Arithmetic of punctured curves and punctured abelian varieties

Samir Siksek (Warwick)

14 May 2021

What is an integral point?

- K be a number field; \mathcal{O}_K ring of integers of K;
- S a finite set of places of K;
- $\mathcal{O}_S = \{ \alpha \in K : \operatorname{ord}_{\mathfrak{p}}(\alpha) \geq 0, \quad \text{for all } \mathfrak{p} \notin S \}.$
- ullet V/K a smooth projective irreducible variety;
- W a subvariety defined over K.

Define

$$(V-W)(\mathcal{O}_S)=\{P\in V(K)\ :\ (P\ \mathsf{mod}\ \mathfrak{p})\notin W\ \mathsf{for\ all}\ \mathfrak{p}\notin S\}.$$

Example. Let $a, b \in \mathbb{Z}$ with $4a^3 + 27b^2 \neq 0$. Let

$$E : \{Y^2 = X^3 + aX + b\} \cup \{\infty\}$$

$$\begin{split} (E-\infty)(\mathbb{Z}) &= \{(\alpha,\beta) \in E(\mathbb{Q}) \ : \ \operatorname{ord}_p(\alpha), \ \operatorname{ord}_p(\beta) \geq 0 \ \operatorname{for \ all \ primes} \ p\} \\ &= \{(\alpha,\beta) \in \mathbb{Z}^2 \ : \ \beta^2 = \alpha^3 + a\alpha + b\}. \end{split}$$

(But
$$E(\mathbb{Z}) = E(\mathbb{Q})$$
 $V = E, W = \emptyset$.)

Let C/K be a smooth projective curve. Let $P_1, \ldots, P_r \in C(K)$. Let

$$C' = C - \{P_1, P_2, \dots, P_r\}$$
 C punctured at P_1, \dots, P_r .

The **Euler characteristic** of C' is $\chi(C') = 2 - 2g(C) - r$.

Theorem (Faltings–Siegel)

If C' is hyperbolic (i.e. $\chi(C') < 0$) then $C'(\mathcal{O}_K)$ is finite.

Example

- If $g(C) \ge 2$ then C' is hyperbolic.
 - $E \infty$ is hyperbolic.
 - $\mathbb{P}^1 \{0, 1, \infty\}$ is hyperbolic.

Integral points on $\mathbb{P}^1-\{0,1,\infty\}$

$$\mathbb{P}^1(\mathcal{O}_K) = \mathbb{P}^1(K) = K \cup \infty.$$

$$(\mathbb{P}^1 - \infty)(\mathcal{O}_K) = \mathcal{O}_K.$$

$$(\mathbb{P}^1 - \{0, \infty\})(\mathcal{O}_K) = \mathcal{O}_K^{\times}.$$

$$(\mathbb{P}^1 - \{0, 1, \infty\})(\mathcal{O}_K) = \{\varepsilon \in \mathcal{O}_K^{\times} : \varepsilon - 1 \in \mathcal{O}_K^{\times}\}.$$

We obtain a 1-1 correspondence between $(\mathbb{P}^1 - \{0,1,\infty\})(\mathcal{O}_K)$ and solutions to the **unit equation**:

$$\varepsilon + \delta = 1, \qquad \varepsilon, \ \delta \in \mathcal{O}_{K}^{\times}.$$

Arithmetic Puncturing Problem

- K be a number field; \mathcal{O}_K ring of integers of K;
- V/K a smooth projective irreducible variety;
- W a subvariety defined over K.

Arithmetic Puncturing Problem (Hassett and Tschinkel, 2001).

- Suppose $\operatorname{codim}(V, W) \geq 2$.
- Suppose the rational points of V are potentially dense: i.e. there is a finite extension F/K such that V(F) is Zariski dense in V.
- Is the set of integral points on V-W potentially dense? i.e. Is there a finite extension L/K, and a finite set of places T such that $(V-W)(\mathcal{O}_{L,T})$ is Zariski dense in V?

Example

(Hassett and Tschinkel) Let A be an abelian variety. Suppose $\operatorname{End}(A)^{\times}$ is infinite. Then the integral points on A-0 are potentially dense.

Arithmetic Puncturing Problem

- K be a number field; \mathcal{O}_K ring of integers of K;
- V/K a smooth projective irreducible variety;
- W a subvariety defined over K.

