πβ

��

X̃+
β X̃+

β

σ // X̃+
β

[0, 1) ∩ Q(β)

πβ

��

L L
eC

//

[0, 1) ∩ Q(β)

L

OO

f

[0, 1) ∩ Q(β) [0, 1) ∩ Q(β)// [0, 1) ∩ Q(β)

L

OO

f

(5.13)

where both πβ : X̃+
β → [0, 1)∩Q(β) and f : L→ [0, 1)∩Q(β) are bijective topological

semi-conjugacies (their inverses are not continuous). Let us define a bijection Πβ :

X̃+
β → L by Πβ := f−1 ◦ πβ. This allows us to write the simplified commutative

diagram:

L L
eC

//

X̃+
β

L

Πβ

��

X̃+
β X̃+

β

σ // X̃+
β

L

Πβ

��
(5.14)

Although Πβ : X̃+
β → L is not a semi-conjugacy (because it is not continuous), it is a

bijection and carries the dynamics of the shift (σ, X̃+
β ) to (C̃, L).

Let s ∈ Rd be the lift of the fundamental homoclinic point of C (this is a concept

introduced in [Sid01] or [Sid03]; see also Appendix C), whose Zd-coordinate is 1:

s := (1 + Es ⊕ Ec) ∩Eu. (5.15)

Note that s belongs to the intersection of Eu with the boundary of Y , and that β̄ ·s = 1.

We can map any x ∈ [0, 1) ∩ Q(β) to (x s) ∈ Rd.

Proposition 5.3.1. Let s be defined by (5.15). Then for each x ∈ [0, 1) ∩ Q(β)

x := (x s + Es ⊕ Ec) ∩ Qd = f−1(x). (5.16)

Proof. For each x ∈ [0, 1)∩Q(β) there exists a unique x ∈ L ⊂ Qd such that f(x) = x.

Consider (4.26) and write x = xs,c + xu, with xs,c ∈ Es ⊕ Ec and xu ∈ Eu. Since
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x = f(x), we have:

x = β̄ · (xs,c + xu)

= β̄ · xs,c︸ ︷︷ ︸
0

+ β̄ · xu. (5.17)

On the other hand β̄ · (x s) = x β̄ · s︸︷︷︸
1

= x. This means that β̄ · (x s) = β̄ · xu and

(x s) ∈ Eu, hence xu = x s and

(xs,c + xu)︸ ︷︷ ︸
x

∈ (x s + Es ⊕ Ec) ∩ Qd. (5.18)

In fact, there cannot exist other v 6= x such that v ∈ (x s+Es⊕Ec)∩Qd, because any

plane parallel to Es⊕Ec is orthogonal to β̄ = (1, β, . . . , βd−1), and therefore it cannot

contain a non-zero vector with rational coordinates, or equivalently, it cannot contain

two different points with rational coordinates. Therefore x := (xs + Es ⊕ Ec) ∩ Qd is

well defined and x = f−1(x).

Proposition 5.3.2. The bijection in (5.14)

Πβ : X̃+
β −→ L

ε 7−→ x := Πβ(ε),
(5.19)

can be defined as:

Πβ(ε) :=

(
∞∑

k=1

εk C
−k(s) + Es ⊕ Ec

)
∩ Qd. (5.20)

Proof. Let ε ∈ X̃+
β and x := dβ(ε) =

∑∞
k=1 εkβ

−k. By definition

Πβ(ε) = f−1 ◦ dβ(ε)

= f−1(x), (5.21)

and together with Proposition 5.3.1 we obtain

Πβ(ε) = (x s + Es ⊕Ec) ∩ Qd. (5.22)

But x s =
∑∞

k=1 εkβ
−k s =

∑∞
k=1 εkC

−k(s), because s ∈ Eu. Replacing this in (5.22)

gives (5.20).
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We can give an alternative definition for Πβ , provided that ε ∈ X̃+
β is an even-

tually periodic sequence:

Proposition 5.3.3. Let ε ∈ X̃+
β be eventually periodic:

ε = (ε1, . . . , εm, εm+1, . . . , εm+p, . . .). (5.23)

Then

Πβ(ε) =
∑

1≤k≤m

εkC
−k 1 + (Cp − Id)−1

p∑

k=1

εm+kC
p−m−k 1. (5.24)

Proof. Let us start by writing the β-expansion of x := πβ(ε):

x =

∞∑

k=1

εk
βk

=
∑

1≤k≤m

εk
βk

+
1

βm

(
∞∑

k=1

εm+k

βk

)
. (5.25)

The infinite sum in (5.25) can be simplified:

∞∑

k=1

εm+k

βk
=

(
εm+1

β
+ · · · + εm+p

βp

)
+

(
εm+1

βp+1
+ · · · + εm+p

β2p

)
+ · · ·

=

(
εm+1

β
+ · · · + εm+p

βp

) ∞∑

n=0

(
1

βp

)n

=

(
p∑

k=1

εm+k

βk

)
βp

βp − 1
= (βp − 1)−1

p∑

k=1

εm+kβ
p−k. (5.26)

If we replace (5.26) in (5.25), we have:

x =
∑

1≤k≤m

εk
βk

+
1

βm

(
(βp − 1)−1

p∑

k=1

εm+kβ
p−k
)

=

m∑

k=1

εk
βk

+ (βp − 1)−1
p∑

k=1

εm+kβ
p−m−k. (5.27)

We can use the field isomorphism F : Q(β) → Q(C) to obtain:

F (x) = F

(
∑

1≤k≤m

εk
βk

)
+ F

(
(βp − 1)−1

)
F

(
p∑

k=1

εm+kβ
p−m−k

)

=
∑

1≤k≤m

εkC
−k + (Cp − Id)−1

p∑

k=1

εm+kC
p−m−k. (5.28)
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Finally, we recall that Πβ(ε) = x and x = f−1(x) = ψ ◦ F (x), therefore:

Πβ(ε) =
∑

1≤k≤m

εkC
−k 1 + (Cp − Id)−1

p∑

k=1

εm+kC
p−m−k 1. (5.29)

Corollary 5.3.4. If x ∈ L is strictly p-periodic, then there exists a unique strictly

p-periodic sequence ε := (ε1, . . . , εp, . . .) ∈ X̃+
β , such that x := Πβ(ε) and:

Πβ(ε) = (Cp − Id)−1
p∑

k=1

εkC
p−k1 (5.30)

= (Cp − Id)−1




| | |
Cp−11 · · · C1 1

| | |







ε1
...

εp


 . (5.31)

Given that in the Pisot case, every x ∈ L is eventually periodic, we have an

explicit definition of Πβ for every ε ∈ X̃+
β . However, in the Salem case Proposition

5.3.3 may not always be useful (if there exist non-periodic sequences in X̃+
β ).

