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CHAPTER 2

Galois Properties of Torsion of Elliptic Curves

The key goal of the subject is to understand the Galois properties of torsion
subgroups of elliptic curves, or put slightly differently, the possible images of Ga-
lois representations of elliptic curves. We shall introduce Galois representations of
elliptic curves from scratch. We assume familiarity with elliptic curves, roughly to
the level of Silverman’s book [22]. Much of the material in this chapter can in fact
be found in Silverman’s book, but we rewrite it in fashion that emphasizes Galois
representations.

1. Definition and First Examples

Notation:
K a perfect field
GK = Gal(K/K) the absolute Galois group of K
N a positive integer, if char(K) > 0 then want char(K) - N .
E an elliptic curve defined over K.

Recall

(1) E[N ] ∼= Z/NZ⊕ Z/NZ

and so E[N ] has rank 2 as a Z/NZ-module 1. However, E[N ] ⊂ E(K) and is stable
under the action of GK . We therefore obtain a representation

ρE,N : GK → Aut(E[N ])

where Aut(E[N ]) is the automorphism group of E[N ]. This is known as the mod
N Galois representation attached to E. An automorphism of E[N ] is the same
as an Z/NZ-linear isomorphism E[N ]→ E[N ]. Choosing an basis for E[N ] we can
identify ρE,N as a representation

ρE,p : GK → GL2(Z/NZ).

Since GL2(Z/NZ) is finite, we know that the kernel ker(ρ) is normal of finite
index. Moreover,

σ ∈ ker(ρ) ⇐⇒ Pσ = P for all P ∈ E[N ].

Thus

ker(ρ) = GK(E[N ]).

1If K ⊆ C then we may see this as follows. Recall that there is some τ ∈ H (the upper

half-plane) and a complex analytic isomorphism

E(C) ∼=
C

Z + τZ
.

Thus E(C) ∼= R/Z× R/Z from which (1) follows.
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6 2. GALOIS PROPERTIES OF TORSION OF ELLIPTIC CURVES

Hence
ρ(GK) ∼= GK/GK(E[N ])

∼= Gal(K(E[N ])/K).

2. An Example: ρE,2

In simple examples we can sometimes guess what the image ρ(GK) has to be.
The simplest case is when N = 2. Here we are supposing char(K) 6= 2. We can
write

E : Y 2 = f(X), f(X) = X3 + aX2 + bX + c ∈ K[X], ∆(f) 6= 0.

Recall that the points of order 2 are (θi, 0) where θ1, θ2, θ3 are the roots of f . Write
Pi = (θi, 0). Then P1, P2 is a basis for E[2] = {0, P1, P2, P3} and P3 = P1 + P2.
Observe that

K(E[2]) = K(θ1, θ2, θ3), Gal(K(E[2])/K) = Gal(f).

• If θ1, θ2, θ3 ∈ K, then ρ = 1 (the trivial homomorphism).
• Suppose θ1 ∈ K, θ2 /∈ K and so θ3 /∈ K. We can write f(X) = (X −
θ1)(X2+uX+v) where u, v ∈ K, and d = u2−4v ∈ K∗ \(K∗)2. Thus θ2,
θ3 are the two roots of the irreducible quadratic factor X2 + uX + v, and
K(E[2]) = K(θ2) = K(θ3) = K(

√
d). We shall write ρE,2 with respect to

the basis P1, P2. Let σ ∈ GK . If σ(
√
d) =

√
d then

σ(P1) = P1, σ(P2) = P2, ρ(σ) =

(
1 0
0 1

)
∈ GL2(F2)

If σ(
√
d) = −

√
d then σ swaps θ2, θ3, so

σ(P1) = P1, σ(P2) = P3 = P1 + P2, ρ(σ) =

(
1 1
0 1

)
∈ GL2(F2).

Note that

ρ(GK) =

{(
1 0
0 1

)
,

(
1 1
0 1

)}
∼= Z/2Z ∼= Gal(K(

√
d)/K) = Gal(K(E[2])/K).

• Suppose f is irreducible, but ∆(f) ∈ (K∗)2. Then Gal(f) ∼= A3. Let
σ ∈ GK . Then σ acts on (θ1, θ2, θ3) via one of the three permutations id,
(1, 2, 3), (1, 3, 2) ∈ A3.

(θ1, θ2, θ3)σ = (θ1, θ2, θ3) =⇒ Pσ1 = P1, Pσ2 = P1 =⇒ ρ(σ) =

(
1 0
0 1

)
(θ1, θ2, θ3)σ = (θ2, θ3, θ1) =⇒ Pσ1 = P2, Pσ2 = P3 = P1 + P2 =⇒ ρ(σ) =

(
0 1
1 1

)
(θ1, θ2, θ3)σ = (θ3, θ1, θ2) =⇒ Pσ1 = P3 = P1 + 2, Pσ2 = P1 =⇒ ρ(σ) =

(
1 1
1 0

)
.

Thus

ρ(GK) =

{(
1 0
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)}
∼= Z/3Z ∼= Gal(K(E[2])/K).

• Suppose f is irreducible and ∆(f) /∈ K∗2. Thus Gal(K(E[2]/K) =
Gal(f) = S3. Thus ρ(GK) is a subgroup of GL2(F2) that is isomorphic to
S3. But #S3 = # GL2(F2) = 6. Hence ρ is surjective and we also arrive
at the conclusion that S3

∼= GL2(F2). It’s easy to write the matrix ρ(σ)
in terms of the action of σ on θ1, θ2, θ3.
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Important Remark. The image ρ(GK) ⊆ GL2(Z/NZ) depends on a choice of
basis for E[N ]. If we change basis then we conjugate ρ by the change of basis matrix,
which is an element of GL2(Z/NZ). So the image is really only well defined up to
conjugation.

3. The mod N-Cyclotomic Character

Let ζN be a primitive N -th root of 1. Define the mod N-cyclotomic char-
acter χN : GQ → (Z/NZ)∗ as follows. For σ ∈ GQ we see that ζσN is also a
primitive N -root of unity and so ζσN = ζaσN where aσ is an integer, coprime to N ,
and whose value is defined only modulo N , i.e. aσ ∈ (Z/NZ)∗. We let χN (σ) = aσ.
To summarise,

χN : GK → (Z/NZ)∗, ζσN = ζ
χN (σ)
N .

Theorem 1. Let K be a number field.

(i) If τ ∈ GK denotes any complex conjugation2, then χN (τ) = −1.
(ii) Let λ 6= N be finite place of K, and let Iλ ⊂ GK denote an inertia

subgroup at λ. Then χN (Iλ) = 1 (we say that χN is unramified at λ).
Moreover, if σλ ∈ GK denotes a Frobenius element at λ, then

χN (σλ) ≡ NormK/Q(λ) (mod N).

Proof. Part (i) is clear as complex conjugation takes ζN to ζ−1N .

We turn to (ii). Corresponding to Iλ is a prime µ | λ of K (changing µ
conjugates Iλ and so leaves the desired result unaffected). By definition of inertia,

ζσN ≡ ζN (mod µ)

for all σ ∈ Iλ. Recall that the difference of two distinct N -th roots of 1 divides N .

As λ 6= N we have µ - N . Thus ζσN = ζN . But ζσN = ζ
χN (σ)
N by definition of χN . It

follow that ζ
χN (σ)
N = ζN and χN (σ) = 1 for all σ ∈ Iλ.

Now let σλ be a Frobenius element corresponding to λ. Then

ζσλN ≡ ζ
NormK/Q(λ)

N (mod µ)

by definition of Frobenius. As above ζσλN = ζ
NormK/Q(λ)

N . Hence χN (σλ) ≡ NormK/Q(λ)
(mod N). �

Theorem 2. det ρE,N = χN .

Proof. Recall that the Weil pairing

eN : E[N ]× E[N ]→ µN = 〈ζN 〉
is bilinear, alternating3, non-degenerate and Galois invariant.

2Let us explain what complex conjugation is. Let K be a number field and let ι∞ : K ↪→ R
be a real embedding of K. Let ι : K ↪→ C be an embedding extending ι∞. Let c : C → C
denote complex conjugation. Then ι−1 ◦ c ◦ ι is an element of GK which we call a complex

conjugation. Of course if K is totally complex then it does not have any complex conjugations.

You can check that the conjugacy classes of complex conjugations inside GK are in bijection with
the real embeddings of K

3As a reminder, alternating means eN (S, S) = 1 for all S ∈ E[N ]. This implies that eN is
skew-symmetric: eN (T, S) = eN (S, T )−1. To see this note

1 = eN (S + T, S + T ) = eN (S, S)eN (S, T )eN (T, S)eN (T, T ) = eN (S, T )eN (T, S).
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As eN is non-degenerate, we may choose a basis S, T for E[N ] such that
eN (S, T ) = ζN . Let σ ∈ GK . Write

ρE,N (σ) =

(
a b
c d

)
.

Thus
Sσ = aS + cT, Tσ = bS + dT.

Then

ζ
χN (σ)
N = ζσN by definition of χN

= eN (S, T )σ by choice of S, T

= eN (Sσ, Tσ) by Galois invariance of eN

= eN (aS + cT, bS + dT )

= eN (S, S)aceN (S, T )adeN (T, S)bceN (T, T )cd by bilinearity of eN

= eN (S, T )ad−bc as eN is alternating

= ζad−bcN again by choice of S, T .

Hence χN (σ) = ad− bc = det ρE,N (σ) completing the proof. �

When K is a number field we say that a representation ρ : GK → GL2(Z/NZ)
is odd if for every complex conjugation τ ∈ GK we have det(ρ(τ)) = −1.

Corollary 3.1. Let E be an elliptic curve over a number field K. Then ρE,N
is odd.

Proof. This follows from Theorems 1 and 2. �

Of course if K is totally complex, then the corollary is vacuous.

4. Torsion and Isogenies

Theorem 3. The following are equivalent:

(a) E has a K-rational point of order N ;

(b) ρE,N ∼
(

1 ∗
0 χN

)
.

(c) ρE,N (GK) is conjugate inside GL2(Z/NZ) to a subgroup of

B1(N) :=

{(
1 b
0 d

)
: b ∈ Z/NZ, d ∈ (Z/NZ)∗

}
⊂ GL2(Z/NZ).