Arithmetic Puncturing Problem (Hassett and Tschinkel, 2001).

- Suppose $\operatorname{codim}(V, W) \geq 2$.
- Suppose the rational points of V are potentially dense: i.e. there is a finite extension F/K such that V(F) is Zariski dense in V.
- Is the set of integral points on V-W potentially dense? i.e. Is there a finite extension L/K, and a finite set of places T such that $(V-W)(\mathcal{O}_{L,T})$ is Zariski dense in V?

Theorem (McKinnon and Roth)

Let V be a surface with negative Kodaira dimension. Then the integral points on V-W are potentially dense.

Theorem (Triantafillou, March 2020) Let $n = [K : \mathbb{Q}]$. Suppose

- 3∤n;
- 3 splits completely in K.

Then the unit equation

has no solutions.

Duant

Proof.

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be the primes above 3. Then $\mathcal{O}_K/\mathfrak{p}_i = \mathbb{F}_3 = \{\overline{0}, \overline{1}, \overline{-1}\}$. Suppose (ε, δ) is a solution to (1). Then

Hence
$$\varepsilon \equiv \delta \equiv -1 \pmod{\mathfrak{p}_i}$$
. Thus

$$arepsilon = -1 + 3\phi, \qquad \delta = -1 + 3\psi, \qquad \phi, \; \psi \in \mathcal{O}_{\mathcal{K}}.$$

 $\varepsilon + \delta = 1, \qquad \varepsilon, \ \delta \in \mathcal{O}_{\kappa}^{\times}.$

 $1 = \varepsilon + \delta \equiv (\pm 1) + (\pm 1) \pmod{\mathfrak{p}_i}$.

• 3 ∤ n;

Assumptions:

• 3 splits completely in K. • $\varepsilon + \delta = 1$, $\varepsilon, \ \delta \in \mathcal{O}_{\kappa}^{\times}$.

Then $1 = \varepsilon + \delta \equiv (\pm 1) + (\pm 1) \pmod{\mathfrak{p}_i}$.

Hence $\varepsilon \equiv \delta \equiv -1 \pmod{\mathfrak{p}_i}$. Thus

 $\varepsilon = -1 + 3\phi$. $\delta = -1 + 3\psi$, ϕ , $\psi \in \mathcal{O}_{\kappa}$.

 $1 = \varepsilon + \delta = -2 + 3(\phi + \psi)$ \Longrightarrow $\phi + \psi = 1$.

But ε is a unit, so

 $\pm 1 = \text{Norm}(\varepsilon) = \text{Norm}(-1+3\phi) \equiv (-1)^n + (-1)^{n-1} \times 3 \times \text{Trace}(\phi) \pmod{9}$

 \therefore Trace(ϕ) \equiv Trace(ψ) \equiv 0 (mod 3).

 $n = [K : \mathbb{Q}] = \text{Trace}(1) = \text{Trace}(\phi + \psi) \equiv 0 \pmod{3}$

Contradiction!

Theorem (Triantafillou, March 2020) Suppose

- . o l
- 3 ∤ [K : ℚ];

has no solutions.

• 3 splits completely in K.

Then the unit equation

$$\varepsilon + \delta = 1, \qquad \varepsilon, \,\, \delta \in \mathcal{O}_{\mathcal{K}}^{\times}$$

Theorem (Triantafillou, March 2020) Suppose

- 3∤[K:ℚ];
- 3 splits completely in K.

Then the unit equation

$$arepsilon+\delta=1, \qquad arepsilon, \; \delta\in\mathcal{O}_K^{ imes}$$
 has no solutions.

Theorem (Corollary to Triantafillou's proof)

- *Suppose* 3 ∤ [*K* : ℚ];
 - 3 splits completely in K.

Let $V = \{ \varepsilon \in K^* : \operatorname{ord}_{\mathfrak{p}}(\varepsilon) = 0 \text{ for all } \mathfrak{p} \mid 3 \text{ and } \operatorname{Norm}(\varepsilon) \equiv \pm 1 \operatorname{mod } 9 \}.$

$$\varepsilon + \delta = 1, \qquad \varepsilon, \,\, \delta \in V$$

has no solutions.

