Explicit Arithmetic of Modular Curves Lecture IV: Equations for Modular Curves

Samir Siksek (Warwick/IHÉS/IHP)

20 June 2019

Canonical Map

K field

X curve of genus $g \ge 2$

 $\Omega(X)$ space of regular differentials on X/Kthis is a K-vector space of dimension g.

Let $\omega_1, \ldots, \omega_g$ be a *K*-basis for $\Omega(X)$.

The canonical map is the map

$$\phi: X \to \mathbb{P}^{g-1}, \qquad P \mapsto (\omega_1(P): \cdots : \omega_g(P)).$$

What does this mean? Let $f \in K(X) \setminus K$. Then every differential ω can be written as $\omega = hdf$ where $h \in K(X)$. So I can write $\omega_i = h_i df$, and then

$$\phi(P)=(h_1(P):\cdots:h_g(P)).$$

Canonical Map for Hyperelliptic Curves

Consider a genus 2 curve

$$X: y^2 = a_6x^6 + \cdots + a_0, \qquad a_i \in K, \qquad \Delta(f) \neq 0.$$

A basis for $\Omega(X)$ is

$$\omega_1 = \frac{dx}{y}, \qquad \omega_2 = \frac{xdx}{y}.$$

Note that $\omega_2/\omega_1=x$. Thus

$$\phi: X \to \mathbb{P}^1, \qquad P \mapsto (1: x(P)).$$

Thus $\phi(X) = \mathbb{P}^1$.

$$\therefore$$
 ϕ is **not** an isomorphism but is 2 to 1.

Canonical Map for Genus 3 Hyperelliptic

$$X : y^2 = a_8 x^8 + \cdots + a_0, \quad a_i \in K, \quad \Delta(f) \neq 0.$$

A basis for $\Omega(X)$ is

$$\omega_1 = \frac{dx}{y}, \qquad \omega_2 = \frac{xdx}{y}, \qquad \omega_3 = \frac{x^2dx}{y}.$$

$$\phi: X \to \mathbb{P}^2, \qquad \phi(x,y) = (1:x:x^2).$$

If we choose coordinates $(u_1:u_2:u_3)$ for \mathbb{P}^2 then the image is the conic

$$\phi(X) = C : u_1u_3 = u_2^2 \subset \mathbb{P}^2.$$

$$\therefore$$
 $\phi: X \to \phi(X)$ is **not** an isomorphism but it is 2 to 1.

General Hyperelliptic

A hyperelliptic curve of genus g can be written as

$$X \ : \ y^2 = a_{2g+2}x^{2g+2} + \cdots + a_0, \qquad a_i \in K, \qquad \Delta(f) \neq 0.$$

A basis for $\Omega(X)$ is

$$\frac{dx}{y}, \frac{xdx}{y}, \ldots, \frac{x^{g-1}dx}{y}.$$

Check that $\phi: X \to \phi(X) \cong \mathbb{P}^1$ is 2 to 1.

Theorem

Let X be a curve of genus ≥ 2 .

- If X is hyperelliptic then $\phi(X) \cong \mathbb{P}^1$ and the canonical map $\phi: X \to \phi(X)$ is 2 to 1.
- If X is non-hyperelliptic then $\phi: X \to \mathbb{P}^{g-1}$ is an embedding (so X is isomorphic to $\phi(X)$). Moreover $\phi(X)$ is a curve of degree 2g-2.

We focus on modular curves where the genus is ≥ 2 .

Recall the isomorphism

$$S_2(\Gamma_H) \cong \Omega(X_H), \qquad f(q) \mapsto f(q) rac{dq}{q}.$$

Let f_1, \ldots, f_g be a basis for $S_2(\Gamma_H)$.

$$\phi: X_H o \mathbb{P}^{g-1} \ \phi = (f_1(q) \frac{dq}{q} : \cdots : f_g(q) \frac{dq}{q}) = (f_1(q) : \cdots : f_g(q)).$$

Example $X_0(30)$

A basis for $S_2(\Gamma_0(30))$ is

$$\begin{split} f_1 &= q - q^4 - q^6 - 2q^7 + q^9 + O(q^{10}), \\ f_2 &= q^2 - q^4 - q^6 - q^8 + O(q^{10}), \\ f_3 &= q^3 + q^4 - q^5 - q^6 - 2q^7 - 2q^8 + O(q^{10}). \end{split}$$

 $\therefore X = X_0(30)$ has genus 3.