Proof. (a) =⇒ (b). Suppose E has a K-rational point P of order N . Let
Q ∈ E[N ] so that P , Q is a Z/NZ-basis for E[N ]. Then for all σ ∈ GK , we have

σ(P ) = P, σ(Q) = bσP + dσQ.

Hence

ρE,N (σ) =

(
1 bσ
0 dσ

)
for all σ ∈ GK . However, by Theorem 2,

dσ = det ρE,N (σ) = χN (σ)

Thus (b) holds.
(b) =⇒ (c). This is clear.
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(c) =⇒ (a). Suppose (c). Then we can choose a basis P , Q so that the image
ρE,N (GK) is contained in B1(N). Note that

Pσ = P, Qσ = bσP + dσQ

for all σ ∈ GK (where bσ, dσ ∈ Z/NZ). As P is fixed by GK it follows that
P ∈ E(K). Since P , Q is a basis, P must have exact order N , proving (a). �

Theorem 4. The following are equivalent:

(a) E has a cyclic K-rational N -isogeny;

(b) ρE,N ∼
(
φ ∗
0 ψ

)
, where φ, ψ : GK → (Z/NZ)∗ are characters satisfying

φψ = χN .
(c) ρE,N (GK) is conjugate inside GL2(Z/NZ) to a subgroup of

B0(N) :=

{(
a b
0 d

)
: b ∈ Z/NZ, a, d ∈ (Z/NZ)∗

}
⊂ GL2(Z/NZ).

Proof. (a) =⇒ (b). Suppose E has a cyclic K-rational N -isogeny θ : E → E.
The ker(θ) is cyclic of order N and thus ker(θ) = 〈P 〉 where P is an element of
E[N ] of order N . As θ is defined over K, the group 〈P 〉 is K-rational (i.e. it is
stable under the action of GK). Let Q ∈ E[N ] be such that P , Q is a basis. Then
for all σ ∈ GK , we have

Pσ = aσP, Qσ = bσP + dσQ.

Hence

ρE,N (σ) =

(
aσ bσ
0 dσ

)
for all σ ∈ GK . Let φ, ψ : GK → (Z/NZ)∗ be given by φ(σ) = aσ, ψ(σ) = dσ.
We leave to the reader the task of checking that φ, ψ must be characters, and
completing the remainder of the proof. �

5. Quadratic Twisting

Lemma 5.1. Let d ∈ K∗. Suppose char(K) 6= 2. Let E′ be the quadratic
twist of E by d. Let ψ : GK → {1,−1} be the quadratic character defined by√
d
σ

= ψ(σ) ·
√
d. Then ρE,N ∼ ψ · ρE′,N .

Proof. As char(K) 6= 2, the curves E, E′ have models

E : Y 2 = X3 + aX2 + bX + c, E′ : Y 2 = X3 + daX2 + d2bX + d3c.

The map

φ : E(K)→ E′(K), φ(x, y) =

(
x

d
,

y

d
√
d

)
is an isomorphism of abelian groups, and thus induces an isomorphism φ : E[N ]→
E′[N ]. Let P = (x, y) ∈ E[N ]. Note that ±P = (x,±y). Thus,

φ(P )σ =

(
xσ

d
,

yσ

d
√
d
σ

)
=

(
xσ

d
, ψ(σ) · y

σ

d
√
d

)
= ψ(σ)·

(
xσ

d
,
yσ

d
√
d

)
= ψ(σ)·φ(Pσ).

Now let P , Q be a basis for E[N ], and we take φ(P ), φ(Q) as a basis for E′[N ]. With
respect to these bases it is now an easy exercise to show that ρE,N = ψ · ρE′,N . �
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Theorem 5. Let H be a subgroup of GL2(Z/NZ). Suppose that ρE,N (GK) is
contained in H. Let E′ be a quadratic twist by some d ∈ K∗. If −I ∈ H, then
ρE′,N (GK) is contained in a conjugate of H.

Proof. This follows immediately from Lemma 5.1. �

Corollary 5.2. If E has a cyclic K-rational N isogeny, then so does any
quadratic twist.

For N ≥ 3, if E is an elliptic curve with a K-rational point of order N then
a non-trivial quadratic twist will not have a point of order N , but it will have an
N -isogeny.

Exercise 6. Suppose E has a K-rational 3-isogeny. Show that there is a
quadratic twist E′ that has a point of order 3.

6. Local Properties of mod N Representations of Elliptic Curves

Let K be a number field and λ be a prime of K. Let E be an elliptic curve
defined over K. We say that ρE,N is unramified at λ if ρE,N (Iλ) = 1, where
Iλ ⊆ GK denotes an inertia subgroup at λ.

Theorem 7. Suppose λ - N is a prime of good reduction for E. Then ρE,N is
unramified at λ.

Proof. The choice of inertia subgroup Iλ corresponds to a choice of prime µ
of K above λ. As E has good reduction at µ and µ - N , the reduction modulo µ
map

(2) E[N ]→ E(Fλ), Q 7→ Q̃ (mod µ)

is injective. Let σ ∈ Iλ. Then for all Q ∈ E[N ] we have that Q̃σ = Q̃ by definition
of inertia. By the injectivity of (2) we have Qσ = Q. Thus ρE,N (σ) = 1 which
completes the proof. �

7. The mod N representation of a Tate curve

Another very instructive computation is the mod N representation of a Tate
curve. The standard reference for Tate curves is Silverman’s advanced textbook [23,
Chapter V] In this section K is a field complete with respect to a non-archimedean
valuation |·| (e.g. K = Qp). Let q ∈ K∗ satisfy |q| < 1. Define

sk(q) :=
∑
n≥1

nkqn

1− qn
, a4(q) := −s3(q) , a5(q) := −5s3(q) + 7s5(q)

12
.

These converge in K. Define the Tate curve with parameter q by

Eq : Y 2 +XY = X3 + a4(q)X + a6(q).

This is an elliptic curve over K with discriminant

∆ = q
∏
n≥1

(1− qn)24 ,

and j-invariant

j =
1

q
+ 744 + 196884q2 + · · · .
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Example 8. If E/Qp has split multiplicative reduction, then E ∼= Eq for some
choice of q ∈ Qp (i.e. E is a Tate curve). If E/Qp has potentially multiplicative
reduction (i.e. |j(E)|p > 1) then E is the quadratic twist of some Tate curve Eq by
−c4(E)/c6(E) where c4, c6 has their usual meanings.

Theorem 9 (Tate). There is an analytic isomorphism

φ : Eq(K)→ K
∗
/qZ ,

which is compatible with the action of GK .

Corollary 7.1. Let E = Eq be a Tate curve as above. Then

ρE,N ∼
(
χN ∗
0 1

)
.

Proof. Note that φ induces an isomorphism

φ : E[N ]→
(
K
∗
/qZ
)

[N ]

that is compatible with the action of GK . A basis for the group on the right is ζN ,
q1/N . Let σ ∈ GK . Then

σ(ζN ) = ζ
χN (σ)
N , σ(q1/N ) = ζaσN q1/N

for some aσ. Let P = φ−1(ζN ), Q = φ−1(q1/N ). Then P , Q is a basis for E[N ]
and, as φ is compatible with the GK-action

Pσ = χN (σ) · P, Qσ = aσ · P +Q.

Hence, with respect to this basis,

ρE,N (σ) =

(
χN (σ) aσ

0 1

)
.

�

Example 10. Let E/Q have split multiplicative reduction at p. Let Gp ⊂ GQ
be the decomposition group at p; this is simply GQp . As E is a Tate curve when
considered over Qp, we see from the above that

ρE,N |Gp ∼
(
χN ∗
0 1

)
.

More generally, let E/Q have potentially multiplicative reduction at p. Let ψ :

Gp → {±1} be the character satisfying σ(
√
−c4/c6) = ψ(σ) ·

√
−c4/c6. Then

ρE,N |Gp ∼ ψ ·
(
χN ∗
0 1

)
.

8. Serre’s Uniformity Conjecture

Conjecture (Serre’s Uniformity Conjecture). Let E/Q be an elliptic curve
without CM. Let p > 37. Then ρE,p is surjective.

Recall that det ◦ρE,p = χp and that this is surjective on GQ. Thus the con-
jecture is equivalent to SL2(Fp) ⊂ ρE,p(GQ) for all p > 37. It is useful to know
Dickson’s classification of subgroups of GL2(Fp).

Theorem 11 (Dickson). Let H be a subgroup of GL2(Fp) not containing SL2(Fp).
Then (up to conjugation)
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(i) either H ⊆ B0(p) :=

{(
∗ ∗
0 ∗

)}
(Borel subgroup)

(ii) or H ⊆ N+
s (p) :=

{(
α 0
0 β

)
,

(
0 α
β 0

)
: α, β ∈ F∗p

}
(normalizer of

split Cartan)
(iii) or H ⊆ N+

ns(p) (normalizer of non-split Cartan)4

(iv) or the image of H in PGL2(Fp) is isomorphic to A4, S4 or A5 (these are
called the exceptional subgroups of GL2(Fp)).

Exercise 12. Suppose E/Qp has potentially multiplicative reduction at p.
Show for p ≥ 11 that ρE,p(Gp) is not exceptional. (Hint: show that it contains an
element whose order is too large to fit inside the exceptional subgroups.)

In fact Serre showed that ρE,p(Gp) is too large to fit inside the exceptional
subgroups for p ≥ 11.

Theorem 13 (Serre). Let p ≥ 11 and E/Q be an elliptic curve. Then ρE,p(GQ)
is not exceptional.

4 N+
ns(p) can be conjugated inside GL2(Fp2 ) to{(

α 0
0 αp

)
,

(
0 α
αp 0

)
: α ∈ F2

p
∗
}
.



CHAPTER 3

Modular Curves

1. Vague Objective

Given a field K, a positive integer N , and a subgroup H ⊆ GL2(Z/NZ),
we want to understand the set of all elliptic curves E/K such that ρE,N (GK) is
conjugate to a subgroup of H. Provided H satisfies certain technical assumptions,
such elliptic curves give rise to (non-cuspidal) K-points on XH , where XH is the
modular curve associated to H. By understanding XH(K) we can give a complete
description of the set of elliptic curves E/K such that ρE,N (GK) is conjugate to a
subgroup of H.