5.4 Strictly periodic orbits

If x ∈ L is eventually p-periodic, there exists a unique eventually p-periodic sequence

ε ∈ X̃+
β , such that Πβ(ε) = x. Together with Proposition 5.3.3 we can say that if

x ∈ L is eventually p-periodic, then x ∈ (Cp − Id)−1(Zd):

Proposition 5.4.1. Let Perp(C̃) be the set of eventually p-periodic points for C̃. Then

Perp(C̃) ⊆ L ∩ (Cp − Id)−1(Zd) . (5.32)

Proof. Let x ∈ Perp(C̃), ε ∈ X̃+
β and Πβ(ε) = x. Proposition 5.3.3 allows us to write

x as in (5.24), which contains two terms:

∑

1≤k≤m

εkC
−k 1 ∈ Zd ⊂ (Cp − Id)−1(Zd)

(Cp − Id)−1
p∑

k=1

εm+kC
p−m−k 1 ∈ (Cp − Id)−1(Zd), (5.33)
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therefore x ∈ (Cp − Id)−1(Zd).

If x ∈ Per(C̃) ∩ (Cp − Id)−1(Zd), it does not necessarily follow that x is

eventually p-periodic. However, there must exist k ∈ N such that x is kp-periodic,

because π(x) is p-periodic for C.

Proposition 5.4.2. For each p ∈ N, let Pp := P ∩ (Cp − Id)−1(Zd). Then

∀x ∈ Perp(C̃) ∃m ∈ N0 : C̃m(x) ∈ Pp. (5.34)

Furthermore the set of strictly periodic points is

P =

∞⋃

p=1

Pp. (5.35)

In the Pisot case, Pp contains a finite number of strictly p-periodic C̃-orbits, and there-

fore Pp is a finite set. Moreover, P is a bounded set.

Conjecture 5.4.3. Consider the previous Proposition. If β is Salem , then Pp is an

infinite and unbounded set. Furthermore, P is unbounded.

We propose this conjecture, taking into account the computer simulations that

we have carried out for a particular Salem case in Chapter 6.3 and Appendix A.

5.5 Correspondence between orbits

In this section, we will mention some of the differences between the Pisot and the

Salem cases, concerning the set P and the projection π : P → Qd/Zd.

The restriction of C̃ to P is invertible. Furthermore, we have the following:

Qd/Zd Qd/Zd
C

//

P

Qd/Zd

π

��

P P
eC // P

Qd/Zd

π

��
(5.36)
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Proposition 5.5.1. If β is Pisot (with c0 = ±1) then π : P → Qd/Zd is surjective.

Proof. If β if Pisot , then Per(C̃) = L and ∀x ∈ L ∃k∈N : C̃k(x) ∈ P . In order

to prove that π : P → Qd/Zd is surjective, let us choose any (x + Zd) ∈ Qd/Zd.

Define x′ := x − [β̄ · x]1, and note that x′ ∈ L and π(x′) = x + Zd. If x′ ∈ P ,

then we have found a pre-image for (x + Zd). If x′ ∈ E and has pre-period m, then

x′′ := C̃m(x′) ∈ P . Since the C̃-orbit of x′′ in P is strictly periodic and is factored by

π to the C-orbit of x + Zd, there exists i ∈ N0 such that π ◦ C̃i(x′′) = x + Zd, and

C̃i(x′′) ∈ P .

If β is Salem , we cannot say whether or not π : P → Qd/Zd is surjective:

if Schmidt’s Conjecture 3.4.8 is true, then Proposition 5.5.1 would also be true for

any Salem number. However, if Conjecture 3.4.8 is false, there could exist some (x +

Zd) ∈ Qd/Zd such that any pre-image π−1
(
x + Zd

)
is non-periodic, and therefore

π−1
(
x + Zd

)
∩ P = ∅.

Definition 5.5.2. Define the set of strictly periodic points with integer coordinates for

C̃ as:

Z := P ∩ Zd. (5.37)

If the β-expansion of 1 is eventually periodic (this is always the case if β is

Pisot , and it is not known for the Salem case) with pre-period m and period p, then

the strictly periodic component of the orbit of 1 belongs to Z:

{
C̃n(1)

}
m≤n<m+p

⊆ Z. (5.38)

Furthermore, in the Pisot case Z must be a finite set, because there exist only a finite

number of points with integer coordinates in the bounded set P . We conjecture that in

the Salem case Z contains an infinite number of points, based on the computations of

the example in Chapter 6.3 and Appendix A, in which Z = π−1(v0 + Z4).
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5.6 Counting periodic points

The description of the periodic points for a toral automorphism is a simple exercise:

Proposition 5.6.1. The set of p-periodic points for (C,Qd/Zd) is:

Perp(C) :=
{

(x + Zd) ∈ Qd/Zd | Cp(x + Zd) = (x + Zd)
}

= (Cp − Id)−1(Zd)/Zd. (5.39)

Proof. According to the definitions, (x + Zd) ∈ Qd/Zd is a p-periodic point for the

toral automorphism C if and only if C
p
(x + Zd) = (x + Zd). This is equivalent to

(Cpx+Zd) = (x+Zd) and also (Cp− Id)x ∈ Zd. Since det (Cp− Id) 6= 0, (Cp− Id)
is invertible and (Cp − Id)x ∈ Zd is equivalent to x ∈ (Cp − Id)−1(Zd), and therefore

Perp(C) = (Cp − Id)−1(Zd)/Zd.

Corollary 5.6.2. The number of p-periodic points for the toral automorphism C is:

∣∣Perp(C)
∣∣ = |det(Cp − Id)| (5.40)

=

d∏

i=1

|θpi − 1|, (5.41)

where θi are the roots of the minimal polynomial (3.2) of β.

Proof. The set of p-periodic points for the toral automorphism is the finite subgroup of

the torus:

(Cp − Id)−1(Zd)/Zd, (5.42)

which is isomorphic to

Zd/(Cp − Id)(Zd), (5.43)

and the number of points of this subgroup is |det(Cp − Id)|. Now Cp has eigenvalues

{θpi }1≤i≤d, so (Cp − I) has eigenvalues {θpi − 1}1≤i≤d and therefore

|det(Cp − I)| =

d∏

i=1

|θpi − 1|. (5.44)
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Since π : L → Qd/Zd factors the non-invertible dynamical system (C̃, L) to

(C,Qd/Zd), it can either preserve the period of the periodic component of the eventually

periodic C̃-orbit, or factor that period. π maps an eventually p-periodic C̃-orbit to a

C-orbit which is also p-periodic (though p isn’t necessarily the minimum period).

Since π maps p-periodic points under the map C̃ into p-periodic points under

C, it is immediate that Perp(C̃) ⊂
(
L ∩ (Cp − Id)−1(Zd)

)
.

Corollary 5.6.3. For each p ∈ N, we have an upper bound for the number of strictly

p-periodic points for C̃:

|Perp(C̃)| < ([β] + 1)p (5.45)

Proof. There is a bijection between the strictly p-periodic sequences in X̃+
β and the

strictly p-periodic points for C̃. But X̃+
β ⊂ {0, 1, . . . , [β]}N, where there exist ([β]+1)p

p-periodic sequences with [β]+1 symbols, and this is an upper bound for |Perp(C̃)|.