By theorem,

- either X is hyperelliptic;
- or $X\cong \phi(X)$ is a curve in $\mathbb{P}^{g-1}=\mathbb{P}^2$ which has degree 2g-2=4; i.e. $\phi(X)$ is a plane quartic curve.

Which is it?

If X is hyperelliptic then $\phi(X)$ is a conic.

(Note in this case that $f_1(q)dq/q, \ldots, f_3(q)dq/q$ and $dx/y, xdx/y, x^2dx/y$ don't have to be the same basis for $\Omega(X)$. The two bases are related by a linear transformation. So $\phi(X)$ might be a different conic than before.)

$$\phi(X)=$$
 conic iff $\exists a_1,\ldots,a_6$ (not all zero) such that
$$a_1f_1^2+a_2f_2^2+a_3f_3^2+a_4f_1f_2+a_5f_1f_3+a_6f_2f_3=0.$$

$$f_1^2 = q^2 - 2q^5 - 2q^7 - 3q^8 + 4q^{10} + O(q^{11})$$

$$f_2^2 = q^4 - 2q^6 - q^8 + O(q^{12})$$

$$f_3^2 = q^6 + 2q^7 - q^8 - 4q^9 - 5q^{10} - 6q^{11} + q^{12} + O(q^{13})$$

$$f_1f_2 = q^3 - q^5 - q^6 - q^7 - 3q^9 + 2q^{10} + O(q^{11})$$

$$f_1f_3 = q^4 + q^5 - q^6 - 2q^7 - 3q^8 - 2q^9 - 2q^{10} + O(q^{11})$$

$$f_2f_3 = q^5 + q^6 - 2q^7 - 2q^8 - 2q^9 - 2q^{10} + 2q^{11} + O(q^{12}).$$

 $\phi(X) = \text{conic iff } \exists a_1, \dots, a_6 \text{ (not all zero) such that}$

$$a_1f_1^2 + a_2f_2^2 + a_3f_3^2 + a_4f_1f_2 + a_5f_1f_3 + a_6f_2f_3 = 0.$$

$$f_1^2 = q^2 - 2q^5 - 2q^7 - 3q^8 + 4q^{10} + O(q^{11})$$

$$f_2^2 = q^4 - 2q^6 - q^8 + O(q^{12})$$

$$f_3^2 = q^6 + 2q^7 - q^8 - 4q^9 - 5q^{10} - 6q^{11} + q^{12} + O(q^{13})$$

$$f_1f_2 = q^3 - q^5 - q^6 - q^7 - 3q^9 + 2q^{10} + O(q^{11})$$

$$f_1f_3 = q^4 + q^5 - q^6 - 2q^7 - 3q^8 - 2q^9 - 2q^{10} + O(q^{11})$$

$$f_2f_3 = q^5 + q^6 - 2q^7 - 2q^8 - 2q^9 - 2q^{10} + 2q^{11} + O(q^{12}).$$

- Coefficient of $q^2 \implies a_1 = 0$.
- Coefficient of $q^3 \implies a_4 = 0$.
- Coefficient of q^4 , q^5 , q^6 give

$$a_2 + a_5 = 0,$$
 $a_5 + a_6 = 0,$ $-2a_2 + a_3 - a_5 + a_6 = 0$

There is only one solution (up to scaling) which is

$$a_2 = 1$$
, $a_3 = 0$, $a_5 = -1$, $a_6 = 1$.

$$f_2^2 - f_1 f_3 + f_2 f_3 = 0 + O(q^7).$$

In fact we can check that

$$f_2^2 - f_1 f_3 + f_2 f_3 = 0 + O(q^{100}).$$

Question. Do we know that $f_2^2 - f_1 f_3 + f_2 f_3 = 0$ exactly? **If so** then the image is the conic

$$u_2^2 - u_1 u_3 + u_2 u_3 = 0 \qquad \subset \mathbb{P}^2,$$

and X is hyperelliptic.