We suppose prior acquaintance with the modular curves X(1), X1(N), X0(N)
at least as Riemann surfaces, as well as the interpretation of their complex points
in terms of isomorphism classes of elliptic curves with extra level structure, as
explained for example in the excellent book of Diamond and Shurman [7]. However,
we briefly recall the definitions and summarise the basic facts.

2. The Modular Curve X(1)

If you’ve done a first course on modular forms then you will have seen the
construction of X(1) as Riemann surface. Let

H := {x+ yi : x, y ∈ R, y > 0}

be the upper half-plane, and

H∗ := H ∪ P1(Q)

the extended upper half-plane. The moduli interpretation of the complex points of
X(1) (as well as X1(N) and X0(N)) makes use of the theory of elliptic functions.
Recall, that given any τ ∈ H, there is an elliptic curve Eτ/C such that Eτ (C) ∼=
C/(Z+Z · τ). Every elliptic curve over C is isomorphic to Eτ for some τ . Moreover
Eτ1
∼= Eτ2 if and only if τ1 = γ(τ2) for some γ ∈ SL2(Z). Therefore we have a

bijection

SL2(Z)\H↔ {isom classes of elliptic curves E/C}, SL2(Z) · τ 7→ [C/(Z+Zτ)];

On the right hand-side of the correspondence we are identifying Eτ with C/(Z+Zτ).
here the square brackets denotes isomorphism class. In other words the points of
the Riemann surface SL2(Z)\H are in one-one correspondence with isomorphism
classes of elliptic curves over C. The Riemann surface SL2(Z)\H is non-compact;
its compactification is SL2(Z)\H∗, which is a compact Riemann surface of genus
0. The points of P1(Q) ⊂ H∗ form one orbit under the action of SL2(Z), so the
compactification has only one extra point, called the cusp at infinity ∞. Any
compact Riemann surface can be identified as the set of complex points on an

13
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algebraic curve of the same genus. In this we case we denote the algebraic curve
by X(1) = P1. The standard identification is via the modular j-function

j : SL2(Z)\H∗ → X(1)(C) , SL2(Z) · τ 7→ j(τ) =
1

q
+ 744 + 196884q2 + · · · ,

where

q :=

{
exp(2πiτ) τ ∈ H
0 τ ∈ P1(Q).

Note that under this identification, the cusp SL2(Z)\P1(Q) corresponds to the
point ∞ ∈ X(1)(C). Let Y (1) := X(1) \ ∞ ∼= A1. To summarize, there is a one-
one correspondence between isomorphism classes of elliptic curves E/C and points
j ∈ Y (1)(C). But more is true: the value j ∈ Y (1)(C) corresponding to E/C is
none other than the familiar j-invariant j(E).

Now let K be any field. The correspondence between isomorphism classes
of E/K and points in Y (1)(K), sending E to its j-invariant E, remains valid.
But what if we’re working over K and not K? What do points in j ∈ Y (1)(K)
correspond to? They correspond to classes of elliptic curves defined over K which
are isomorphic over K. Now if E, E′ are defined over K and isomorphic over K,
then they are quadratic twists, except possibly if they have j-invariants 0,
1728. So we have the following 1− 1 correspondence:

{elliptic curves over K with j-invariant 6= 0, 1728}/ ∼ ⇐⇒ j ∈ X(1)(K)\{0, 1728,∞}

where ∼ denotes quadratic twisting.

3. The modular curves X1(N), X0(N)

We fix N ≥ 1. Let

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
,

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

We are interested in isomorphism classes of pairs (E,P ) where E/C is an elliptic
curve and P is a point of order N on E. By an isomorphism of pairs (E1, P1),
(E2, P2) we mean an isomorphism φ : E1 → E2 such that φ(P1) = P2. We write
[(E,P )] for the isomorphism class of the pair (E,P ). One checks that given (E,P )
with E an elliptic curve over C, then there is some τ ∈ H such that E(C) ∼=
C/(Z+Z · τ) and this isomorphism take P to 1/N + (Z+Zτ) ∈ C/(Z+Zτ) (we’ll
henceforth denote the coset 1/N+(Z+Zτ) by 1/N). Thus we may identify [(E,P )]
with [(C/(Z+Zτ), 1/N)]. Moreover τ1, τ2 yield isomorphic pairs (C/(Z+Zτ1), 1/N),
(C/(Z + Zτ2), 1/N) if and only if there is some γ ∈ Γ1(N) such that τ1 = γ(τ2).
Thus we have a one-one correspondence

Γ1(N)\H↔ {isom classes of pairs (E/C, P )}, Γ1(N)·τ 7→ [(C/(Z+Zτ), 1/N)].

We are also interested in isomorphism classes of pairs (E,C) where E/C is an elliptic
curve and C is a cyclic subgroup of order N on E. By an isomorphism of pairs
(E1, C1), (E2, C2) we mean an isomorphism φ : E1 → E2 such that φ(C1) = C2,
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and again we write [(E,C)] for the isomorphism class of the pair (E,C). Arguing
similarly as before we obtain a one-one correspondence

Γ0(N)\H↔ {isom classes of pairs (E/C, C)}, Γ0(N)·τ 7→ [(C/(Z+Zτ), 〈1/N〉)].

Miracle: there are (open) curves Y1(N), Y0(N) defined over Q, such that

Y1(N)(C) ∼= Γ1(N)\H, Y0(N)(C) ∼= Γ0(N)\H,
The completions X(1), X1(N), X0(N) satisfy

X1(N)(C) ∼= Γ1(N)\H∗, X0(N)(C) ∼= Γ0(N)\H∗,
We call X1(N) \ Y1(N), X0(N) \ Y0(N) the sets of cusps of X1(N), X0(N) respec-
tively.
Fact. A point Q ∈ Y1(N)(K) parametrises an isomorphism class of pairs [(E,P )]
where E/K and P is a point of order N . We shall write Q = [(E,P )] ∈ Y1(N)(K)
(in other words we identify the point Q of Y1 with the pair it represents). Moreover,
this is parametrisation is compatible with the action of GK . Thus Qσ = [(E,P )]σ

where [(E,P )]σ is simply defined as (Eσ, Pσ).

Question. Let Q = [(E,P )] ∈ Y1(N)(K) as above. If E is defined over K, and P is
a K-rational point of order N , then Qσ = [(E,P )]σ = [(E,P )] = Q for all σ ∈ GK ,
and thus Q ∈ Y1(K). Does the converse necessarily hold? If Q ∈ Y1(N)(K),
is there necessarily some E defined over K, and P that is a K-rational
point order N such that Q = [(E,P )]?

Example 14. Let N = 3 and

E : Y 2 = X3 + 2.

Let P = (0,
√

2). We consider Q = [(E,P )] ∈ Y1(N)(Q). We claim that Q ∈
Y1(N)(Q). For this we want to show that for any σ ∈ GQ, (Eσ, Pσ) is isomorphic
to (E,P ) In fact Eσ = E as E is defined over Q. Moreover Pσ = ±P . If Pσ = P
then the two pairs are equal. If Pσ = −P , then we take φ : E → E to be the
isomorphism R 7→ −R. This shows that [(E,P )] = [(E,P σ)]. Hence Q ∈ Y1(N)(Q)
as claimed.

In this case the above question has an affirmative answer. Let

E′ : Y 2 = X3 + 1

and let

ψ : E → E′, (X,Y ) 7→
(
X
2
√

2
,
Y
3
√

2

)
.

Let P ′ = (0, 1) = ψ(P ) which is a rational point of order 3 on E′. Then ψ is an
isomorphism of pairs (E,P ) ∼= (E′, P ′). So Q = [(E′, P ′)] and we have answered
the above question affirmatively in this case.

Example 15. We take N = 3, and

E : Y 2 = X3 + 1.

The third division polynomial for E is ψ3(E)(X) = 3X(X3 + 4). Thus P =
( 3
√
−4,
√
−3) is a point of order 3. Let Q = [(E,P )] ∈ Y1(Q). We will show that Q

is a rational point. If σ ∈ GQ then

σ(P ) = (ζa3
3
√
−4,±

√
−3).
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But Aut(E) ∼= Z/6Z generated by

φ : E → E, φ(X,Y ) = (ζ3X,−Y ).

Thus

σ(P ) = φb(P )

for some b. Hence [(E,P )]σ = [(E,P σ)] = [(E,P )]. Therefore [(E,P )] ∈ Y1(3)(Q).
Note that any E′/Q belonging to the Q-isomorphism class of E has the form

E′ : Y 2 = X3 +D

where D ∈ Z is non-zero. There is an obvious isomorphism

ψ : E → E′, ψ(X,Y ) = (
3
√
DX,

√
DY ).

We want a value of D such that ψ(P ) ∈ E′(Q), or equivalently

3
√
D · 3
√
−4 ∈ Q,

√
D ·
√
−3 ∈ Q.

We can take D = −27 × 16. Thus the answer to the above question is affirmative
in this case too!

4. The Modular Curve XH

We want to generalise the above constructions to an arbitrary group H ≤
GL2(Z/NZ).

4.1. Level Structure. We call an isomorphism α : E[N ]→ (Z/NZ)2 a level
N structure on E. Note that a level N -structure simply corresponds to a choice
of basis: P1 = α−1(e1), P2 = α−1(e2) where e1 = (1, 0), e2 = (0, 1).

Definition 1. We call pairs (E1, α1) and (E2, α2) H-isomorphic, and write

(E1, α1) ∼H (E2, α2)

if there is an isomorphism φ : E1 → E2 and an element h ∈ H such that

α1 = h ◦ α2 ◦ φ.

Here we think of h ∈ H ⊂ GL2(Z/NZ) as an isomorphism h : (Z/NZ)2 →
(Z/NZ)2.

Exercise 16. Show that H-isomorphism is an equivalence relation.

We denote the H-isomorphism class of the pair (E,α) by [(E,α)]H .

Exercise 17. Let H = B1(N). Show that (E1, α1) ∼H (E2, α2) if and only if
there is an isomorphism φ : E1 → E2 such that φ(P1) = P2, where

P1 = α−11 (1, 0), P2 = α−12 (1, 0),

are respectively points of order N on E1, E2.