The growth of |Perp(C)| = |det(Cp − Id)| =
∏d
i=1 |θ

p
i − 1|. And in the

Pisot case, this is
∏d
i=1 |θ

p
i − 1| ≈ βp.

In the Salem case, this product has an irregular pattern, because some times the

powers of the roots of modulus 1 are close to 1, therefore |θpi − 1| is small.

5.7 Schmidt’s proof translated into the notation (C̃, L)

In this section, we rewrite some of the important results in [Sch80] into our notation.

Lemma 5.7.1. Let x ∈ L ⊂ Qd. The following conditions are equivalent:

1. x ∈ Per(C̃)

2. ∃K1>0, ∀n∈N, |C̃n(x)| < K1

3. ∃K2>0, ∀1≤i≤d, ∀n∈N, |(1, θi, . . . , θd−1
i ) · C̃n(x)| < K2

Proof. If x ∈ Per(C̃) then {C̃n(x)}n∈N is a finite, and therefore bounded set. This

proves that (1) ⇒ (2).
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Suppose x ∈ L ⊂ Qd has rational coordinates with a minimum positive common

denominator q > 0. The minimum positive denominator of C̃n(x) cannot be greater

than q, therefore the C̃-orbit of x belongs to a lattice in Qd defined by q. If (2) holds,

then the C̃-orbit of x is bounded, and since it belongs to a lattice, it must be eventually

periodic: x ∈ Per(C̃). This proves that (2) ⇒ (1).

There exists some B > 0 such that ∀1≤i≤d, we have |(1, θi, . . . , θd−1
i )| < B,

therefore if (2) holds, then (3) also holds. To see that (3) implies (2), we write:




x
(n)
θ1

x
(n)
θ2
...

x
(n)
θd




=




1 θ1 . . . θd−1
1

1 θ2 . . . θd−1
2

...
... . . .

...

1 θd . . . θd−1
d



C̃n(x) (5.46)

But the matrix {θj−1
i }1≤i≤d is invertible, therefore we can multiply (5.46) by the inverse

of the matrix and express C̃n(x) as the product of a matrix by a bounded quantity.

Therefore (3) implies (2).

The Theorem 3.4.7 becomes:

Theorem 5.7.2. Let β be a Pisot number. Then Per(C̃) = L.

Finally, Conjecture 3.4.8 becomes:

Conjecture 5.7.3. Let β be a Salem number. Then Per(C̃) = L.
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Chapter 6

Examples and computational

results

6.1 Introduction

The main problem which served as motivation for our results was the description of

Per(Tβ), which is a subset of [0, 1) ∩ Q(β), as we have seen in Proposition 3.4.3. If

β is a Pisot number then Theorem 3.4.7 gives a complete description of Per(Tβ). The

Conjecture 3.4.8 which was first suggested in [Sch80], claims that if β is a Salem number

then the description of Per(Tβ) is the same as for the Pisot case.

So far, Conjecture 3.4.8 remains to be proved or disproved. [Boy89], [Boy96]

and [Boy97] considers whether or not Salem numbers satisfy a weaker property than

Conjecture 3.4.8. These works are based on explicit computation of the orbits of certain

points, and also on statistical heuristic arguments, which according to Boyd suggest that

Conjecture 3.4.8 should be false. We will summarize the main results and implications

of [Boy89], [Boy96] and [Boy97].

For any x ∈ [0, 1) ∩ Q(β), the explicit computation of {T nβ (x) | 0 < n < k}
can be implemented with the help of a mathematical package (for instance, MapleTM).

These computations can be done with absolute precision, because we can represent
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x ∈ [0, 1)∩Q(β) by x ∈ L ⊂ Qd, and compute the corresponding C̃-orbit. But in such

case, we are dealing with points in Qd, and therefore our computations will be symbolic,

rather than numerical approximations. We will show some computational results that

we have obtained for the Salem case.

The explicit computation of Tβ-orbits of points x ∈ [0, 1) ∩ Q(β) cannot be

used to prove Conjecture 3.4.8, because that would require explicitly computing in-

finitely many orbits. On the other hand, if Conjecture 3.4.8 was false, and for a given

Salem number β we wanted to prove that the orbit of some x ∈ [0, 1) ∩ Q(β) was

infinite, then explicit computation of that orbit would be of no use for proving that the

orbit was infinite.

6.2 Boyd’s results

The approach of [Boy89], [Boy96] and [Boy97] studies a particular implication of Con-

jecture 3.4.8:

Proposition 6.2.1. If Per(Tβ) = [0, 1) ∩ Q(β) then the β-expansion of 1 is eventually

periodic.

Proof. Given that

1 =
[β] + {β}

β
, (6.1)

the β-expansion of 1 is:

dβ(1) = ([β], ε1, ε2, ε3, . . .), (6.2)

where (ε1, ε2, ε3, . . .) := dβ({β}). But {β} ∈ [0, 1) ∩ Q(β), therefore it is eventually

periodic.

If the β-expansion of 1 is eventually periodic (or equivalently, if {T nβ (1) | n ∈ N}
is finite ) then we say that β is a beta-number (this definition was introduced in [Par60]).

According to Theorem 3.4.7, all Pisot numbers are beta-numbers, and if Conjecture

3.4.8 is true, then all Salem numbers would also be beta-numbers.
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In [Boy89], it was proved that every Salem number of degree 4 is a beta-number.

If β is a Salem number of degree 4, then its minimal polynomial is a reciprocal polynomial

of degree 4, which is determined by two coefficients a, b ∈ Z (not every pair (a, b) ∈ Z2

defines a Salem number, though):

p(x) = x4 + ax3 + bx2 + ax+ 1. (6.3)

[Boy89] proved that for fixed a, the period of the orbit of 1 is bounded by 2|a|. However,

this does not prove 3.4.8 for Salem numbers of degree 4. It merely proves that such

Salem numbers are beta-numbers, or in other words, that the Tβ-orbit of 1 is eventually

periodic.

[Boy96] deals with the same problem for Salem numbers of degree 6. Extensive

computations were carried out, trying to compute the Tβ-orbits of 1 for several hundreds

of different Salem numbers. For some Salem numbers, the complete orbit was found

to be finite, whereas in other cases, it wasn’t possible to determine whether or not the

orbit was finite (given that after several thousands of iterations, a periodic pattern was

not obtained). It was claimed that for such cases, this did not mean that the Tβ-orbit

of 1 was infinite, but possibly simply its period was too big.

[Boy96] also developed a probabilistic model for the distribution of the Tβ-orbit

of 1 for Salem numbers of any degree d (which is necessarily even and d ≥ 4). It was

claimed that this heuristic probabilistic argument provided numerical data supporting the

conjecture that all Salem numbers of degree 6 should be beta-numbers, but the same

should not hold for Salem numbers of degree higher than 6. This contradicts Schmidt’s

Conjecture 3.4.8.