In fact we can check that

$$f_2^2 - f_1 f_3 + f_2 f_3 = 0 + O(q^{100})$$

•

Question. Do we know that $f_2^2 - f_1 f_3 + f_2 f_3 = 0$ exactly? **If so** then the image is the conic

$$u_2^2 - u_1 u_3 + u_2 u_3 = 0 \qquad \subset \mathbb{P}^2,$$

and X is hyperelliptic.

Theorem (Sturm)

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$ of index m. Let $f \in S_k(\Gamma)$ and suppose $\operatorname{ord}_q(f) > km/12$. Then f = 0.

Theorem (Sturm)

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$ of index m. Let $f \in S_k(\Gamma)$ and suppose $ord_q(f) > km/12$. Then f = 0.

Let $f = f_2^2 - f_1 f_3 + f_2 f_3$.

$$f_1$$
, f_2 , f_3 are cusp forms for $\Gamma_0(30)$ of weight 2.

 \therefore f is a cusp form for $\Gamma_0(30)$ of weight k=4.

$$[\mathsf{SL}_2(\mathbb{Z}): \mathsf{\Gamma}_0(\mathsf{N})] = \mathsf{N} \prod_{\mathsf{p} \mid \mathsf{N}} (1+1/\mathsf{p}).$$

$$N = 30 \implies m = 30(1+1/2)(1+1/3)(1+1/5) = 72 \implies \frac{km}{12} = 36.$$

Since $\operatorname{ord}_q(f) \geq 100$ we know from Sturm that f = 0.

$$\therefore X_0(30)$$
 is hyperelliptic.

$$X_0(45)$$

Repeat $X_0(45)$. A basis for $S_2(\Gamma_0(45))$ is

$$g_1 = q - q^4 + O(q^{10}),$$

 $g_2 = q^2 - q^5 - 3q^8 + O(q^{10}),$
 $g_3 = q^3 - q^6 - q^9 + O(q^{10}).$

 $X_0(45)$ has genus 3. **Is it hyperelliptic?** i.e. **Is the canonical image** a **conic**? Again we look for a_1, \ldots, a_6 such that

$$a_1g_1^2 + a_2g_2^2 + a_3g_3^2 + a_4g_1g_2 + a_5g_1g_3 + a_6g_2g_3 = 0.$$

By solving the resulting system of linear equations from the coefficients of q^2, \ldots, q^{10} we find that all the $a_i = 0$.

- ∴ image is not a conic.
- : image is a plane quartic.

Write down an equation for this plane quartic!

- Look at all 10 monomials of degree 4 in g_1 , g_2 , g_3 .
- Want a linear combination which is 0.
- By solving the system resulting from the coefficients of q^j up to q^{20} we find a unique solution (up to scaling).

This unique solution gives us our degree 4 model:

$$X_0(45) : x_0^3 x_2 - x_0^2 x_1^2 + x_0 x_1 x_2^2 - x_1^3 x_2 - 5 x_2^4 \subset \mathbb{P}^2.$$

Did we need to check up to the Sturm bound? Not this time!

- Already proved that $X_0(45)$ is not hyperelliptic.
- So we know that the canonical image is a quartic.
- We solved for this quartic and found only one solution.
- So that must be the correct quartic.

Return to $X_0(30)$

Know this is hyperelliptic and so has a model

$$y^2 = h(x), \qquad h = a_8 x^8 + \dots + a_0.$$

The model is **not** unique. If (u, v) is any point on this model, we then we can change the model to move this point to infinity:

$$x' = \frac{1}{x - u}, \qquad y' = \frac{y}{(x - u)^4}.$$

The new model has the form

$${y'}^2 = v^2 {x'}^8 + \cdots$$

If v = 0 (i.e. the original point was a Weierstrass point) then we would end up with $y'^2 = \text{degree } 7$ but otherwise it is $y'^2 = \text{degree } 8$.