Exercise 18. Let H = B0(N). Show that (E1, α1) ∼H (E2, α2) if and only if
there is an isomorphism φ : E1 → E2 such that φ(〈P1〉) = 〈P2〉, where P1, P2 are
as above.
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4.2. The congruence subgroup associated to H. Given a subgroup H ⊂
GL2(Z/NZ) it is possible to define an associated Riemann surface in the following
way. Let

H0 := SL2(Z/NZ) ∩H, ΓH := {A ∈ SL2(Z) : (A mod N) ∈ H0}.
Note that

ΓH ⊇ Γ(N) := {A ∈ SL2(Z) : A ≡ I (mod N)}.
Therefore ΓH is a congruence subgroup of SL2(Z).

Exercise 19. Show that

ΓB0(N) = Γ0(N), ΓB1(N) = Γ1(N).

Given τ ∈ H we will write ατ for the level N structure on C/(Z + Zτ) that
satisfies

ατ (1/N) = (1, 0), ατ (τ/N) = (0, 1).

One checks the following

• if E is an elliptic curve over C and α is a level N -structure then there
exists τ ∈ H such that E = Eτ and the isomorphism Eτ (C) ∼= C/(Z+Zτ)
identifies α with ατ . Thus we can think of (E,α) as (C/(Z + Zτ), ατ ).

• τ1, τ2 lead to H-isomorphic pairs (C/(Z + Zτ1), ατ1), (C/(Z + Zτ2), ατ2)
if and only if τ1 = γ(τ2) for some γ ∈ ΓH .

We conclude that there is a one-one correspondence

ΓH\H↔ {H-isom classes (E/C, α)}, ΓH · τ 7→ [(C/(Z + Zτ), ατ )]H .

5. The curve XH

As before there are algebraic curves XH ⊃ YH , with XH complete and YH open
such that

YH(C) ∼= ΓH\H, XH(C) ∼= ΓH\H∗,
where the isomorphisms are isomorphisms of Riemann surfaces. Moreover, ΓH\H∗
is compact.

Recall that there is an isomorphism

χN : Gal(Q(ζN )/Q)→ (Z/NZ)∗.

Now det(H) is a subgroup of (Z/NZ)∗ and so we can identify it with a subgroup
of Gal(Q(ζN )/Q). So it makes sense to speak of the fixed field

LH := Q(ζN )det(H).

Theorem 20. The modular curve XH has a model defined over LH .

Note, since ΓH ⊂ SL2(Z) we have a natural surjective morphism of Riemann
surfaces

ΓH\H∗ → SL2(Z)\H∗, ΓH · τ → SL2(Z) · τ.
This induces a non-constant morphism of curves XH → X(1), again defined over
LH , which we denote by j (on complex points it factors through the earlier j-map
SL2(Z)\H∗ → X(1)(C)).
Assumption: we shall henceforth impose the condition det(H) = (Z/NZ)∗. Thus
XH is defined over Q, and so is the j : XH → X(1). The cusps of XH is the set
j−1(∞), and we have YH := XH \ j−1(∞).
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Now let K be a perfect field, which has characteristic 0, or such that char(K) -
N . A point Q ∈ YH(K) represents an H-isomorphism class of pairs [(E,α)]H where
E is an elliptic curve defined over K and α is a mod N level structure on E; we
identify Q with [(E,α)]H and so write Q = [(E,α)]H .

Lemma 5.1. Let Q = [(E,α)]H ∈ YH(K). Let E′/K be an elliptic curve that
is isomorphic to E. Then there is some isomorphism α′ : E′[N ] → (Z/NZ)2 such
that Q = [(E′, α′)]H .

What the lemma is saying is that for any point Q on YH I can replace E by any
isomorphic E′ and obtain the same point Q provided I suitably choose the mod N
level structure on E′.

Proof. Let φ : E → E′ be an isomorphism. Let α′ = α ◦ φ−1. Observe that
α = I ◦ α′ ◦ φ where I is the identity element in H. Thus (E,α) ∼H (E′, α′). �

6. Galois action and rationality

There is an action of GK on the pairs (E,α)

(E,α)σ := (Eσ, α ◦ σ−1).

This action is compatible with action of GK on YH(K). In other words, if Q =
[(E,α)]H then Qσ = [(Eσ, α ◦ σ−1)]H .

Lemma 6.1. Let Q ∈ YH(K). Then Q ∈ YH(K) if and only if Q = [(E,α)]H
for some E/K, and some level N structure α : E[N ]→ (Z/NZ)2 such that for all
σ ∈ GK , there is an φσ ∈ AutK(E) and hσ ∈ H satisfying

(3) α = hσ ◦ α ◦ σ−1 ◦ φσ.

Proof. ⇐= Condition (3) implies (E,α) ∼H (E,α ◦ σ−1). Thus Qσ = Q for
all σ ∈ GK and so Q ∈ YH(K).

=⇒ Suppose Q ∈ YH(K) and write Q = [(E,α)]H . Note that E ∼= Eσ

for all σ ∈ GK . Thus the j-invariant j(E) belongs to K. It follows that E is
isomorphic to some elliptic curve defined over K. By Lemma 5.1 we are allowed to
suppose that E is in fact defined over K. Since Qσ = Q for all σ ∈ GK we have
(E,α) ∼H (E,α ◦ σ−1). Now (3) follows from the definition of ∼H . �

6.1. The case −I ∈ H.

Theorem 21. Let H ≤ GL2(Z/NZ). Suppose

• det(H) = (Z/NZ)∗;
• −I ∈ H.

Then XH , YH are defined over Q (in fact they have models defined over Spec(Z[1/N ])).

(i) Every Q ∈ YH(K) is supported on some E/K (this means that there is
some E/K and an isomorphism α : E[N ] → (Z/NZ)2 such that Q =
[(E,α)]H).

(ii) If Q ∈ YH(K) and j(Q) 6= 0, 1728, then Q = [(E,α)]H such that E is
defined over K and ρE,N (GK) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE,N (GK) ⊂ H (up to conjugation) then
[(E,α)] ∈ YH(K) for a suitable α.
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(iii) If Q ∈ YH(K) and j(Q) 6= 0, 1728, and Q = [(E,α)]H as above, then Q =
[(E′, α′)] for any quadratic twist E′/K defined over K, and for suitable
α′.

Proof. Let’s fill in some of the details for (ii) using Lemma 6.1. Note that
j(Q) = j(E). As this 6= 0, 1728, the automorphism group Aut(E) = {1,−1}.
Thus φσ = ±1 and in particular commutes with all other maps. Thus (3) can be
rewritten as

α ◦ σ = (φσhσ) ◦ α.
This can be rewritten as

ρE,N (σ) = φσhσ

once we have taken α−1(1, 0), α−1(0, 1) as basis for E[N ]. Note that φσhσ = ±hσ ∈
H. Thus ρE,N (GK) ⊆ H as required. Since quadratic twisting multiplies the ρE,N
by a character taking values in ±1, replacing E by a quadratic twist does not change
the property ρE,N (GK) ⊆ H. �

Note, if −I ∈ H, then a rational point on YH corresponds to an infinite family
of quadratic twists (away from j-invariants 0, 1728). Therefore YH is a ‘coarse
moduli space’.

7. The case −I /∈ H

Theorem 22. Let H ≤ GL2(Z/NZ). Suppose

• det(H) = (Z/NZ)∗;
• −I /∈ H.

Then XH , YH are defined over Q (in fact they have models defined over Spec(Z[1/N ])).

(i) Every Q ∈ YH(K) is supported on some E/K (this means that there is
some E/K and an isomorphism α : E[N ] → (Z/NZ)2 such that Q =
[(E,α)]H).

(ii) If Q ∈ YH(K) and j(Q) 6= 0, 1728, then Q = [(E,α)]H such that E is
defined over K and ρE,N (GK) ⊂ H (up to conjugation). Conversely, if
there is E is defined over K and ρE,N (GK) ⊂ H (up to conjugation) then
[(E,α)] ∈ YH(K) for a suitable α.

(iii) If Q ∈ YH(K) and j(Q) 6= 0, 1728, and Q = [(E,α)]H as above, then E
is unique.

Proof. Again let’s fill in some of the details for (ii) using Lemma 6.1. As
before φσ ∈ {±1} and

ρE,N (σ) = φσhσ

once we have taken α−1(1, 0), α−1(0, 1) as basis for E[N ]. Let H ′ = 〈H,−I〉 ≤
GL2(Z/NZ). Since −I commutes with the elements of H, we have that H is a
normal subgroup of H ′ of index 2. Now consider the map

ψ : GK →
H ′

H
∼= {±I}, ψ(σ) = ρ(σ) ·H = ψσ.

Since ρ is a homomorphism, the map ψ is also a homomorphism and so a quadratic
character, or trivial. If ψ is trivial then ρE,N (GK) ⊂ H. Otherwise ψ is a quadratic

character, and by Galois theory its kernel fixes a quadratic extension K(
√
d) of K.

Now ρEd,N = ψ · ρE,N , and thus ρEd,N (σ) = hσ ∈ H. Therefore replace E by Ed
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and adjusting the level structure α gives Q = [(E,α)]H with E defined over K and
ρE,N (GK) ⊂ H. �

Note that away from j-invariants 0, 1728, the modular curve YH is a ‘fine
moduli space’, by which we mean that a rational point is supported on a unique
elliptic curve. Indeed, let

U := XH \ j−1{0, 1728,∞}.
There is an elliptic surface

E → U

which we think of as a family of (smooth) elliptic curves parametrized by the points
of U , and we write EQ for the fibre above Q ∈ U . If Q ∈ U(K) then EQ is defined
over K. Moreover, the image ρEQ,N (GK) is contained in a subgroup conjugate to

H, and Q = [(E,α)]H for a suitable α. Conversely, if E/K is an elliptic curve with
j(E) 6= 0, 1728 and ρE(GK) is conjugate to a subgroup of H then there is some
Q ∈ U(K) (possibly non-unique) such that E ∼= EQ. The family E is called the
universal elliptic curve over XH .

8. Modular Curves corresponding to subgroups of GL2(Fp)

Let p be an odd prime. In Dickson’s classification we met groups B0(p), C+
s (p),

C+
ns(p), and those with images isomorphic to A4, S4, A5 in PGL2(Fp) (the case A5

only arises for p ≡ ±1 (mod 5)). Corresponding to these six subgroups, there are
six modular curves X0(p), X+

s (p), X+
ns(p), XA4

(p), XS4
(p) and XA5

(p) (again the
last case is only for p ≡ ±1 (mod 5)). To prove Serre’s uniformity conjecture, it is
enough to show that the rational points on each of these curves are either CM or
cuspidal for p > 37. In fact this has been accomplished for all these families except
X+
ns(p).