6.3 Salem example of degree 4

We would like to observe different aspects in the dynamical behaviour of C̃-orbits in

the Salem case (in comparison with the Pisot case, which is better understood). One

of the immediate problems we face, is the dimension of the space Qd which embeds L,
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because Salem numbers have a minimal polynomial of degree d ≥ 4. If we want to plot

the orbits, we have to project them into a subspace of dimension less than 4. We will

choose to project them into the 2-dimensional subspace Ec (which is the eigenspace of

C corresponding to the eigenvalues of modulus 1).

Consider the Salem number β of degree 4 defined by the minimal polynomial

p(x) = x4 − 10x3 − 10x+ 1. (6.4)

The companion matrix for p(x) is:

C =




0 0 0 −1

1 0 0 10

0 1 0 0

0 0 1 10



. (6.5)

We can work out a numerical approximation for β ≃ 10.097114224488, and

therefore [β] = 10 and {β} ≃ 0.097114224488. The β-expansion of 1 is

dβ(1) = (10, 0, 9, 9, 0, 9, 9, . . .) = (10, 0, 9, 9, . . .). (6.6)

We shall be considering the following diagram:

L L
eC

//

X̃+
β

L

Πβ

��

X̃+
β X̃+

β

σ // X̃+
β

L

Πβ

��

Qd/Zd Qd/Zd
C

//

L

Qd/Zd

π

��

L L// L

Qd/Zd

π

��

(6.7)

We recall that Πβ : X̃+
β → L maps the β-expansion of each x ∈ [0, 1) ∩ Q(β) to

x ∈ L ⊂ Qd, such that x := f−1(x).

We consider the fixed points for the (non-hyperbolic) toral automorphism C:

Fix(C) = Per1(C) := (C − Id)−1(Zd)/Zd. (6.8)
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We can compute:

(C − Id)−1 =
1

18




−19 −1 −1 −1

−9 −9 9 9

−9 −9 −9 9

1 1 1 1



, (6.9)

and |Fix(C)| = |C − Id| = 18. We can think of Fix(C) as a finite subgroup of Td, in

this case of order 18.

Let us define v1 := 1
18 (−19,−9,−9, 1)t, and ∀0≤k<18 vk := kv1.

Proposition 6.3.1. (C−Id)−1(Zd)/Zd is cyclic subgroup of Td. We can choose v1+Zd

as a generator, and we have:

Fix(C) = (C − Id)−1(Zd)/Zd =
{
(kv1) + Zd | 0 ≤ k < 18

}
. (6.10)

Proof. If suffices to check that for any i, j such that 0 < i < j < 18, vj − vi = vj−i /∈
Zd, therefore vj +Zd and vi+Zd are different elements in Td. Furthermore, 18v1 ∈ Zd

(as we would expect, because the order of the subgroup is 18), therefore v1 + Zd is a

generator for Fix(C).

On the other hand, we can also enumerate every fixed point for C̃. Each x ∈
Fix(C̃) = Per1(C̃) can be enumerated using the bijection Πβ(ε), given that ε ∈ X̃+

β

and σ(ε) = ε. Since X̃+
β ⊂ Σ+

[β], there are at the most [β] different sequences in X̃+
β

with period 1. If we define ε := (ε1, . . .) with ε1 ∈ {0, 1, . . . , ([β] − 1)} we can use

(5.30):

Πβ(ε) = (C − Id)−1ε11

= ε1v1. (6.11)

In our case 0 ≤ ε1 = k < 10, and therefore there exist 10 fixed points for C̃. If we

compare (6.11) and (6.10), we immediately see that:

π(ε1v1) = kv1 + Zd = vk + Zd, (6.12)
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and therefore each of the 10 fixed points for C̃ is mapped into a distinct fixed point for

C. But there exist 8 additional fixed points for C, namely {vk + Zd | 10 ≤ k < 18}
which don’t have a pre-image in L which is 1-periodic.

If Conjecture 3.4.8 is true, then any point x+Zd ∈ Qd/Zd has at least a strictly

periodic lift π−1(x+Zd). In our case, we would like to investigate which strictly periodic

images do the fixed points admit.

Each vj + Zd (for 0 ≤ j < 18) has infinitely many pre-images in L:

π−1
(
vj + Zd

)
= L ∩ (vj + Zd), (6.13)

though we are interested in those pre-images which are strictly-periodic:

π−1
(
vj + Zd

)
∩ P. (6.14)

6.3.1 Computing pre-images within a bounded region with Maple

We consider the factor map π : L → Qd/Zd, such that π(x) := x + Zd. In what

follows, when we mention a pre-image of a point x+Zd, we mean any v ∈ L such that

π(v) = x + Zd, or in other words, such that (v − x) ∈ Zd.

For any M ∈ N and x ∈ Qd, define:

BM (x) := {x + n | n := (n1, . . . , nd) ∈ Nd and ∀1≤i≤d |ni| ≤M}. (6.15)

For any x + Zd ∈ Qd/Zd, if we choose some M ∈ N we define a finite set of

pre-images

BM (x) ∩ L ⊂ π−1(x + Zd). (6.16)

If x ∈ Qd is small compared to M ∈ N, we can interpret BM (x) ∩ L as the set

of pre-images of x + Zd which have maximum (infinity) norm approximately less than

M .
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6.3.2 Pre-images of v0 + Z4

Let us choose a fixed point for C, for instance:

v0 + Z4 ∈ Q4/Z4. (6.17)

We define how big the bounded region is by setting M = 100, and compute the

finite set of pre-images B100(v0) ∩ L with Maple Routine 1.

Given this set of pre-images of v0 + Z4, we want to consider only those which

are strictly C̃-periodic, and we can do that using Routine 2 to compute the list

6.3.3 Generating projections of the orbits

We have computed a bounded C̃-invariant set of pre-images of the fixed points for C.

The computation of the orbits is a straightforward procedure with the help of Maple.

But if we want to display those orbits, we need to project them into a subspace of

dimension less than 4. We will define a change of basis for R4 as follows.

Eu =
〈

(−1, β3 − 10β2, β2 − 10β, β)t︸ ︷︷ ︸
vu

〉
(6.18)

because Cvu = βvu. We can obtain a stable eigenvalue for C replacing β by β−1

in (6.18) and simplifying the expression using the equation p(β) = 0. We obtain, for

instance:

Es =
〈

(β3, 10β − 1, 10β2 − β,−β2)t︸ ︷︷ ︸
vs

〉
, (6.19)

and we can confirm that Cvs = β−1vs.