Now the infinity cusp c_{∞} is a point on $X_0(30)$. Let's move c_{∞} to infinity on the hyperelliptic model. Question: Do we obtain a degree 7 model or a degree 8 model?

Exercise.

(i) Let

$$X : y^2 = a_{2g+2}x^{2g+2} + \cdots + a_0$$

be a curve of genus g where $a_{2g+2} \neq 0$. Let ∞_+ be one of the two points at infinity. Show that

$$\operatorname{ord}_{\infty_+}\left(\frac{dx}{y}\right) = g - 1, \quad \operatorname{ord}_{\infty_+}\left(\frac{xdx}{y}\right) = g - 2, \dots,$$

(ii) Let

$$X : y^2 = a_{2g+1}x^{2g+1} + \dots + a_0$$

be a curve of genus g (here necessarily $a_{2g+1}\neq 0$ otherwise the genus would be smaller than g). Let ∞ be the unique point at infinity. Show that

$$\operatorname{ord}_{\infty}\left(\frac{dx}{y}\right) = 2(g-1), \quad \operatorname{ord}_{\infty}\left(\frac{xdx}{y}\right) = 2(g-2), \dots,$$

Recall that basis for $S_2(\Gamma_0(30))$ is

$$egin{aligned} f_1 &= q - q^4 - q^6 - 2q^7 + q^9 + O(q^{10}), \ f_2 &= q^2 - q^4 - q^6 - q^8 + O(q^{10}), \ f_3 &= q^3 + q^4 - q^5 - q^6 - 2q^7 - 2q^8 + O(q^{10}). \end{aligned}$$

$$\operatorname{ord}_{c_{\infty}}\left(f_{1}(q)\frac{dq}{q}\right)=0,\quad \operatorname{ord}_{c_{\infty}}\left(f_{2}(q)\frac{dq}{q}\right)=1,\quad \operatorname{ord}_{c_{\infty}}\left(f_{3}(q)\frac{dq}{q}\right)=2.$$

$$\therefore \operatorname{ord}_{c_{\infty}}(\omega) \leq 2, \qquad \forall \omega \in \Omega(X) \setminus \{0\}.$$

But if $c_{\infty}=\infty$ on $y^2=$ degree 7 model, then there is some ω with $\mathrm{ord}_{c_{\infty}}(\omega)=$ 4.

$$\therefore$$
 When we move c_{∞} to ∞ we get a $y^2 =$ degree 8 model.

 $X: y^2 = a_8 x^8 + a_7 x^7 + \dots + a_0, \qquad a_8 \neq 0, \qquad c_\infty = \infty_+.$

$$\operatorname{ord}_{c_{\infty}}\left(f_{1}(q)\frac{dq}{q}\right)=0,\quad \operatorname{ord}_{c_{\infty}}\left(f_{2}(q)\frac{dq}{q}\right)=1,\quad \operatorname{ord}_{c_{\infty}}\left(f_{3}(q)\frac{dq}{q}\right)=2.$$

$$\operatorname{ord}_{\infty_+}\left(\frac{dx}{y}\right)=2, \qquad \operatorname{ord}_{\infty_+}\left(x\frac{dx}{y}\right)=1, \qquad \operatorname{ord}_{\infty_+}\left(x^2\frac{dx}{y}\right)=0.$$

From the valutions

$$egin{aligned} rac{dx}{y} &= lpha_3 \cdot f_3(q) rac{dq}{q}, \ rac{xdx}{y} &= eta_2 rac{f_2(q)dq}{q} + eta_3 rac{f_3(q)dq}{q}, \ rac{x^2dx}{y} &= \gamma_1 rac{f_1(q)dq}{q} + \gamma_2 rac{f_2(q)dq}{q} + \gamma_3 rac{f_3(q)dq}{q}, \end{aligned}$$

where α_3 , β_2 and $\gamma_1 \neq 0$.