Theorem 23 (Serre). If p ≥ 11 then X(Qp) = ∅ for X = XA4
(p), XS4

(p),
XA5(p).

Theorem 24 (Mazur). If p > 37 then X0(p)(Q) ⊂ {cusps, cm points}.

Theorem 25 (Bilu, Parent and Rebolledo). If p > 13 then X+
s (p)(Q) ⊂

{cusps, cm points}.

Theorem 26 (Balakrishnan, Dogra, Müller, Tuitman, Vonk). X+
s (13)(Q) and

X+
ns(13)(Q) consist of cusps and CM points.

The question of rational points on X+
ns(p) is a famous open problem.



CHAPTER 4

A Naive Approach to Equations for X1(N)

1. Mazur’s Theorem on Torsion

Theorem 27 (Mazur). Let E be an elliptic curve over Q. Then E(Q)tors is
isomorphic to one of the groups{

Z/NZ (N = 1, 2, . . . , 10, 12),

Z/2Z× Z/2NZ (N = 1, 2, 3, 4).

The main part of the proof of this great theorem is to show that for p ≥ 11
prime, there are no elliptic curves E/Q with a rational point of order p. This is
equivalent to the following theorem.

Theorem 28 (Mazur). X1(p)(Q) consists entirely of cusps for p ≥ 11 prime.

2. Tate Form

Lemma 2.1. Let E/K be an elliptic curve and P ∈ E(K) such that P , 2P ,
3P 6= 0. Then there is a change of coordinates (defined over K) so that E becomes
the model

(4) Eu,v : Y 2 + uXY + vY = X3 + vX2 , P = (0, 0),

where u, v ∈ K.

Proof. This is an easy exercise. Since P 6= 0 it belongs to the affine plane in
any Weierstrass model for E. Simply shifting P to (0, 0) ensures that E has the
form

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X.

Now the condition 2P 6= 0 ensures that a3 6= 0. Now rotate the (X,Y )-plane so
that the tangent at (0, 0) is the X-axis (for this you will need a3 6= 0), and then
stretch so that a2 = a3 (this is where you will use the fact that 3P 6= 0). �

The model Eu,v is called the Tate form for E. It can be used (rather painfully)
to give a model for X1(p) for small values of p.

3. X1(5)

In the Tate form (4) you can check that 5P = 0 if and only if u = v+ 1. If you
want to do this computation, it is easiest to rewrite 5P = 0 as 3P = −2P . This in
fact tells us that X1(5) ∼= P1. The parameter v is a parameter on X1(5) ∼= P1 and
corresponding to this is the elliptic curve

Ev : Y 2 + (v + 1)XY + vY = X3 + vX2.

The point (0, 0) is a point of order 5 on Ev. We have almost completed our task of
classifying all elliptic curves over K with a rational point of order 5. We must check

21



22 4. A NAIVE APPROACH TO EQUATIONS FOR X1(N)

whether the model Ev is smooth (and therefore really defines an elliptic curve) or
singular. The discriminant of the model is

∆(Ev) = −v5 · (v2 + 11v − 1).

Thus the values v = 0, v = (−11 ± 5
√

5)/2 do not correspond to elliptic curves.
What about v =∞ ∈ P1(Q). Here it is easier to work with the j-invariant of Ev:

j(Ev) =
(v4 + 12v3 + 14v2 − 12v + 1)3

−v5 · (v2 + 11v − 1)
.

so that when v =∞ we have j(Ev) =∞ so Ev is not an elliptic curve. The values

{∞, 0, (−11±5
√

5)/2} are the cusps of X1(5). The curve Ev is called the universal
elliptic curve over X1(5).

4. X1(11)

Repeating the above calculation with 11 instead of 5 it is possible to show that
X1(11) is the elliptic curve 11A3 with Weierstrass model

X1(11) : s2 − s = t3 − t.
The universal elliptic curve over X1(11) is

Es,t : Y 2 + (st+ t− s2)XY + s(s− 1)(s− t)t2Y = X3 + s(s− 1)(s− t)tX2 .

Thus an elliptic curve E/K with a K-rational point over order 11 is isomorphic to
Es,t for some (s, t) ∈ X1(11)(K) where the point of order 11 becomes the point (0, 0)
on the model Es,t. The converse is true if we avoid the cusps; if (s, t) ∈ X1(11)(K)
is a non-cuspidal point then Es,t is an elliptic curve defined over K with (0, 0) a
point of order 11.

The Mordell–Weil group of X1(11)/Q is

X1(11)(Q) = {0, (0, 0), (0, 1), (1, 0), (1, 1)} ∼= Z/5Z.
It turns out that X1(11) has 10 cusps, and the five rational points are among the
10 cusps. Thus there are no elliptic curves E/Q with a Q-rational point of order
11. The other cusps are given by the equations

t5 − 18t4 + 35t3 − 16t2 − 2t+ 1 = 0, s =
−3t4 + 52t3 − 74t2 + 17t+ 10

11
,

which give five cusps defined over Q(ζ11)+.



CHAPTER 5

Jacobians of Curves

It is convenient for now to talk about general curves. Let X be a curve over a
field K, and let g = g(X) be the genus. Functorially associated to X is its Jacobian
J = JX which is an abelian variety defined over K of dimension g. Jacobians
give us a way of studying K-points on X. If X(K) 6= ∅ and g ≥ 1 then we
have an embedding X(K) ↪→ J(K), and the set J(K) is an abelian group. If we
understand J(K) as an abelian group we might hope to say something about X(K).
Unfortunately it is in general very hard to write down equations for J . The best
computational approach to J is via divisors.

1. Divisors

Let X be a curve over k. A divisor D on X is a formal linear combination

D =

n∑
i=1

aiPi, ai ∈ Z, Pi ∈ X(K).

We define the degree of D to be
∑
ai. We say that D is rational if it is invariant

under GK := Gal(K/K).

Example 29. Let

X : y2 = x(x2 + 1)(x3 + 1).

This is a genus 2 curve defined over Q. Let

D1 = 2 · (0, 0) + (1, 2), D2 = (i, 0)− (−i, 0), D3 = (i, 0) + (−i, 0)− 2 · (1, 2).

These are divisors and their degrees are

deg(D1) = 3, deg(D2) = 0, deg(D3) = 0.

Observe that any σ ∈ GQ sends i to itself (e.g. σ is the identity) or changes its sign
(e.g. σ is complex conjugation). Thus D1 is rational, D3 is rational, but D2 is not
rational, since complex conjugation negates it.

The divisor group ofX/K, denoted by Div(X/K) is the set of rational divisors
of X/K. This is obviously an abelian group with addition defined in the obvious
formal way. The degree 0 subgroup of the divisor group is the subgroup

Div0(X/K) := {D ∈ Div(X/K) : deg(D) = 0}.

This is an abelian group.

Example 30. We continue Example 29. In the example D3 ∈ Div0(X/Q), but
D1, D2 /∈ Div0(X/Q).

23
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2. Principal Divisors

Let X be a curve defined over a field K. Let K(X) be the function field of
X, and let f ∈ K(X)∗. If P ∈ X(K) then there is υP (f) ∈ Z which measures the
order of vanishing of f at P . Define

div(f) =
∑

P∈X(K)

υP (f) · P.

A divisor of the form div(f) is called a principal divisor.

Lemma 2.1. If f ∈ K(X)∗ then div(f) ∈ Div0(X/K).

Example 31. Let f = x2−7
x3 on P1/Q. Then

div(f) = −3 · (0) + (
√

7) + (−
√

7) +∞.

Intuitively, if x is large, then f ∼ 1/x which explains why it vanishes to order 1 at
∞. Observe that div(f) ∈ Div0(P1/Q).

3. The Picard Group

It follows from Fact 2.1 that

Princ(X/K) := {div(f) : f ∈ k(X)∗}

is contained in Div0(X/K). This is called the subgroup of principal divisors.
It is easy to show that it is a subgroup using the properties

div(1) = 0, div(fg) = div(f) + div(g), div(1/f) = −div(f),

that follow from the definition of div. We define the Picard group of X/K as

Pic0(X/K) :=
Div0(X/K)

Princ(X/K)
.

The following two theorems are standard consequences of the Riemann–Roch The-
orem (See [22, Chapters II and III]).

Theorem 32.

Pic0(P1/K) = 0.

Theorem 33. Let

E : y2 = x3 +Ax+B, A,B ∈ K, 4A3 + 27B2 6= 0.

be an elliptic curve over K. Then

(5) E(k) ∼= Pic0(E/K), P 7→ [P −∞].

In (5), the group operation on E(K) is the usual one defined by secants and
tangents.

If X is a curve that isn’t an elliptic curve, what is the correct object to replace
X(K) in the isomorphism (5)?
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4. Jacobians

Let X/K be a curve of genus g. We don’t define the Jacobian JX of X, but
mention that it is a g-dimensional abelian variety defined over K that is ‘functorially
associated’ to X. An elliptic curve E is its own Jacobian JE = E.

Theorem 34. (Mordell–Weil Theorem) If K is a number field then JC(K) is
a finitely generated abelian group.

The proof uses descent and heights and is similar to the proof of the Mordell–
Weil Theorem for elliptic curves. We can often compute JX(K) in practice, but
there is no algorithm guaranteed to work.

Theorem 35. Let X be a curve with X(K) 6= ∅. Then

JX(K) ∼= Pic0(X/K).

For more on this theorem see [19, Section 3]. We usually use elements of
Pic0(X/K) to represent elements of JX(K).

Example 36. We continue Example 29. Let

X : y2 = x(x2 + 1)(x2 + 3).

This is a curve of genus 2 defined over Q. It has one rational point at infinity which
we denote by ∞ (and which we see on a smooth model in a projective plane with
appropriate weights). The curve X has genus 2. Using descent it is possible to
show that

JX(Q) =
Z
2Z
· [(0, 0)−∞]⊕ Z

2Z
· [(i, 0) + (−i, 0)− 2∞].

It is easy to check that

[(0, 0)−∞] + [(i, 0) + (−i, 0)− 2∞] = [(
√
−3, 0) + (−

√
−3, 0)− 2∞];

to check this the reader should write down a function on X whose divisor is

(0, 0) + (i, 0) + (−i, 0)− (
√
−3, 0)− (−

√
−3, 0)−∞.