In order to find two generators for Ec, we proceeded in the following way:

Es ⊕ Ec =
〈

(β,−1, 0, 0)t , (0, β,−1, 0)t , (0, 0, β,−1)t
〉
, (6.20)

because these three vectors are linearly independent and orthogonal to β̄.
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Consider the change of basis defined by the matrix:

S′ =




β 0 0 −1

−1 β 0 β3 − 10β2

0 −1 β β2 − 10β

0 0 −1 β



, (6.21)

where the first three column vectors generate Es ⊕ Ec, whereas the last one generates

Eu. We have numerically iterated by the linear map C a point x ∈ Es ⊕ Ec. It

approximates Ec and we considered the first three coordinates in the basis defined

by S′. The external product of the vectors consisting of these three coordinates for

consecutive C-iterates of x converges to a vector in R3 which is orthogonal to Ec. The

numerical results that we obtained suggested that the orthogonal vector was (β2, β, 1),

and therefore Ec should be generated, for instance, by (1,−β, 0) and (0, 1,−β), which

in terms of the basis defined by S′ corresponds to:

vc1 := 1 · (β,−1, 0, 0)t − β(0, β,−1, 0)t = (β,−1 − β2, β, 0)t,

vc2 := 1 · (0, β,−1, 0)t − β(0, 0, β,−1)t = (0, β,−1 − β2, β)t. (6.22)

This means that

Ec =
〈

(β,−1,−β3, β2)t︸ ︷︷ ︸
vc1

, (0, β,−1 − β2, β)t︸ ︷︷ ︸
vc2

〉
, (6.23)

and we can confirm that Cvc1 = vc2 and Cvc2 = vc1 + (β3 − 10β2 − β)vc2, therefore
〈
vc1,vc1

〉
= Ec because this is a 2-dimensional invariant subspace orthogonal to β̄.

The change of basis matrix

S =




β 0 β2 −1

−1 − β2 β 10 − β−1 β3 − 10β2

β −1 − β2 10β − 1 β2 − 10β

0 β −β β




(6.24)

contains vc1,vc2 in the first two columns, and therefore if we want to project a point

x ∈ R4 into Ec, we take the first two coordinates of S−1x. This is what we do in
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order to obtain the orbits shown in Appendix A, generated with the Maple code shown

in Appendix B.5.

6.3.4 Interpretation of the plots

Let us consider the projections of the strictly periodic orbits that are shown in Appendix

A.

The circular shapes that we observe, reflect the rotating behaviour of the orbits

for the map C̃. Any strictly periodic point x ∈ L has a component along the stable and

unstable directions (Es and Eu) which are bounded and rather small, as the absolute

distance of the point to the origin increases. If a strictly periodic point is very far from

the origin, then its component along Ec must be big. When we iterate such point by C̃,

its Ec-coordinates are rotated around an ellipse by an irrational angle (this corresponds

to the linear map C), and subsequently translated by a variable bounded vector, whose

contribution is less relevant the farther we get away from the origin. This explains why

a slightly square shape can be observed for orbits which are nearer to the origin, whereas

this shape becomes more evenly circular as the orbit is farther away from the origin.

The tones of gray correspond to different periods, where black corresponds to

the lowest period (1) and the lightest shade of gray corresponds to the highest period.

Tables 6.1 and 6.2 show the number of strictly periodic orbits found within the

bounded region (defined by the parameter M = 100), according to their periods and to

which fixed point vk +Z4 for the toral automorphism it is mapped by the factor map π.
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period v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

1 1 1 1 1 1 1 1 1 1 1

3 1 1

4 2 2 6 6 2 2

7 1 1 1 1

11 1 1 1 1 1 1

15 10 7 5 7 10 11 7 5 7 10

19 2 1 1 2 2 1 1 1

26 1 2 2 1

30

34 1 2 6 1 3 3 1 6 3 1

49 1 1 4 1 2 2 1 4 1 1

53 1 1

60 2 2

64 1 1 1 1 1 1 1 1 1

79 2 2

83

94

98 1 1

109 1 1 1 1

128

158 1 1

total orbits → 21 17 21 19 26 28 18 21 19 20

Table 6.1: Number of C̃-orbits which are pre-images of vk + Z4
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period v10 v11 v12 v13 v14 v15 v16 v17

1

3

4 1 1 4 4 4 4 1 1

7 1 1

11 1 1 1 1 1 1

15 7 12 8 5 4 8 12 7

19 4 1 1 2 3 1 1 4

26 1 1

30 1 1

34 3 1 1 3

49 1 3 2 1 2 3 1

53

60 1 1 1 1

64 1 1 2 1 1 2 1 1

79 1 1

83 1 1 1 1 1 1

94 1 1

98 1 1

109 1 1

128 1 1 1 1

158 1

total orbits → 20 21 22 20 19 22 22 20

Table 6.2: Number of C̃-orbits which are pre-images of vk + Z4
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Appendix A

Pictures for the Salem example

In this appendix, we present the plots generated with Maple while studying some periodic

orbits of the map C̃ for the Salem number defined by the polynomial p(x) = x4−10x3−
10x + 1. Each page contains two plots: the top one shows the projection into Ec of

the strictly periodic points for C̃ which are pre-images of the fixed point vk + Z4 for

the toral automorphism C. We limit our plot to a bounded region in L (depending on

a parameter M = 100), and that is the reason why the circular regions containing the

points are bounded.

The plot on the bottom half of each page is related to the one above it: each

strictly periodic orbit is represented by a unique point, whose horizontal coordinate is

proportional to the average distance to the origin of its projection to Ec, whereas the

the vertical coordinate represents the period of the orbit.
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Figure A.1: Projection of pre-images of v0 + Z4 in Ec
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Figure A.2: Average orbit distance versus period for each orbit π−1(v0 + Z4)
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Figure A.3: Projection of pre-images of v1 + Z4 in Ec
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Figure A.4: Average orbit distance versus period for each orbit π−1(v1 + Z4)
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Figure A.5: Projection of pre-images of v2 + Z4 in Ec
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Figure A.6: Average orbit distance versus period for each orbit π−1(v2 + Z4)
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Figure A.7: Projection of pre-images of v3 + Z4 in Ec
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Figure A.8: Average orbit distance versus period for each orbit π−1(v3 + Z4)
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Figure A.9: Projection of pre-images of v4 + Z4 in Ec
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Figure A.10: Average orbit distance versus period for each orbit π−1(v4 + Z4)
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Figure A.11: Projection of pre-images of v5 + Z4 in Ec
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Figure A.12: Average orbit distance versus period for each orbit π−1(v5 + Z4)
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Figure A.13: Projection of pre-images of v6 + Z4 in Ec

0.2 0.4 0.6 0.8 1.0 1.2

10

20

30

40

50

60

70

80

90

100

Figure A.14: Average orbit distance versus period for each orbit π−1(v6 + Z4)
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Figure A.15: Projection of pre-images of v7 + Z4 in Ec
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Figure A.16: Average orbit distance versus period for each orbit π−1(v7 + Z4)
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Figure A.17: Projection of pre-images of v8 + Z4 in Ec
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Figure A.18: Average orbit distance versus period for each orbit π−1(v8 + Z4)
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Figure A.19: Projection of pre-images of v9 + Z4 in Ec
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Figure A.20: Average orbit distance versus period for each orbit π−1(v9 + Z4)