 $X: y^2 = a_8 x^8 + a_7 x^7 + \dots + a_0, \qquad a_8 \neq 0, \qquad c_{\infty} = \infty_+.$

$$\begin{aligned} \frac{dx}{y} &= \alpha_3 \cdot f_3(q) \frac{dq}{q}, \\ \frac{xdx}{y} &= \beta_2 \frac{f_2(q)dq}{q} + \beta_3 \frac{f_3(q)dq}{q}, \\ \frac{x^2dx}{y} &= \gamma_1 \frac{f_1(q)dq}{q} + \gamma_2 \frac{f_2(q)dq}{q} + \gamma_3 \frac{f_3(q)dq}{q}, \end{aligned}$$

The change of hyperelliptic model

$$x\mapsto rx, \qquad y\mapsto sy$$

preserve points at infinity but has the effect

$$\frac{dx}{v} \mapsto (r/s)\frac{dx}{v}, \qquad \frac{xdx}{v} \mapsto (r^2/s)\frac{xdx}{v}, \qquad \dots$$

Thus we can make $\alpha_3 = 1$ and $\beta_2 = 1$.

$$X : y^2 = a_8 x^8 + a_7 x^7 + \dots + a_0, \qquad a_8 \neq 0, \qquad c_\infty = \infty_+.$$

$$\begin{split} \frac{dx}{y} &= f_3(q)\frac{dq}{q},\\ \frac{xdx}{y} &= \frac{f_2(q)dq}{q} + \beta_3\frac{f_3(q)dq}{q},\\ \frac{x^2dx}{y} &= \gamma_1\frac{f_1(q)dq}{q} + \gamma_2\frac{f_2(q)dq}{q} + \gamma_3\frac{f_3(q)dq}{q}, \end{split}$$
 The change of model

$$x \mapsto x + t, \qquad y \mapsto y.$$

preserves the points at infinity and has the effect

$$\frac{dx}{y} \mapsto \frac{dx}{y}, \qquad \frac{xdx}{y} \mapsto \frac{xdx}{y} + t\frac{dx}{y}.$$

So we can suppose $\beta_3=0$. i.e. $\frac{dx}{v}=f_3(q)\frac{dq}{q}, \qquad \frac{xdx}{v}=f_2(q)\frac{dq}{q}.$

 $X: y^2 = a_8 x^8 + a_7 x^7 + \dots + a_0, \qquad a_8 \neq 0, \qquad c_\infty = \infty_+.$

$$\frac{dx}{y} = f_3(q)\frac{dq}{q}, \qquad \frac{xdx}{y} = f_2(q)\frac{dq}{q}.$$

$$x = f_2(q)/f_3(q) = \frac{1}{q} - 1 + q - q^2 + 2q^3 - 2q^4 + 2q^5 - 3q^6 + 5q^7 - 5q^8 + 5q^9 + \cdots$$

$$y = \frac{dx}{dq} \cdot \frac{q}{f_3(q)} = -\frac{1}{q^4} + \frac{1}{q^3} - \frac{1}{q^2} - \frac{1}{q} + 5 - 15q + 29q^2 - 60q^3 + 118q^4 - 210q^5 + 346q^6 - 573q^7 + 929q^8 - 1454q^9 + \cdots$$

By comparing the coefficients of q^{-8} on both sides we see that $a_8 = 1$.

$$X : y^2 = x^8 + a_7 x^7 + \dots + a_0,$$

$$c_{\infty}=\infty_{+}$$
.

$$x = \frac{1}{q} - 1 + q - q^2 + 2q^3 - 2q^4 + 2q^5 - 3q^6 + 5q^7 - 5q^8 + 5q^9 + \cdots$$

$$y^2 - x^8 = \frac{6}{q^7} - \frac{33}{q^6} + \cdots$$

so $a_7 = 6$. Also

$$y^2 - x^8 - 6x^7 = \frac{9}{q^6} - \frac{48}{q^5} + \cdots$$

so $a_6 = 9$. Continuing in this fashion we arrive at

$$y^2 - x^8 - 6x^7 - 9x^6 - 6x^5 + 4x^4 + 6x^3 - 9x^2 + 6x - 1 = O(q^{100}).$$

Therefore, a model for $X_0(30)$ is

$$X_0(30): y^2 = x^8 + 6x^7 + 9x^6 + 6x^5 - 4x^4 - 6x^3 + 9x^2 - 6x + 1.$$