Definition 2. Let X/K be a curve of genus ≥ 1. Let P0 ∈ X(K). The
Abel–Jacobi map associated to P0 is the embedding

ι : X ↪→ JX , P → [P − P0] .

Lemma 4.1. If X has genus ≥ 1 and P0 ∈ X(K) then ι(X(K)) ⊆ JX(k). If
moreover JX(K) is finite (and we know it) we can compute X(K).

5. Torsion Subgroups

Let A be an abelian variety over a number field K. The Mordell–Weil theorem
applies to abelian varieties too and tells us that A(K) is a finitely generated abelian
group. In particular, the torsion subgroup A(K)tors is finite.

Let p be a prime of K that is of good reduction for A. Then we have a natural
homomorphism

redp : A(K)→ A(Fp)

that takes a point P ∈ A(K) and reduces it modulo p. The following is a standard
type of result; see [13, Appendix].
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Theorem 37 (Katz). With notation as above (in particular p is a prime of
good reduction for A), let p be the rational prime below p and write e(p/p) for the
ramification degree. Suppose e(p/p) < p− 1. Then redp is injective when restricted
to the torsion subgroup A(K)tors.

The following is immediate.

Corollary 5.1. Let A be an abelian variety over Q. Let p ≥ 3 be a prime
of good reduction. Then redp is injective when restricted to the torsion subgroup
A(Q)tors.



CHAPTER 6

Jacobians of Modular curves and Eichler–Shimura

Return to our setting: H is a subgroup of GL2(Z/NZ) satisfying det(H) =
(Z/NZ)∗ and −I ∈ H. Write JH for the Jacobian of XH . These in fact have
models over Spec(Z[1/N ]) so they good reduction away from N .

Recall that we defined a congruence subgroup ΓH associated to H.

H0 := SL2(Z/NZ) ∩H, ΓH := {A ∈ SL2(Z) : (A mod N) ∈ H0}.
There is an isomorphism

S2(ΓH) ∼= Ω(XH), f(q) 7→ f(q)
dq

q
,

where S2(ΓH) is space of weight 2 cuspforms for the group ΓH and Ω(XH) is the
space of regular differentials on XH . In particular,

genus(XH) := dim(Ω(XH)) = dim(S2(ΓH)).

There is an action of the Hecke algebra on S2(ΓH). Let f1, . . . , fn be represen-
tatives of Galois orbits of Hecke eigenforms. Eichler–Shimura associate an abelian
variety Af/Q to each eigenform f ∈ {f1, . . . , fn}. Let Kf be the Hecke eigenvalue
field of f . Then

[Kf : Q] = dim(Af ).

Moreover, EndQ(Af ) is an order in Kf (we say that Af is of GL2-type).

Theorem 38. rank(Af (Q)) is a multiple of [Kf : Q].

Finally,
JH ∼ Af1 ×Af2 × · · · × Afn ,

where ∼ denotes isogeny over Q.
Now let g ∈ {f1, . . . , fn}, let Kg be the Hecke eigenvalue field of g, and let

σ1, . . . , σd : Kg ↪→ C be the embeddings of C (here d = [Kg : Q] = dim(Ag)). Let
gi = σ(g) be the conjugates of g. Then we have an equality of L-function.

L(Ag, s) =

d∏
i=1

L(gi, s).

We have the following famous theorem, which is a version of weak BSD for modular
Jacobians.

Theorem 39 (Kolyvagin and Logachev). Suppose Ag is a factor of J0(M) for
some M .

(i) If ords=1(L(gi, s)) = 0 for some i then ords=1(L(gi, s)) = 0 for all i and
rank(Ag(Q)) = 0.

(ii) If ords=1(L(gi, s)) = 1 for some i then ords=1(L(gi, s)) = 1 for all i and
rank(Ag(Q)) = dim(Ag) = [Kg : Q].

27
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In fact, L(Ag, 1)/Ωg is a rational number, where Ωg is integral of the Néron
differential over Ag(R). The modular symbols algorithm [5] can in fact compute
L(Ag, 1)/Ωg exactly, so we have a way of testing if L(Ag, s) vanishes or not at

s = 1. Values L(r)(Ag, 1) can only be computed numerically for r ≥ 1.

Example 40. Let us consider X0(43) and its Jacobian J0(43). The modular
symbols algorithm (implemented in Magma and in SAGE) allows us to compute the
eigenforms belonging to S2(Γ0(43)); see [25] for details. These are

f = q − 2q2 − 2q3 + 2q4 − 4q5 + · · ·

g1 = q +
√

2 · q2 −
√

2 · q3 + (2−
√

2) · q5 + · · ·

g2 = q −
√

2 · q2 +
√

2 · q3 + (2 +
√

2) · q5 + · · ·

The Hecke eigenvalue field for f is Q. The eigenform f corresponds to a dimension
1 abelian variety, which is the elliptic curve 43A1 with Weierstrass model

Af : y2 + y = x3 + x2.

Note that g1, g2 form a single Galois orbit, with Hecke eigenvalue field Q(
√

2) of
degree 2. The abelian variety Ag1 = Ag2 has dimension 2. There is probably no
easy way of giving equations for it. It might not even be a Jacobian. Moreover,

J0(43) ∼ Af ×Ag1
has dimension 3 and so X0(43) has genus 3. What can we say about the Mordell–
Weil group J0(43)(Q)?

In fact
L(Af , 1)

ΩAf
= 0,

L(Ag1 , 1)

ΩAg
=

2

7
.

So we know that Ag1(Q) has rank 0 from the Kolyvagin–Logachev theorem. What
about Af (Q)? We find that

L′(f, 1) = 0.34352 . . .

so by the Kolyvagin–Logachev theorem, Af (Q) has rank 1. Hence J0(43)(Q) has
rank 1.

Example 41. Let’s consider J0(31) instead. There is only one Galois orbit of
eigenforms of weight 2 for Γ0(31):

f1 = q + αq2 − 2αq3 + (α− 1)q4 + q5 + · · · , α =
1 +
√

5

2

f2 = q + βq2 − 2βq3 + (β − 1)q4 + q5 + · · · , β =
1−
√

5

2
.

Thus J0(31) is a simple 2-dimensional abelian variety. We find that L(J0(31))/Ω =
2/5, so J0(31)(Q) has rank 0.

Let’s use this fact to show that there are no elliptic curves over Q with a point
of order 31. We consider this commutative diagram.

X1(31)(Q)
π−−−−→ X0(31)(Q) −−−−→ X(1)(Q)y y y

X1(31)(F3) −−−−→ X0(31)(F3) −−−−→ X(1)(F3).
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Suppose E/Q has a Q-rational point of order 31. This gives rise to a non-cuspidal
rational point P ∈ X1(31)(Q). Suppose that E has good reduction at 3. Then,
by the injectivity of torsion, E(F3) has a point of order 31, which is impossible
because #E(F3) ≤ 7 by the Hasse–Weil bounds. So E cannot have good reduction
at 3. Let’s instead suppose that E has potentially good reduction at 3 (in particular
ord3(j(E)) ≥ 0). We consider the filtration

E(Q3) ⊃ E0(Q3) ⊃ E1(Q3) ⊃ E2(Q3) · · ·
In fact, we know from the theory of the formal group that E1(Q3) ∼= Z3 which has
no torsion. Moreover,

[E(Q3) : E0(Q3)] ≤ 4, [E0(Q3) : E1(Q3)] = #Ens(F3) = 3

as E has additive reduction. We see that E(Q3) does not have 31 torsion and we
have a contradiction.

Hence E has potentially multiplicative reduction at 3. This means that ord3(j(E)) <
0. Hence the image of P in X(1)(F3) is the cusp. Let Q = π(P ) ∈ X0(31)(Q).
Then Q ≡ c (mod 3) where c is one of the two cusps on X0(31) (both of these
are rational points). Now consider [Q − c] ∈ J0(31)(Q). This is a torsion point

since J0(31)(Q) has rank 0. But its reduction ˜[Q− c] = 0 ∈ J0(31)(F3) as Q ≡ c
(mod 3). By the injectivity of torsion in reduction (Corollary 5.1) we conclude
[Q−c] = 0 in J0(31)(Q). So Q = c (you can use Riemann–Roch to show that if two
points on a curve of genus ≥ 1 are linearly equivalent then they must be equal).
That is Q is a cusp on X0(31) and so P is a cusp of X1(31) giving a contradiction.

Note that we worked with X0(31) and J0(31). We only needed the fact that the
point comes from X1(31) to make sure it reduces to a cusp modulo 3. In fact if Q
is any rational point on X0(31) that reduces to a cusp modulo any prime p 6= 2, 31
then Q must equal that cusp, by the above argument. We have excluded 2 because
we need injectivity of torsion when reducing mod p. We have excluded 31 because
X0(31) has bad reduction at 31. But we can conclude that if Q ∈ X0(31)(Q) then
j(Q) ∈ Z[1/62], so the problem of determining the rational points on X0(31) is
essentially reduced to a problem about integral points.

But it is much easier if we knew the whole Mordell–Weil group. We shall make
use of the following theorem.

Theorem 42 (Mazur). Let p be a prime. Then

J0(p)(Q)tors = (Z/dpZ) · [c1 − c2], dp = numerator

(
p− 1

12

)
where c1, c2 are the two cusps of X0(p).

In our case

J0(31)(Q) =
Z
5Z
· [c1 − c2].

Now let Q ∈ X0(31)(Q). Then [Q − c2] = n · [c1 − c2] for n = 0, 1, 2, 3, 4. Thus
for one of these values of n, we have Q ∼ n · c1 + (1 − n) · c2. If n = 0 then
Q = c2 and n = 1 then Q = c1. What about the other 3 values of n? Write
Dn = c1 + (1 − n)c2. Then Q ∼ Dn which means that Q = Dn + div(f) where
f ∈ Q(X0(31))∗. Note that f belongs to the Riemann–Roch space L(Dn). In fact
it is possible to compute Riemann–Roch spaces if we have a model for the curve
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(for example using an algorithm of Hess that is implemented in Magma). A model
for X0(31) was worked out by Galbraith:

X0(31) : y2 = x6 − 8x5 + 6x4 + 18x3 − 11x2 − 14x− 3︸ ︷︷ ︸
h

.