74



K1.5 K1.0 K0.5 0 0.5 1.0 1.5

K1.5

K1.0

K0.5

0.5

1.0

1.5

Figure A.21: Projection of pre-images of v10 + Z4 in Ec
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Figure A.22: Average orbit distance versus period for each orbit π−1(v10 + Z4)
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Figure A.23: Projection of pre-images of v11 + Z4 in Ec
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Figure A.24: Average orbit distance versus period for each orbit π−1(v11 + Z4)
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Figure A.25: Projection of pre-images of v12 + Z4 in Ec
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Figure A.26: Average orbit distance versus period for each orbit π−1(v12 + Z4)
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Figure A.27: Projection of pre-images of v13 + Z4 in Ec
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Figure A.28: Average orbit distance versus period for each orbit π−1(v13 + Z4)
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Figure A.29: Projection of pre-images of v14 + Z4 in Ec
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Figure A.30: Average orbit distance versus period for each orbit π−1(v14 + Z4)

79



K1.5 K1.0 K0.5 0 0.5 1.0 1.5

K1.5

K1.0

K0.5

0.5

1.0

1.5

Figure A.31: Projection of pre-images of v15 + Z4 in Ec
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Figure A.32: Average orbit distance versus period for each orbit π−1(v15 + Z4)
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Figure A.33: Projection of pre-images of v16 + Z4 in Ec
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Figure A.34: Average orbit distance versus period for each orbit π−1(v16 + Z4)
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Figure A.35: Projection of pre-images of v17 + Z4 in Ec

0.2 0.4 0.6 0.8 1.0 1.2 1.4

10

20

30

40

50

60

70

80

90

Figure A.36: Average orbit distance versus period for each orbit π−1(v17 + Z4)
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Appendix B

Maple code

The following code is a common environment, which should precede any of the Maple

programmes that we present afterwards. It loads the Maple packages ’LinearAlgebra’

and ’plots’, initializes the constants β, β2 and β3 and defines the companion matrix C:

with(LinearAlgebra):

with(plots):

beta := 10.09711422448810102583495496836762141902:

beta2:=beta*beta:

beta3:=beta*beta*beta:

C:=Matrix([[0,0,0,-1],[1,0,0,10],[0,1,0,0],[0,0,1,10]]):

B.1 Implementation of the greedy algorithm

The following routine uses the greedy algorithm to compute the orbit of the point

provided as an argument:

beta_expansion:=proc(u)

local symbols,orbit,i,j,k,v,repeat,temp;

global C,beta,beta2,beta3:

#Initializations:
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orbit:=[u]; symbols:=[]; v:=u;

#Compute the orbit and symbols up to 10000 iterations,

#or stop once it repeats itself (eventually periodic)

for i from 1 to 10000 do

v:=convert(C.Vector(v),’list’):

k:=floor(v[1]+v[2]*beta+v[3]*beta2+v[4]*beta3):

v[1]:=v[1]-k:

repeat:=0; # check if v has already occurred in the orbit

for j from 1 to nops(orbit) do

if (orbit[j]=v) then repeat:=j; end if;

end do;

symbols:=[op(symbols),k];

if (repeat > 0) then break; end if;

orbit:=[op(orbit),v];

end do;

# end of iterations

if (repeat=0) then

print("Could not find a finite orbit up to 10000 iterations.");

else

print("Preperiod m = ", repeat-1);

if (repeat>1) then print(seq(symbols[j],j=1..repeat-1)); end if;

print("Period p = ", nops(symbols)-repeat+1);

print(seq(symbols[j],j=repeat..nops(symbols)));

end if;

end proc;
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The usage is: beta-expansion([1, 0, 0, 0]), in order to generate the symbols which are

the β-expansion of [1, 0, 0, 0] (or any other vector that we choose instead), output the

pre-period m and the period p.

B.2 Routine 1

This Maple routine computes the set of pre-images BM (v) (for a given M ∈ N and

v ∈ Q4, and considering the Salem number β). It stores this set of pre-images in a list

points and saves that list into a file preim-v0-M100.m.

Routine 1

points:=[]:

M:=100; #range

v:=0 * [-19/18,-9/18,-9/18,1/18]; #set v0=0

x:=v[1]+v[2]*beta+v[3]*beta2+v[4]*beta3: #\bbb.v

for i from -M to M do

for j from -M to M do

for k from -M to M do

for l from -M to M do

temp:=i+j*beta+k*beta2+l*beta3+x;

if ((temp >= 0) and (temp < 1))

then points:=[op(points), [i,j,k,l]+v]:

end if;

end do;

end do;

end do;

end do;

save points, "preim_v0_M100.m";
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B.3 Routine 2

This Maple routine reads the list of pre-images of vk + Z4 within a bounded region

defined by M = 100, which had been computed in Routine 1 and saved in the file

preim-vk-M100.m.

Next, it computes the pre-period m and the period p of each point (it looks for

eventually periodicity up to a maximum of 10000 iterations). Those points which are

strictly periodic (m = 0) are stored in the list strper-points, and their respective periods

are stored in the list periods. These two lists are saved in the file str-per-vk-M100.m,

for subsequent use.

Routine 2

# compute period

Compute_period:=proc(u)

local orbit,i,j,m,p,v;

#Initializations:

orbit:=[]: m:=0: p:=0: v:=u:

#Check for periodicity up to 10000 iterations

for i from 1 to 10000 while (p=0) do

orbit:=[op(orbit),v]:

v:=convert(C.Vector(v),’list’):

v[1]:=v[1]-floor(v[1]+v[2]*beta+v[3]*beta2+v[4]*beta3):

for j from nops(orbit) by (-1) to 1 while (p=0) do

if (orbit[j]=v) then

m:=j-1:

p:=nops(orbit)-m:
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end if:

end do:

end do:

return(m,p): #return pre-period m and period p

end proc:

# compute the strictly periodic pre-images of vk

read "preim_v17_M100.m"; #reads pre-images of vk

strper_points:=[]: periods:=[]:

for i to nops(points) do

(m,p):=Compute_period(points[i]):

if ((m=0) and (p>0)) then

strper_points:=[op(strper_points),points[i]]:

periods:=[op(periods),p]:

end if:

end do:

nops(strper_points);

save strper_points, periods, "strper_v17_M100.m";

periodlist:={}:

for i to nops(periods) do

periodlist:=periodlist union {periods[i]}:

end do:

periodlist;

B.4 Complete Orbits

Since the set of strictly periodic points found within the bounded region defined by

M = 100 is not necessarily C̃-invariant (because the orbit of such point may lie slightly

outside the bounded region), we add to the list the possibly missing points of the orbits

which are strictly periodic. This will make sure that our plots will show a circular
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boundary, instead of a rectangular one.

