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What is an integral point?

K be a number field; Ok ring of integers of K;
S a finite set of places of K;
Os ={ae K : ordy(a) >0, for all p ¢ S}.

V /K a smooth projective irreducible variety;

@ W a subvariety defined over K.

Define
(V-W)Os)={Pe V(K) : (Pmodp)¢ W forall p ¢ S}.
Example. Let a, b € Z with 4a3 4+ 27b% # 0. Let
E : {Y2=X3+aX+b}U{ocx}

(E —0)(Z) = {(a, B) € E(Q) : ordp(cx), ordp(B) > 0 for all primes p}
= {(a,8) €7 : % =0+ aa + b}
(But E(Z) = E(Q) V=E W=10)



Let C/K be a smooth projective curve. Let Py,...,P, € C(K). Let

C'=C—{P1,Ps,...,P} C punctured at Py, ..., P,.

The Euler characteristic of C'is x(C') = 2—2g(C) —r.

Theorem (Faltings—Siegel)
If C' is hyperbolic (i.e. x(C') < 0) then C'(Ok) is finite.

Example
e If g(C) > 2 then C’ is hyperbolic.
@ E — oo is hyperbolic.
o P! —{0,1,00} is hyperbolic.




Integral points on P! — {0, 1, 00}
P1(Ok) = PY{(K) = K U cc.

(P! — 20)(0k) = Ok.
(P* — {0,00})(Ok) = OF.

(P! —{0,1,00})(Ok) ={e € O} : e —1€ O}

We obtain a 1 — 1 correspondence between (P! — {0,1,00})(Ok) and
solutions to the unit equation:

e+d=1, g, 6 € Og.



Arithmetic Puncturing Problem

@ K be a number field; Ok ring of integers of K;
e V/K a smooth projective irreducible variety;

o W a subvariety defined over K.

Arithmetic Puncturing Problem (Hassett and Tschinkel, 2001).
@ Suppose codim(V, W) > 2.
@ Suppose the rational points of V are potentially dense: i.e. there is a
finite extension F/K such that V(F) is Zariski dense in V.

@ Is the set of integral points on V — W potentially dense?
i.e. Is there a finite extension L/K, and a finite set of places T such
that (V — W)(Oy 1) is Zariski dense in V?

Example

(Hassett and Tschinkel) Let A be an abelian variety. Suppose End(A)* is
infinite. Then the integral points on A — 0 are potentially dense.




Arithmetic Puncturing Problem

@ K be a number field; Ok ring of integers of K;
e V/K a smooth projective irreducible variety;

o W a subvariety defined over K.

Arithmetic Puncturing Problem (Hassett and Tschinkel, 2001).
@ Suppose codim(V, W) > 2.
@ Suppose the rational points of V are potentially dense: i.e. there is a
finite extension F/K such that V/(F) is Zariski dense in V.

@ Is the set of integral points on V — W potentially dense?
i.e. Is there a finite extension L/K, and a finite set of places T such

that (V — W)(Oy 1) is Zariski dense in V?
Theorem (McKinnon and Roth)

Let V' be a surface with negative Kodaira dimension. Then the integral
points on V — W are potentially dense.




Theorem (Triantafillou, March 2020)
Let n=[K : Q]. Suppose

e 3{n;

@ 3 splits completely in K.
Then the unit equation

e+d=1, g, 6 € Og.

has no solutions.

Proof.

Let p1,...,pn be the primes above 3. Then Ok /p; = F3 = {0,1, —1}.

Suppose (&, 6) is a solution to (1). Then
l=e+0=(+1)+(£1)
Hence e = d = —1 (mod p;). Thus

e=-1+3¢, &=—14+3,

(mod p;).

¢> wGOK'




Assumptions:
® 31n;
@ 3 splits completely in K.
ect+d=1, e, 6 € O.
Then
l=e+0=(£1)+(£1) (mod p)).

Hence ¢ = § = —1 (mod p;). Thus
e=-1+3¢, 6=-1+3¢, ¢, e Ok
l=c+6=-2+3(0+1) = ¢+ =1
But ¢ is a unit, so
+1 = Norm(e) = Norm(—14-3¢) = (—1)"+(—1)""1x3x Trace(¢) (mod 9).
Trace(¢) = Trace(1)) =0 (mod 3).
n=[K:Q]=Trace(l) = Trace(¢ + ) =0 (mod 3)

Contradiction! ]



Theorem (Triantafillou, March 2020)
Suppose

° 3{[K:Q

@ 3 splits completely in K.
Then the unit equation

e+6=1,
has no solutions.

g, 6€ 0K




Theorem (Triantafillou, March 2020)
Suppose

o 31IK: Ql;

@ 3 splits completely in K.
Then the unit equation

e+6=1, g, 6€ 0K
has no solutions.

Theorem (Corollary to Triantafillou's proof)
Suppose
e 3{[K:QJ;
o 3 splits completely in K.
Let V ={e € K* : ordy(e) =0 for all p | 3 and Norm(e) = £1 mod 9}.
Then the equation

e+0d=1, g, eV
has no solutions.