Here c1, c2 are the two points at ∞ on this model. We find that dim(L(Dn)) = 1,
1, 0, 0, 0 for n = 0, 1, 2, 3, 4 respectively. Thus we know that there is no point
Q ∼ Dn for n = 2, 3, 4. We conclude that X0(31)(Q) = {c1, c2}. In particular,
there are no elliptic curves over Q with a 31-isogeny.

Now let’s be more ambitious and look at quadratic points. Here we’re following
a recent paper of Bruin and Najman [2]. Let Q ∈ X0(31)(K) where K is any
quadratic field. Let Qσ be its Galois conjugate. Now Q+Qσ is a Q-rational divisor
of degree 2, and Q+Qσ − c1 − c2 is a Q-rational divisor of degree 0. In particular,
[Q+Qσ − c1 − c2] ∈ J0(31)(Q) and so

Q+Qσ − c1 − c2 ∼ n(c1 − c2)

where 0 ≤ n ≤ 4. So

Q+Qσ = (n+ 1)c1 + (1− n)c2 + div(f)

where f ∈ L((n + 1)c1 + (1 − n)c2). For n = 0, 1, 2, 3, 4 the dimensions of L((n +
1)c1 + (1− n)c2) are 2, 1, 1, 1, 1. Let’s deal with 1 ≤ n ≤ 4 first. In each of these
cases, L((n+1)c1 +(1−n)c2) = Q ·gn for some non-zero function gn. And so there
is a unique possibility for Q+Qσ, namely: Q+Qσ = (n+1)c1 +(1−n)c2 +div(gn).
We obtain

n Q+Qσ

1 2c1

2

(
−1 +

√
−3

2
,

11 +
√
−3

2

)
+

(
−1−

√
−3

2
,

11−
√
−3

2

)
3

(
−1 +

√
−3

2
, −11 +

√
−3

2

)
+

(
−1−

√
−3

2
, −11−

√
−3

2

)
4 2c2

Next we consider, n = 0. Then

L(c1 + c2) = Q⊕Q · x.

If we take f ∈ Q, then div(f) = 0 and so Q+Qσ = c1 + c2. Suppose f /∈ Q. Then
it is proportional to x− u for u ∈ Q, and so div(f) = div(x− u). But

div(x− u) = (u,
√
h(u)) + (u,−

√
h(u))− c1 − c2.

Hence Q + Qσ = (u,
√
h(u)) + (u,−

√
h(u)). Note that h(u) is not a square for

any u ∈ Q, since we’ve already shown that the only two rational points are at
infinity. In particular, Q = (u,

√
h(u)), Qσ = (u,−

√
h(u)) so that Q and Qσ are

interchanged by the hyperelliptic involution. Ogg has shown that for X0(31) that
the hyperelliptic involution is w31, the Atkin-Lehner involution. What does w31

do? Recall that a point on X0(31) represents a pair (E,C) where E is an elliptic
curve and C is a cyclic subgroup of order 31. Now

w31(E,C) = (E/C,E[31]/C) ;
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here E/C is the isogenous elliptic curve. So in our case Q = [(E,C)] and Eσ is
isomorphic to E/C. Hence this infinite family of elliptic curves over quadratic fields
are quadratic Q-curves (i.e. isogenous to their conjugate).





CHAPTER 7

Sketch of Mazur’s Theorem for X1(p)

Definition 3. A morphism of schemes θ : X → Y over Spec(Z[1/p]) is a
formal immersion at x ∈ X(Q) if the induced map

ÔY,f(x) → ÔX,x
is surjective.

Remark. Let q 6= p be a prime. Let

Resq(x) := {x′ ∈ X(Qq) : x′ ≡ x (mod q)}

which is called the q-adic residue disc of x. If θ is a formal immersion at x then the
map

θ : Resq(x)→ Y (Qq)
is an injection.

Proposition 0.1. In the above, suppose Y = A is an abelian variety such that
A(Q) has rank 0. Suppose θ is a formal immersion at x. Then

X(Q) ∩ Resq(x) = {x}

for all primes q /∈ {2, p}.

Proof. Let x′ ∈ X(Q) ∩ Resq(x). Then x′ ≡ x (mod q). Thus θ(x′) − θ(x)
is an element of A(Q) that reduces to 0 modulo q. But A(Q) is torsion. By the
injectivity of torsion θ(x′)− θ(x) = 0. Thus θ(x′) = θ(x). However, as θ is a formal
immersion at x, and x′ belong to Resq(x) we have x = x′. �

We now sketch a proof of Mazur’s Theorem for X1(p). Suppose z ∈ X1(p)(Q).
We want to show that z is in fact a cusp. Suppose it is not. Then it represents
a pair [(E,P )] where E is an elliptic curve defined over Q and P is a rational
point of order p. We take q = 3. Now in the example we can show (because p is
large) that E has potentially multiplicative reduction at 3. Let y = π(z) where
π : X1(p) → X0(p) is the degeneracy map. In particular y reduces to one of the
cusps on X0. The Atkin-Lehner involution swaps the cusps. Thus we can suppose
that y reduces to the infinity cusp on X0 which we denote by ∞. To complete the
argument we need some large quotient of J that has rank 0. We let Je(p) be the
largest quotient of J that has analytic rank 0. This Merel’s winding quotient.
We know by Kolyvagin–Logachev that this has rank 0. We take θ to be the map
X0(p) → J0(p) → Je(p). Now we need the highly non-trivial fact that this is a
formal immersion at ∞. Now

y ∈ Res3(∞) ∩X0(3)(Q).

Hence by the above proposition y =∞. Thus z is a cusp.

33
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An important remark: The proofs of Mazur’s theorem for X0(p), Merel’s Uni-
form Boundedness theorem and the theorem of Bilu, Parent and Rebolledo for
X+
s (p) all crucially depend on the existence of a rank 0 quotient of the modular

Jacobian. However, for X+
ns(p) it is known that every factor of the Jacobian has

odd analytic rank, and so assuming BSD has non-zero rank. This is the reason why
Serre’s uniformity conjecture is still an open problem.



CHAPTER 8

Equations for Modular Curves

We’ll mostly follow the method of Galbraith [10] for writing down equations
for (a couple of) modular curves.

Let X/K be a curve of genus g ≥ 2. Let Ω(X) be the space of regular differ-
entials. This is a K-vector space of dimension g. Let ω1, . . . , ωg be a K-basis for
Ω(X). The canonical map is the map

φ : X → Pg−1, P 7→ (ω1(P ) : · · · : ωg(P )).

Recall that the ratio of any two differentials ω1, ω2 is actually a function on X, so
the map makes sense.

Example 43. Consider a genus 2 curve

X : y2 = a6x
6 + · · ·+ a0, ai ∈ K.

Here the polynomial on the right hand-side is separable. A basis for Ω(X) is
ω1 = dx/y and ω2 = xdx/y. Note that ω2/ω1 = x. Thus

φ : X → P1, P 7→ (1 : x(P )).

In particular, the image of φ is P1, and so φ is not an isomorphism, but is 2 to 1.

Let’s instead look at a genus 3 curve

X : y2 = a8x
8 + · · ·+ a0, ai ∈ K.

A basis for Ω(X) is ω1 = dx/y, ω2 = xdx/y, ω3 = x2dx/y. Thus

φ : X → P2, φ(x, y) = (1 : x : x2).

If we choose coordinates (u1 : u2 : u3) for P2 then the image is the conic u1u3 = u22.

More generally, a hyperelliptic curve of genus g can be written as

X : y2 = a2g+2x
2g+2 + · · ·+ a0, ai ∈ K.

Here the polynomial again needs to be separable to obtain genus g. A basis for
Ω(X) is

dx

y
,
xdx

y
, . . . ,

xg−1dx

y
.

Check that the image of the canonical map is isomorphic to P1.

Theorem 44. Let X be a curve of genus ≥ 2. The canonical map is an
embedding if and only if X is non-hyperelliptic. In this case φ(X) has degree 2g−2.

We’ll focus on modular curves where the genus is ≥ 2. Recall the isomorphism

S2(ΓH) ∼= Ω(XH), f(q) 7→ f(q)
dq

q
.
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Let f1, . . . , fg be a basis for S2(ΓH). Then the canonical map is given by

φ = (f1(q)dq/q : f2(q)dq/q : · · · : fg(q)dq/q) = (f1(q) : · · · : fg(q)).

1. X0(30) and X0(45)

Let’s look first at X0(30). A basis for S2(Γ0(30)) is

f1 = q − q4 − q6 − 2q7 + q9 +O(q10),

f2 = q2 − q4 − q6 − q8 +O(q10),

f3 = q3 + q4 − q5 − q6 − 2q7 − 2q8 +O(q10).

Thus X0(30) has genus 3. A genus 3 curve is either hyperelliptic or plane quartic.
We want to know whether X0(30) is hyperelliptic or a plane quartic. We compute
the image of the canonical embedding. If it is hyperelliptic, then the image must
be a conic. Note that the basis f1, f2, f2 is not necessarily the same as the basis
dx/y, xdx/y, x2dx/y for the hyperelliptic model, if X0(30) is indeed hyperelliptic;
the two bases will be related by an invertible matrix. Thus if X0(30) is hyperelliptic
then the image we obtain from f1, f2, f3 will the result of some invertible linear
transformation applied to the conic u1u3 − u22, and so will be a conic.

The degree 2 monomials in f1, f2, f3 are

f21 = q2 − 2q5 − 2q7 − 3q8 + 4q10 +O(q11)

f22 = q4 − 2q6 − q8 +O(q12)

f23 = q6 + 2q7 − q8 − 4q9 − 5q10 − 6q11 + q12 +O(q13)

f1f2 = q3 − q5 − q6 − q7 − 3q9 + 2q10 +O(q11)

f1f3 = q4 + q5 − q6 − 2q7 − 3q8 − 2q9 − 2q10 +O(q11)

f2f3 = q5 + q6 − 2q7 − 2q8 − 2q9 − 2q10 + 2q11 +O(q12).

The image is a conic if and only if there is a non-trivial linear combination of these
six expressions that is identically 0. Thus we are looking for a1, . . . , a6 (not all zero)
such that

a1f
2
1 + a2f

2
2 + a3f

2
3 + a4f1f2 + a5f1f3 + a6f2f3 = 0.

