
What is projective space? It's similar to, but

easier to work with than, the more familiar
real euclidean space, beacuse any two lines|

not just non-parallel ones|meet in one point.

Enjoy this tour of projective space; and a

round of applause for all the pretty pictures!

Boy's will be Boy's by Brian Sanderson

Imagine walking in a straight line o� to in�nity in the plane. Add a point at each end of

the line and make these two points one. The line has become a circle. The universe could
be like this: shine a light out to in�nity and it could eventually return to hit you on the

back of the head. This kind of space is called projective space (and can be rather hard to

visualise!).

What about these added points at in�nity? How many are there, and how do they
�t together? Each straight line has been completed (to make a circle) by adding a single
point. Surprisingly, more than one line can share the same added point. To get a handle on
this let us `bring in�nity closer' so we can examine it better. To do this we will construct
a continuous bijection (a homeomorphism) from the plane to the interior of the unit disc.
This map, which we call f , can be de�ned in geometrical terms as follows. Stand a `bowl',
a hemisphere of unit radius, on the plane at the origin, as shown here:

.........
....................

..........................................
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................
..............
.....

..........
...........
...........
..........
...........
...........
...........
...........
..........
...........
..........
...........
...........

...........
...........
....

...
...
..

................................................................................................................................. .......
........
.......
........
.......
........
........
.......
........
.......
........
.......
........
........
.......
........
.......
.

.................................
.........................................................................................................

...................
................
.............
............
...........
...........
.........
........
........
.......
......
.......
......
.......
.......
......
.............................................................................................

(0; 0; 1)

(f1(x; y); f2(x; y); 0)(x; y; 0)

Suppose we have a point (x; y; 0) in the xy-plane and we want to know where it is mapped
to under f . From (x; y; 0) draw a straight line to (0; 0; 1), and from the point of inter-

section of this line with the bowl drop straight down to the plane to get the point, say,

(f1(x; y); f2(x; y); 0). Now if we de�ne f(x; y) = (f1(x; y); f2(x; y)), we �nd that

f(x; y) =
� xp

x2 + y2 + 1
;

yp
x2 + y2 + 1

�

is a continuous bijection from the xy-plane to the horizontal unit disc about the origin

(the `shadow' of the hemisphere), as wanted.
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The Disc Model

We have now modelled the plane on the interior of a unit disc. Where should we put the

points at in�nity? The answer is obvious|put them on the unit circle, i.e., the boundary

of the unit disc. But watch out: there is a trap here. Remember that points at the ends

of the same line should be identi�ed, so by considering lines through the origin in the

plane we see that opposite points on the boundary of the disc are really the same point in
projective space and should be identi�ed. Suppose we take a loop of thread to represent

the points on the edge of the disc. Then we can bring opposite points in contact with each

other by joining two points of the thread to make a �gure eight, and then putting the two

loops together. The result is still a circle, the circle at in�nity. Our construction is now
complete: each original line has become a circle, and with the added circle at in�nity we

have made the projective plane.

To make a model of the projective plane we need to take a disc, made of rubber, say,

and somehow join together opposite points on the edge of the disc. It is a fact that this

cannot be done (in three dimensions) without self intersections; the disc must pass through
itself somewhere. Here are six stages taken from an animation of a disc getting its edge

together to make a projective plane:

Notice that in the resulting model each little bit of the disc looks like a smoothly
bent piece of surface; there are no kinks in the result. This is known as an immersion. We

have produced a particular immersion known as Boy's surface. It's not clear quite what's
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happening in the last three pictures, so take a look at a corresponding band round the

edge of the disc:

Now let's look more closely at those points at in�nity. According to our construction,
there is a bijection between the unit circle with opposite points identi�ed (that's the edge

of the disc) and straight lines through the origin. This raises the question: where are the

points at in�nity which sit on the end of straight lines which do not pass through the
origin? Take a minute or two to think about this. Which of these points do we get to if we
set out from some point away from the origin?

The answer is that parallel lines have the same end point at in�nity. Check this by
using the formula for f above. Alternatively, think about the bowl on the table: take two
di�erent parallel lines in the (x; y) plane, and for each line �nd the plane containing it and
the point (0; 0; 1). These planes intersect in a horizontal line which meets opposite points
on the boundary of the bowl. When these are projected down onto the disc, the two lines
are mapped to curves which end at the same points on the boundary of the disc.