# compute period

compute_period:=proc(u)

local i,p,v;

#Initializations:

p:=0: v:=u:

#Check for periodicity up to 10000 iterations

for i from 1 to 10000 while (p=0) do

v:=convert(C.Vector(v),’list’):

v[1]:=v[1]-floor(v[1]+v[2]*beta+v[3]*beta2+v[4]*beta3):

if (v=u) then p:=i:

end if:

end do:

return(p): #return period p

end proc:

# load the variables "strper_points" and "periods"

read "mw_files/strper_v17_M100.m";

# save everything in a list

pointlist:={}:

for i to nops(strper_points) do

v:=strper_points[i]: #complete the orbit of v

for j to periods[i] do
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pointlist:=pointlist union {v}:

v:=convert(C.Vector(v),’list’):

v[1]:=v[1]-floor(v[1]+v[2]*beta+v[3]*beta2+v[4]*beta3):

end do:

end do:

strper_points:=[]:

periods:=[]:

for i to nops(pointlist) do

strper_points:=[op(strper_points),pointlist[i]]:

p:=compute_period(pointlist[i]):

periods:=[op(periods),p]:

end do:

# this is the version of the file with completed orbits!

save strper_points, periods, "mw_files/strper_v17_M100.m";

B.5 Generate graphics

This is the Maple code that we used to generate the plots.

S:=Matrix([[beta,0,beta^2,-1],[-1-beta^2,beta,10-beta^(-1)

,beta^3-10*beta^2],[beta,-1-beta^2,10*beta-1,beta^2-10*beta],

[0,beta,-beta,beta]]):

S_1:=Matrix([[1,0,0,0],[0,1,0,0]]).S^(-1);

# Read the lists "strper_points", and "periods"

read "strper_v4_M100.m";

newpoints:=seq(S_1.Vector(strper_points[i]),

i=1..nops(strper_points)):
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newpoints2:=[seq([newpoints[i][1],newpoints[i][2]],

i=1..nops(strper_points))]:

graylist:=[seq(COLOR(RGB,n/20,n/20,n/20),n=1..20)]:

periodlist:={}:

for i to nops(strper_points) do

periodlist:=periodlist union {periods[i]}:

end do:

periodlist;

{1, 4, 15, 19, 26, 34, 49}

colorlist:=[]:

for l from 1 to nops(strper_points) do

p:=periods[l]:

if (p=1) then colorlist:=[op(colorlist), graylist[1]]:

elif (p=3) then colorlist:=[op(colorlist), graylist[2]]:

elif (p=4) then colorlist:=[op(colorlist), graylist[3]]:

elif (p=7) then colorlist:=[op(colorlist), graylist[4]]:

elif (p=11) then colorlist:=[op(colorlist), graylist[5]]:

elif (p=15) then colorlist:=[op(colorlist), graylist[6]]:

elif (p=19) then colorlist:=[op(colorlist), graylist[7]]:

elif (p=26) then colorlist:=[op(colorlist), graylist[8]]:

elif (p=30) then colorlist:=[op(colorlist), graylist[9]]:

elif (p=34) then colorlist:=[op(colorlist), graylist[10]]:

elif (p=49) then colorlist:=[op(colorlist), graylist[11]]:

elif (p=53) then colorlist:=[op(colorlist), graylist[12]]:

elif (p=60) then colorlist:=[op(colorlist), graylist[13]]:

elif (p=64) then colorlist:=[op(colorlist), graylist[14]]:
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elif (p=79) then colorlist:=[op(colorlist), graylist[15]]:

elif (p=83) then colorlist:=[op(colorlist), graylist[16]]:

elif (p=98) then colorlist:=[op(colorlist), graylist[17]]:

elif (p=109) then colorlist:=[op(colorlist), graylist[18]]:

elif (p=128) then colorlist:=[op(colorlist), graylist[19]]:

elif (p=158) then colorlist:=[op(colorlist), graylist[20]]:

end if:

end do:

nops(colorlist);

pointplot(newpoints2,axes=NORMAL,connect=false,

symbol=solidcircle,symbolsize=25,color=colorlist);

read "strper_v4_M100.m";

orbit_represent:=[]:

ppp_list:=[]:

average_dst:=[]:

for i to nops(strper_points) do

if (strper_points[i] <> [0,0,0,0]) then

orbit_represent:=[op(orbit_represent),strper_points[i]]:

ppp_list:=[op(ppp_list),periods[i]]:

u:=strper_points[i]:

ddd:=0:

for j to periods[i] do

for k to nops(strper_points) do

if (strper_points[k]=u) then

strper_points:=subsop(k=[0,0,0,0],strper_points):
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end if:

end do:

aux:=S_1.Vector(u):

ddd:=ddd+sqrt(aux[1]^2+aux[2]^2):

u:=convert(C.Vector(u),’list’):

u[1]:=u[1]-floor(u[1]+u[2]*beta+u[3]*beta2+u[4]*beta3):

end do:

average_dst:=[op(average_dst),ddd/periods[i]]:

end if:

end do:

colorlist:=[]:

for l from 1 to nops(orbit_represent) do

p:=ppp_list[l]:

if (p=1) then colorlist:=[op(colorlist), graylist[1]]:

elif (p=3) then colorlist:=[op(colorlist), graylist[2]]:

elif (p=4) then colorlist:=[op(colorlist), graylist[3]]:

elif (p=7) then colorlist:=[op(colorlist), graylist[4]]:

elif (p=11) then colorlist:=[op(colorlist), graylist[5]]:

elif (p=15) then colorlist:=[op(colorlist), graylist[6]]:

elif (p=19) then colorlist:=[op(colorlist), graylist[7]]:

elif (p=26) then colorlist:=[op(colorlist), graylist[8]]:

elif (p=30) then colorlist:=[op(colorlist), graylist[9]]:

elif (p=34) then colorlist:=[op(colorlist), graylist[10]]:

elif (p=49) then colorlist:=[op(colorlist), graylist[11]]:

elif (p=53) then colorlist:=[op(colorlist), graylist[12]]:

elif (p=60) then colorlist:=[op(colorlist), graylist[13]]:

elif (p=64) then colorlist:=[op(colorlist), graylist[14]]:
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elif (p=79) then colorlist:=[op(colorlist), graylist[15]]:

elif (p=83) then colorlist:=[op(colorlist), graylist[16]]:

elif (p=98) then colorlist:=[op(colorlist), graylist[17]]:

elif (p=109) then colorlist:=[op(colorlist), graylist[18]]:

elif (p=128) then colorlist:=[op(colorlist), graylist[19]]:

elif (p=158) then colorlist:=[op(colorlist), graylist[20]]:

end if:

end do:

newpoints2:=[seq([average_dst[i],ppp_list[i]],

i=1..nops(orbit_represent))]:

pointplot(newpoints2,axes=boxed,connect=false,symbol=solidcircle,

symbolsize=25, color=colorlist, gridlines=true);
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Appendix C

Arithmetic codings for Pisot

automorphisms

C.1 Introduction

We summarize in this chapter some results of an area known as arithmetic dynamics.

This branch of symbolic dynamics was initially developed by Vershik and Sidorov in

[Ver92] and [VS98] for the two-dimensional Pisot automorphism, and subsequently gen-

eralized by Sidorov in [Sid01] and [Sid03] to Pisot automorphisms of dimension higher

than two.