Then the equation

Local Obstructions to the Unit Equation (jt wk with A. Kraus and N. Freitas)

Let K/\mathbb{Q} be Galois.

- $n = [K : \mathbb{Q}], \qquad G = Gal(K/\mathbb{Q});$
- \mathfrak{p} is a prime of \mathcal{O}_K above rational prime p;
- $I_{\mathfrak{p}} := \{ \sigma \in G : \sigma(\alpha) \equiv \alpha \pmod{\mathfrak{p}} \text{ for all } \alpha \in \mathcal{O}_K \}$ (inertia)

Fact: p is totally ramified in K iff $I_p = G$.

Suppose p is totally ramified and consider

$$arepsilon+\delta=1, \qquad arepsilon, \; \delta\in\mathcal{O}_{\mathcal{K}}^{ imes}.$$

$$\pm 1 \; = \; \mathsf{Norm}(arepsilon)=\; \prod_{\sigma\in G}\sigma(arepsilon)=\; \prod_{\sigma\in I_{\mathfrak{p}}}\sigma(arepsilon)\equiv\; arepsilon^n \pmod{\mathfrak{p}}.$$

$$\varepsilon^{2n} \equiv 1 \pmod{\mathfrak{p}}$$
 and $(\varepsilon - 1)^{2n} \equiv 1 \pmod{\mathfrak{p}}$.

$$\therefore \mathfrak{p} \mid \text{Res}(X^{2n} - 1, (X - 1)^{2n} - 1), \qquad \therefore \mathfrak{p} \mid \text{Res}(X^{2n} - 1, (X - 1)^{2n} - 1).$$

Conclusion: If

- $[K : \mathbb{Q}] = n$ (not necessarily Galois);
- the unit equation has solutions;
- p is totally ramified in K,

then $p \mid \text{Res}(X^{2n} - 1, (X - 1)^{2n} - 1)$.

Easy exercise:
$$\operatorname{Res}(X^{2n}-1,(X-1)^{2n}-1)=0 \iff 3\mid n.$$

Theorem (Freitas, Kraus, S)

Let $\ell \neq 3$ be a prime. Then there are only finitely many degree ℓ cyclic number fields K such that the unit equation has solutions in K.

Proof.

- Let K be cyclic of degree ℓ . Let p be a rational prime.
- Let e_p be the ramification index. Then $e_p \mid \ell$. So $e_p = 1$ or $e_p = \ell$.
- Either *p* is unramified or it is totally ramified.
- ullet Suppose the unit equation has solutions in K.
- : all ramified primes divide $\operatorname{Res}(X^{2\ell}-1,(X-1)^{2\ell}-1) \neq 0$.

Theorem (Freitas, Kraus, S)

Let $\ell \neq 3$ be a prime. Then there are only finitely many degree ℓ cyclic number fields K such that the unit equation has solutions in K.

Example

Take $\ell=5$. Then $\operatorname{Res}(X^{10}-1,(X-1)^{10}-1)=-3\times 11^9\times 31^3$. The only cyclic degree 5 field for which the unit equation has a solution is $\mathbb{Q}(\zeta_{11})^+$.

The unit equation has 570 solutions in $\mathbb{Q}(\zeta_{11})^+$.

Nagell, 1969. Gave two infinite families of cubic fields where the unit equation has solutions. One of the two families is cyclic.

Punctured Abelian Varieties

Lemma

Let A/\mathbb{Q} be an abelian variety and p be a prime of good reduction for A. Suppose

- $A(\mathbb{Q}) = 0$;
- K is a number field, p totally ramifies in K.
- $gcd(n, \#A(\mathbb{F}_p)) = 1$ where $n = [K : \mathbb{Q}]$.

Then $(A-0)(\mathcal{O}_K)=\emptyset$.

Proof.

Write $p\mathcal{O}_K = \mathfrak{p}^n$. Let $Q \in A(K)$. Then

$$0 = \underbrace{\mathsf{Trace}_{K/\mathbb{Q}}(Q)}_{\in A(\mathbb{Q})} \equiv nQ \pmod{\mathfrak{p}}.$$

But
$$\mathbb{F}_{\mathfrak{p}} = \mathbb{F}_{\boldsymbol{\rho}}$$
.