Looking at the coefficient of q2 we immediately see that a1 = 0. And at the
coefficient of q3 that a4 = 0. Moreover,

a2 + a5 = 0, a5 + a6 = 0, −2a2 + a3 − a5 + a6 = 0

from the coefficients of q4, q5, q6. There is only one solution (up to scaling) which
is

a2 = 1, a3 = 0, a5 = −1, a6 = 1.

Thus f22 − f1f3 + f2f3 = 0 + O(q7). In fact we can check that f22 − f1f3 + f2f3 =
0 +O(q100). But do we know that f22 − f1f3 + f2f3 = 0 exactly? For this we need
the Sturm bound.

Theorem 45 (Sturm). Let Γ be a congruence subgroup of SL2(Z) of index m.
Let f ∈ Sk(Γ) and suppose ordq(f) > km/12. Then f = 0.
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We let f = f22 − f1f3 + f2f3. Since f1, f2, f3 are cusp forms for Γ0(30) of
weight 2, f is a cusp form of weight k = 4. Thus Recall the formula for the index
of Γ0(N):

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + 1/p).

In our case N = 30 and

m = 30(1 + 1/2)(1 + 1/3)(1 + 1/5) = 72.

Note km/12 = 4 × 72/12 = 36. Since ordq(f) ≥ 100 we know from Sturm that
f = 0. Hence X0(30) is hyperelliptic. We’ll return to writing down equations for
X0(30) later.

We repeat the computation for X0(45). A basis for S2(Γ0(45)) is

g1 = q − q4 +O(q10),

g2 = q2 − q5 − 3q8 +O(q10),

g3 = q3 − q6 − q9 +O(q10).

Thus X0(45) has genus 3 and is either hyperelliptic or the canonical image has
degree 4 and is therefore a plane quartic. Again we look for a1, . . . , a6 such that

a1g
2
1 + a2g

2
2 + a3g

2
3 + a4g1g2 + a5g1g3 + a6g2g3 = 0.

By solving the resulting system of linear equations from the coefficients of q2, . . . , q10

we find that all the ai = 0. Thus the image is not a conic, and so X0(45) is a plane
quartic. Next we look at all monomials of degree 4 in g1, g2, g3. There are 10
of these, and we are looking a for a linear combination which is 0. By solving
the system resulting from the coefficients of lots of qj up to q20 we find a unique
solution (up to scaling). This unique solution gives us our degree 4 model:

X0(45) : x30x2 − x20x21 + x0x1x
2
2 − x31x2 − 5x42 ⊂ P2.

Did we need to check up to the Sturm bound? Not this time! We have already
proved that X0(45) is not hyperelliptic. So we know that the canonical image is a
quartic. We solved for this quartic and found only one solution, so that must be
the correct quartic.

We return to X0(30). We’ve worked out that this is hyperelliptic and so has a
model

y2 = h(x), h = a8x
8 + · · ·+ a0.

This model is not unique. If (u, v) is any point on this model, we then we can
change the model to move this point to infinity:

x′ =
1

x− u
, y′ =

y

(x− u)4
.

The new model has the form

y′
2

= v2x′
8

+ · · · .

If v = 0 (i.e. the original point was a Weierstrass point) then we would end up with

y′
2

= degree 7 but otherwise it is y′
2

= degree 8. Now the infinity cusp c∞ is a
point on X0(30). Let’s move c∞ to infinity on the hyperelliptic model. Question:
Do we obtain a degree 7 model or a degree 8 model?
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Exercise 46. (i) Let

X : y2 = a2g+2x
2g+2 + · · ·+ a0

be a curve of genus g where a2g+2 6= 0. Let ∞+ be one of the two points
at infinity. Show that

ord∞+

(
dx

y

)
= g − 1, ord∞+

(
xdx

y

)
= g − 2, . . . , ord∞+

(
xg−1dx

y

)
= 0.

(ii) Let

X : y2 = a2g+1x
2g+1 + · · ·+ a0

be a curve of genus g (here necessarily a2g+1 6= 0 otherwise the genus
would be smaller than g). Let ∞ be the unique point at infinity. Show
that

ord∞

(
dx

y

)
= 2(g − 1), ord∞

(
xdx

y

)
= 2(g − 2), . . . , ord∞

(
xg−1dx

y

)
= 0.

We can now answer the question. We have the q-expansions of f1, f2, f3. What
you need to know is that q is a uniformizer at c∞ (i.e. the order of vanishing of q
at c∞ is 1). From the q-expansions

ordc∞

(
f1(q)

dq

q

)
= 0, ordc∞

(
f2(q)

dq

q

)
= 1, ordc∞

(
f3(q)

dq

q

)
= 2.

Any regular differential has to be a linear combination of f1dq/q, f2dq/q, f3dq/q.
Thus there is no non-zero regular differential that has valuation 4 at c∞. However,
in the degree 7 model dx/y is a regular differential that has valuation 4. The answer
to our question is that we obtain a degree 8 model. (In slightly technical language
c∞ is not a Weierstrass point.) Replacing y by −y we can suppose that c∞ =∞+.
But

ord∞+

(
dx

y

)
= 2, ord∞+

(
x
dx

y

)
= 1, ord∞+

(
x2
dx

y

)
= 0.

From the valuations

dx

y
= α3 · f3(q)

dq

q
,

xdx

y
= β2

f2(q)dq

q
+ β3

f3(q)dq

q
,

x2dx

y
= γ1

f1(q)dq

q
+ γ2

f2(q)dq

q
+ γ3

f3(q)dq

q
,

where α3, β2 and γ1 6= 0. The change of hyperelliptic model

x 7→ rx, y 7→ sy

keeps the points at infinity where they are but have the following effect on the
differentials:

dx

y
7→ (r/s)

dx

y
,

xdx

y
7→ (r2/s)

dx

y
, . . .

Thus we can make α3 = 1 and β2 = 1. Moreover the change of model

x 7→ x+ t, y 7→ y.
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has the effect
dx

y
7→ dx

y
,

xdx

y
7→ xdx

y
+ t

dx

y
.

So we can suppose β3 = 0. i.e.

dx

y
= f3(q)

dq

q
,

xdx

y
= f2(q)

dq

q
.

Hence

x = f2(q)/f3(q) =
1

q
− 1 + q − q2 + 2q3 − 2q4 + 2q5 − 3q6 + 5q7 − 5q8 + 5q9 + · · · .

y =
dx

dq
· q

f3(q)
= − 1

q4
+

1

q3
− 1

q2
− 1

q
+ 5− 15q + 29q2 − 60q3 + 118q4 − 210q5+

346q6 − 573q7 + 929q8 − 1454q9 + · · · .
Recall that we want a model of the form

y2 = a8x
8 + a7x

7 + · · ·+ a0

where a8 is non-zero. By comparing the coefficients of q−8 on both sides we see
that a8 = 1. Now

y2 − x8 =
6

q7
− 33

q6
+ · · ·

so a7 = 6. Also

y2 − x8 − 6x7 =
9

q6
− 48

q5
+ · · ·

so a6 = 9. Continuing in this fashion we arrive at

y2 − x8 − 6x7 − 9x6 − 6x5 + 4x4 + 6x3 − 9x2 + 6x− 1 = O(q100).

Therefore, a model for X0(30) is

X0(30) : y2 = x8 + 6x7 + 9x6 + 6x5 − 4x4 − 6x3 + 9x2 − 6x+ 1.





CHAPTER 9

Some Open Problems

There are deep and difficult open problems such as determination of the ra-
tional points on X+

ns(p). However, here we mention open problems that might be
easier. Historically X0(p) and X1(p) have received much more attention than other
modular curves.

1. Mazur’s Vertical Uniformity Problem

Given an elliptic curve E/Q, we can for each prime p construct a family of
representations

ρE,pr : GQ → GL(E[pr]) ∼= GL2(Z/prZ).

The Tate module Tp(E) is defined as the inverse limit

Tp(E) := lim
←
E[pr] ∼= Z2

p.

Putting all the ρE,pr together we obtain a representation

ρE,p : GQ → GL(Tp(E)) ∼= GL2(Zp).

The following question is due to Mazur, and known as the Vertical Uniformity
Problem.
Problem: Determine all possible ρE,p(GQ) as E ranges over all elliptic curve E/Q
without CM, and p over all primes.

This was in fact solved by Rouse and Zureick-Brown [20] for p = 2, who found
a total of 1208 possibilities for ρE,2(GQ). This involved the study of rational points
on 727 modular curves. However the question is still open for all other values of
p. If one accepts Serre’s Uniformity Conjecture then one needs to solve Mazur’s
Vertical Uniformity Problem for 3 ≤ p ≤ 37.

2. Torsion on Modular Jacobians

Write C0(H) be the subgroup of JH(Q) generated by classes of differences
of cusps. Let C0(H)(Q) := C0(H) ∩ JH(Q). The group C0(H) is known as the
cuspidal subgroup, and C0(H)(Q) as the rational cuspidal subgroup. For
the following theorem see [15], [8], [9].

Theorem 47 (Manin–Drinfel’d). C0(H) ⊂ JH(Q)tors, and C0(H)(Q) ⊂ JH(Q)tors.

Mazur’s Theorem 42 says that the rational cuspidal subgroup is equal to the
torsion subgroup for J0(p) (p prime). We do not know if this is necessarily true for
other families of modular curves.

Conjecture (Generalized Ogg Conjecture). Write C0(N)(Q) for the rational
cuspidal subgroup of J0(N). Then J0(N)(Q)tors = C0(N)(Q).

41
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This is called the “generalized Ogg conjecture” because Theorem 42 for J0(p)
was a conjecture of Ogg before it was proved by Mazur. As far as I can see there
is not a lot of evidence for the generalized Ogg conjecture, and it might be worth
searching for counterexamples!

More generally, it would be interesting to have some results on the torsion
subgroups for J1(p), J+

ns(p), J
+
s (p), JA4(p), JS4(p), JA5(p), . . . .

3. Chen’s Isogeny

Chen has shown that

J+
ns(p) ∼ (J0(p2)/wp2)new, J+

s (p) ∼ J0(p)× (J0(p2)/wp2)new.

It would be interesting to know the degrees of these isogenies. Are there analogous
isogenies for JA4

(p), JS4
(p), JA5

(p)?
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