C.2 Arithmetic coding

For some hyperbolic toral automorphisms C : Td 7→ Td we can be establish a semi-

conjugacy φ from the two-sided shift space (σ,Xβ) to (C,Td). This semi-conjugacy is

obtained in a different way than the semi-conjugacies obtained with Markov partitions,

and it is called an arithmetic coding.
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Td Td
C

//

Xβ

Td

φ

��

Xβ Xβ
σ // Xβ

Td

φ

��
(C.1)

This method was presented in [Sid01] for the 2-dimensional case, developing

the results which had been achieved in [Ver92]. Their approach is rather axiomatic, in

the sense the authors specify a priori which properties should a semi-conjugacy have

in order to be called an arithmetic encoding. Afterwards they proceed into studying

the problem of which toral automorphisms admit an arithmetic coding and how many

different arithmetic codings can be found for such automorphisms. We will borrow the

ideas from [Sid01], but present them in a more intuitive approach.

C.3 The semi-conjugacy in the Pisot case

Let us start off by extending the one sided β-shift (σ,X+
β ) to a two-sided β-shift (σ,Xβ),

in order to obtain an invertible shift. This two-sided space of sequences is defined as:

Xβ := {(. . . 00ε−Nε−N+1 . . . ε0.ε1ε2 . . .) | (ε−Nε−N+1ε−N+2 . . .) ∈ X+
β )}. (C.2)

Xβ is the two-sided space of sequences that can be obtained by shifting any

one-sided sequences in X+
β an arbitrary (but finite) number of times to the left. In

particular, these sequences are finite towards the left (for each sequence, ∃N ∈ N such

that ∀k < −N, εk = 0 ). The two-sided β-shift is well defined in Xβ and there exists a

semi-conjugacy between (σ,Xβ) and (Mβ ,R
+
0 ), (with Mβ(x) := βx):

R+
0 R+

0Mβ

//

Xβ

R+
0

f

��

Xβ Xβ
σ // Xβ

R+
0

f

��
(C.3)
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The semi-conjugacy is defined by:

f(. . . 00ε−Nε−N+1 . . . ε0.ε1 . . .) :=

∞∑

k=−N

εk
βk
. (C.4)

If β is Pisot then the toral automorphism C : Td // Td has a one-dimensional

unstable manifold at the origin, which can be lifted to the universal cover Rd as a straight

line through the origin which is the expanding eigenspace of the matrix C associated to

the eigenvalue β:

Td Td
C

//

Rd

Td

π

��

Rd RdC // Rd

Td

π

��

(C.5)

We would like this semi-conjugacy to be a map between compact spaces. How-

ever, given that Xβ is not compact, we will compactify it by including sequences which

are not finite to the left: Xβ. The two sided-shift (σ,Xβ) is a sofic shift.

We shall attempt to map sequences in Xβ (which can be identified with R+
0 )

into the semi-straight line Eu ⊂ Rd which is the lift of the unstable manifold of the

origin W u ⊂ Td. The semi-conjugacy will be π ◦ f :

Eu ⊂ Rd Eu ⊂ Rd//

Xβ

Eu ⊂ Rd

f

��

Xβ Xβ
σ // Xβ

Eu ⊂ Rd

f

��

W u ⊂ Td W u ⊂ Td
C

//

Eu ⊂ Rd

W u ⊂ Td

π

��

Eu ⊂ Rd Eu ⊂ RdC // Eu ⊂ Rd

W u ⊂ Td

π

��

(C.6)

Let us start by relating homoclinic points (to the origin) in (σ,Xβ) and homo-

clinic points (to the origin) in (C,Td). Fix one arbitrary homoclinic point for (σ,Xβ)

of a very elementary type, for instance: δ1 = (. . . 00.100 . . .). This corresponds to the

number x = 1
β
∈ R+

0 , and we would like to map it to a homoclinic point t ∈ Eu ⊂ Td.
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The lift of t, that is, s := π−1(t) ⊂ Eu, represents distance β−1 from the origin along

Eu ⊂ Rd.

So, let us choose a homoclinic point t ∈ W u ∩W s and lift it to the universal

cover Rd, and define:

φt(δ1) := π ◦ f(δ1) = π(s) = t, (C.7)

and s is the lift of t into Eu.

Let us denote by δk the sequence of symbols having only one non-zero symbol 1

in the term of order k. Using the semi-conjugacy relation: φt ◦ σ = C ◦ φt, we obtain:

φt(δk) = φt(σ
−k+1(δ1)) = C

−k+1
(φt(δ1)) = C

−k+1
(t). (C.8)

This can also be expressed in terms of the universal cover:

f(δk) = f(σ−k+1(δ1)) = C−k+1(f(δ1)) = C−k+1(s). (C.9)

We stress that as we define φt(δk), we define how we map distances from R+
0

into Eu and W u. In particularly, we are defining where are numbers 1
βk mapped to

along Eu and W u.

Any sequence ε ∈ Xβ which is finite to the left represents a number x ∈ R+
0 :

x =

∞∑

k=−N

εk
βk
. (C.10)

We want to carry the arithmetic relations in R+
0 to Eu and W u, therefore, for sequences

which are finite to the left, we shall define:

f(. . . 00ε−N ε−N+1 . . . ε−1ε0.ε1ε2 . . .) :=

∞∑

k=−N

εkC
−k+1(s) =

(
∞∑

k=−N

εk
βk−1

)
s,

(C.11)

which corresponds to:

φt(. . . 00ε−N ε−N+1 . . . ε−1ε0.ε1ε2 . . .) :=
∞∑

k=−N

εkC
−k+1

(t). (C.12)
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If we want to extend the definition of φt to all sequences in Xβ, we need to extend the

definition to sequences which aren’t finite to the left. f will not be well defined for such

sequences, because
∞∑

k=−∞

εkC
−k+1(s) =

(
∞∑

k=−∞

εk
βk−1

)
s (C.13)

may be a sum which diverges to infinity. However, is t is a homoclinic point, the

following is well defined:

φt(ε) := lim
N // ∞

π

(
∞∑

k=−N

εkC
−k+1(s)

)
=

∞∑

k=−∞

εkC
−k+1

(t). (C.14)

We need β to be Pisot , because if it was Salem , then we wouldn’t be able to

find non-trivial homoclinic points t. In the Salem case points x ∈ Td can be decomposed

into the sum of three components: in the stable, unstable and centre manifolds of the

origin. Since the component in the centre manifold doesn’t vanish, we do not have

non-trivial homoclinic points as in the Pisot case.

Finally, in the Pisot case, we should remember that W u is dense in Td, therefore

the semi-conjugacy φt is surjective. If t is chosen wisely (fundamental homoclinic point),

then the semi-conjugacy is bijective almost everywhere (if fails to be bijective in a set of

measure zero, where we have ambiguity in representing the same point by two different

sequences).
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