Since $\gcd(n,\#A(\mathbb{F}_p))=1$, we have $Q\equiv 0\pmod{\mathfrak{p}}$.

$$Q \notin (A-0)(\mathcal{O}_K).$$

Lemma

Let A/\mathbb{Q} be an abelian variety and p be a prime of good reduction for A. Suppose

- $A(\mathbb{Q})=0$;
- K is a number field, p totally ramifies in K.
- $gcd(n, \#A(\mathbb{F}_p)) = 1$ where $n = [K : \mathbb{Q}]$.

Then $(A-0)(\mathcal{O}_K)=\emptyset$.

Example

- Let $E: Y^2 = X^3 16$.
- Let $K = \mathbb{Q}(\sqrt{-3})$. Then E(K) = 0.
- Let $p \equiv 2 \pmod{3}$, $p \neq 2$.
- Let K_n be the *n*-th layer of the anti-cyclotomic \mathbb{Z}_p -extension $(\operatorname{Gal}(K_n/K) = \mathbb{Z}/p^n\mathbb{Z})$.
- For every $n \geq 1$, $(E-0)(\mathcal{O}_{K_n}) = \emptyset$.
- However, rank $(E(K_n)) \to \infty$ as $n \to \infty$ (attribution?).

Theorem

Let ℓ be a rational prime. Let A be an abelian variety defined over \mathbb{Q} . Suppose that

- (i) $A(\mathbb{Q}) = 0$;
- (ii) There is $p \equiv 1 \pmod{\ell}$ of good reduction for A such that $\ell \nmid \#A(\mathbb{F}_p)$.

For X>0, let $\mathcal{F}_{\ell}^{\mathrm{cyc}}(X)$ be set of cyclic number fields K of degree ℓ and conductor at most X. Then

$$\frac{\#\{K\in\mathcal{F}_{\ell}^{\mathrm{cyc}}(X)\,:\, (A-0)(\mathcal{O}_K)\neq\emptyset\}}{\#\mathcal{F}_{\ell}^{\mathrm{cyc}}(X)}\;=\;O\left(\frac{1}{(\log X)^{\gamma}}\right),\qquad \gamma>0.$$

• Assumption (ii) is equivalent to: there is an element $\sigma \in \operatorname{Gal}(\mathbb{Q}(A[\ell])/\mathbb{Q}(\zeta_{\ell}))$ which acts freely on $A[\ell]$.

Example

$$C/\mathbb{O}: y^2+(x+1)y=x^5-55x^4-87x^3-54x^2-16x-2$$
 LMFDB 8969.a

- Let A = J the Jacobian of C.
- ullet End $_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}.$
- $A(\mathbb{Q})=0$.
- Condition (ii) is satisfied for all primes ℓ (checked $\overline{\rho}_{A,\ell}$ is surjective using the method of Dieulefait for $\ell \neq 2, 3, 8969$).
- For any prime ℓ and any finite S of rational primes, $(A-0)(\mathcal{O}_{K.S})=\emptyset$ for 100% of cyclic degree ℓ number fields K.
- For any prime ℓ and any finite S of rational primes, $(C-\infty)(\mathcal{O}_{K,S})=\emptyset$ for 100% of cyclic degree ℓ number fields K.

Homework

- Fix $n \ge 2$. Fix prime p.
- There are finitely many degree n étale algebras F/\mathbb{Q}_p .
- For such F, let

$$H_F = \{ \varepsilon \in \mathcal{O}_F^{\times} : \operatorname{Norm}(\varepsilon) = \pm 1 \}.$$

Let

$$\mathsf{Bad}_{n,p} = \{ F/\mathbb{Q}_p \text{ \'etale of degree } n : \\ \mathsf{equation} \ \varepsilon + \delta = 1 \text{ has solution with } \varepsilon, \ \delta \in \mathcal{H}_F \}.$$

- ullet Evaluate the proportion of K/\mathbb{Q} of degree n with $K\otimes \mathbb{Q}_p\in \mathsf{Bad}_{n,p}.$
- This will be an upper bound for the proportion of K/\mathbb{Q} of degree n such that $(\mathbb{P}^1 \{0, 1, \infty\})(\mathcal{O}_K) \neq \emptyset$.

Thank you!