Local Obstructions to the Unit Equation (jt wk with A.
Kraus and N. Freitas)

Let K/Q be Galois.

o n=[K:Q], G = Gal(K/Q);

@ p is a prime of Ok above rational prime p;

oy == {0e€G : o(a)=a (modyp) forall a € Ok} (inertia)
Fact: p is totally ramified in K iff |, = G.
Suppose p is totally ramified and consider

e+d=1, g, 6 € Og.
+1 = Norm(e H o(e Ha = " (mod p).
oeG o€l
2" =1 (mod p) and (e-1)>=1 (modp).
Sp I Res(X?" =1, (X —1)°"—1), . p|Res(X*" —1,(X —1)" —1).



Conclusion: If
e [K : Q] = n (not necessarily Galois);
@ the unit equation has solutions;
@ p is totally ramified in K,

then p | Res(X?" —1,(X —1)?" —1).

Easy exercise: Res(X?" —1,(X —1)*" - 1) =0 = 3| n.

Theorem (Freitas, Kraus, S)

Let ¢ # 3 be a prime. Then there are only finitely many degree ¢ cyclic
number fields K such that the unit equation has solutions in K.

Proof.
@ Let K be cyclic of degree £. Let p be a rational prime.

Let e, be the ramification index. Then e, | £. So e, =1 or e, = /.
Either p is unramified or it is totally ramified.

Suppose the unit equation has solutions in K.

. all ramified primes divide Res(X? — 1, (X — 1)? — 1) # 0.




Theorem (Freitas, Kraus, S)

Let ¢ # 3 be a prime. Then there are only finitely many degree ¢ cyclic
number fields K such that the unit equation has solutions in K.

Example

Take £ = 5. Then Res(X10 — 1, (X —1)10 — 1) = -3 x 11° x 313,
The only cyclic degree 5 field for which the unit equation has a solution is

Q&)™

The unit equation has 570 solutions in Q(¢11)™.

Nagell, 1969. Gave two infinite families of cubic fields where the unit
equation has solutions. One of the two families is cyclic.



Punctured Abelian Varieties
Lemma

Let A/Q be an abelian variety and p be a prime of good reduction for A.
Suppose

e A(Q)=0;

o K is a number field, p totally ramifies in K.

o gcd(n, #A(Fp)) =1 where n = [K : Q).
Then (A —0)(Ok) = 0.

Proof.
Write pOk = p". Let Q € A(K). Then

0 = Tracex/p(Q) = n@ (mod p).
—_——

cAQ

Since ged(n, #A(Fp)) = 1, we have Q =0 (mod p).
Q¢ (A—0)(Ox). 0




Lemma

Let A/Q be an abelian variety and p be a prime of good reduction for A.
Suppose

e A(Q)=0;

@ K is a number field, p totally ramifies in K.

o gcd(n, #A(Fp)) = 1 where n = [K : Q).
Then (A—0)(Ok) = 0.

Example
o Let E : Y2=X3-16.
o Let K = Q(v/—3). Then E(K) =0.
o Let p=2 (mod 3), p # 2.
@ Let K, be the n-th layer of the anti-cyclotomic Z,-extension

(Gal(Kn/K) = Z/p"Z).
e Foreveryn>1, (E—0)(Ok,) =0.
@ However, rank(E(K,)) — oo as n — oo (attribution?).




Theorem

Let ¢ be a rational prime. Let A be an abelian variety defined over Q.
Suppose that

(i) A@Q)=0;
(ii) Thereis p=1 (mod ¢) of good reduction for A such that
L1 #A(Fp).
For X >0, let F,"(X) be set of cyclic number fields K of degree ¢ and
conductor at most X. Then

#{K € FYX) : (A—0)(Ok) #0} 1
#Fi"(X) - O((IogX)”>’ 10

@ Assumption (ii) is equivalent to: there is an element
o € Gal(Q(A[f])/Q(¢¢)) which acts freely on A[].



Example

C/Q : y?*+(x+1)y = x> —55x* —87x3 —54x*> —16x—2 LMFDB 8969.a

@ Let A = J the Jacobian of C.
o Endg(A) =Z.
e A(Q) =0.

o Condition (ii) is satisfied for all primes ¢ (checked p, , is surjective
using the method of Dieulefait for ¢ # 2, 3, 8969).

For any prime ¢ and any finite S of rational primes,
(A—0)(Ok,s) =0 for 100% of cyclic degree ¢ number fields K.

@ For any prime ¢ and any finite S of rational primes,
(C — 00)(Ok,s) = 0 for 100% of cyclic degree £ number fields K.




Homework

o Fix n > 2. Fix prime p.
@ There are finitely many degree n étale algebras F/Q,.
o For such F, let

HrF ={e € Of : Norm(e) = +1}.

o Let

Bad,, = {F/Q)p étale of degree n :
equation € + § = 1 has solution with ¢, 6 € Hg}.

e Evaluate the proportion of K/Q of degree n with K ® Q, € Bad,p.

@ This will be an upper bound for the proportion of K/Q of degree n
such that (P! — {0,1,0})(Ok) # 0.

Thank you!