The image of the three lines parallel to the x-axis and through (0; 0), (0;�1), and
(0; 1) are shown below.

The M�obius Band Model

The disc model described above is �ne, but there are other ways to look at the same
immersion of the projective plane. Consider cutting out the central disc of radius a half

from the unit disc. What is left? The answer is a band with two edges. Now we want to
identify (glue together) all pairs of opposite points on the outer edge. If you try this with
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a strip of paper, you'll get the famous one-sided M�obius band. This is literally child's play.

(Notice that if you start with a band of paper then scissors as well as glue will be needed.)
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Now consider that half disc we discarded. We could equally well have discarded a very
small disc and still have a M�obius band left over. In fact by shrinking the small disc to a

single point we see that a projective plane can be described by: take a M�obius band and

squeeze its edge to a single point! Here is a sequence of pictures, taken from an animation,

showing a M�obius band doing just that.

The two sequences of pictures we've seen so far are in fact complementary. The pro-

jective plane, as we have seen, can be made by taking a disc and a M�obius band and sewing
their edges together. As we increase the size of the disc, the complementary M�obius band

shrinks away to its central circle which is also then the edge of the disc. The �rst sequence
shows just the disc growing; the second sequence shows the M�obius band growing during

the reverse process as the disc (not shown) shrinks to its centre point. The viewpoint for
the two sequences is di�erent. If we think of looking at the last sequence as `looking from

above', the other sequence is `looking from below'.
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Consider the bottom left pictures in each case. These are views

of the Boy's surface model of the projective plane. This has a
pretty 3-fold symmetry and would make a nice three-legged

stool with rather fat legs. Let's look at it from the side:

suppose we grow a disc up

a leg, rather than from
the centre of the

seat as before:

From above Looking in

Slicing the models

Another way to understand the model is to stand it on its three legs and take horizontal
slices:

These ways of thinking of the projective plane hide its symmetry and homogeneity.
For instance, the circle at in�nity stands out from all the other circles. To avoid confusion

(to create confusion?) the straight lines together with their added points and the circle at
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in�nity are all called just lines in projective geometry. Notice that we can now say \any

two distinct lines meet in exactly one point". In some ways this makes projective geometry
easier than euclidean geometry, where a pair of lines may or may not meet, thus increasing

the work in proofs involving lines. So can we �nd a model of the projective plane which

treats all lines equally? Yes we can.

The Sphere Model

Go back to the bowl sitting on the plane. The bowl can be identi�ed with the disc directly

below it and so we can regard the projective plane as the bowl with opposite points on the

rim identi�ed. This is not yet a homogeneous view, but consider putting another upside
down bowl on top of the �rst one thus making a sphere. Now if we identify a point in the

top bowl with the opposite point in the bottom bowl (draw a line through (0; 0; 1)) we still

have one point for each point in the projective plane. So the projective plane can now be

described as: `take a sphere and make opposite points equal'. The lines are now just the

great circles on the sphere (with opposite points made equal) and no line is preferred over
any other.

Projective Geometry

Projective geometry is the study of properties of projective space which remain invariant
under projective transformations (which are described below). For example, lines will map
to lines. An example of a projective transformation can be seen in a photograph or in a
picture, provided the laws of perspective (projective geometry) have not been violated!
Angles and distances are not preserved; in fact, almost any convex quadrilateral could be
a valid picture of a unit square. A projective transformation in general can be described
as follows.

Consider our sphere model as the unit sphere in 3-space with centre the origin, and
apply a linear isomorphism (given by a matrix). The result is in general a squashed sphere
in 3-space. Compose with the projection to the unit 2-sphere. This induces a projective

transformation. Below is a picture of the result of such a transformation on the 2-sphere.

0
@
1 1 0
0 1 1

1 0 1

1
A

6



Instructions for making a paper model of Boy's surface

Cut out and glue three copies of the following pair of surfaces. First glue the pairs as shown

by the labels; then put the three pieces together by identifying the 0 labels.
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Fold

Reverse fold

Cut

Most folds are
through �

2

made towards you.

a b c

0

a b

c
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Get the animation maple programs from my web page,
http://www.maths.warwick.ac.uk/~bjs.

On CSV machines �nd information in the �le /home/holly/ma/aac/manifold-readme.
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