
On the generalized Fermat equation x2` + y 2m = zp

Samir Siksek
joint work with Samuele Anni

University of Warwick

29 June 2015



Generalized Fermat Equation

xp + yq = z r , (p, q, r ∈ Z≥2). Solution (x , y , z) is

1 non-trivial if xyz 6= 0.

2 primitive if gcd(x , y , z) = 1.

Conjecture (Darmon & Granville, Tijdeman, Zagier, Beal)

Suppose p−1 + q−1 + r−1 < 1. The only non-trivial primitive solutions to
xp + yq = z r are

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282,

14143 + 22134592 = 657, 92623 + 153122832 = 1137,

438 + 962223 = 300429072, 338 + 15490342 = 156133.

Poonen–Schaefer–Stoll: (2, 3, 7).
Bruin: (2, 3, 8), (2, 8, 3), (2, 3, 9), (2, 4, 5), (2, 5, 4).
Many others . . .



Infinite Families of Exponents

Wiles: (p, p, p).

Darmon and Merel: (p, p, 2), (p, p, 3).

Many other infinite families by many people . . .

All infinite families use Frey curves, modularity and level-lowering over Q
(or Q-curves).



Näıve idea

xp + yp = z` (solve Fermat and Catalan at the same time).

(x + y)(x + ζy) . . . (x + ζp−1y) = z` .

x + ζ jy = αjξ
`
j , αj ∈ finite set.

∃εj ∈ Q(ζ) : ε0 (x + y) + ε1 (x + ζy) + ε2 (x + ζ2y) = 0 .

∴ γ0ξ
`
0 + γ1ξ

`
1 + γ2ξ

`
2 = 0 (γ0, γ1, γ2) ∈ finite set.

Looks like x` + y ` + z` = 0 solved by Wiles.

Problem 1: trivial solutions (1, 0, 1) and (0, 1, 1) become non-trivial.

Problem 2: weak modularity thms over non-totally real fields.



Improvement: Freitas

xp + yp = z` factor LHS over K := Q(ζ + ζ−1).

(x + y)

(p−1)/2∏
j=1

(
x2 + y2 + θjxy

)
= z` θj := ζ j + ζ−j ∈ K .

x + y = α0 ξ
`
0, (x2 + y2) + θjxy︸ ︷︷ ︸

fj (x ,y)

= αjξ
`
j , αj ∈ finite set.

∃εj ∈ K : ε0 (x + y)2 + ε1 f1(x , y) + ε2 f2(x , y) = 0 .

∴ γ0ξ
2`
0 + γ1ξ

`
1 + γ2ξ

`
2 = 0 (γ0, γ1, γ1) ∈ finite set.

Looks like x` + y ` + z` = 0 solved by Wiles.

Problem 1: trivial solutions (1, 0, 1) and (0, 1, 0) become non-trivial.
Problem 2: weak modularity thms over non-totally real fields.



Improvement: Freitas II

xp + yp = z` factor LHS over K := Q(ζ + ζ−1).

(x + y)

(p−1)/2∏
j=1

(
x2 + y2 + θjxy

)
= z` θj := ζ j + ζ−j ∈ K .

x + y = α0 ξ
`
0, α0 ∈ finite set.

(x2 + y2) + θjxy︸ ︷︷ ︸
fj (x ,y)

= αjξ
`
j , αj ∈ finite set.

∴ γ0ξ
2`
0 + γ1ξ

`
1 + γ2ξ

`
2 = 0 (γ0, γ1, γ1) ∈ finite set.

Theorem (Freitas)

Let ` > C . Then the only primitive solutions to x7 + y7 = 3z` is (1,−1, 0).



A generalized Fermat equation contrived to fit the method
Let `, m, p ≥ 5 be primes, ` 6= p, m 6= p.

x2` + y2m = zp, gcd(x , y , z) = 1.

Modulo 8 we get 2 - z . WLOG 2 | x . Only expected solution (0,±1, 1).{
x` + ymi = (a + bi)p

x` − ymi = (a− bi)p
a, b ∈ Z gcd(a, b) = 1.

x` =
1

2
((a + bi)p + (a− bi)p)

= a ·
p−1∏
j=1

(
(a + bi) + (a− bi)ζ j

)
= a ·

(p−1)/2∏
j=1

(
(θj + 2)a2 + (θj − 2)b2

)
θj = ζ j + ζ−j ∈ K .
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Frey Curve

x` = a ·
(p−1)/2∏

j=1

(
(θj + 2)a2 + (θj − 2)b2

)︸ ︷︷ ︸
fj (a,b)

θj = ζ j + ζ−j ∈ K .

p - x =⇒ a = α`, fj(a, b) · OK = b`j

p | x =⇒ a = p`−1α`, fj(a, b) · OK = pb`j p = (θj − 2) | p

(θ2 − 2)f1(a, b)︸ ︷︷ ︸
u

+ (2− θ1)f2(a, b)︸ ︷︷ ︸
v

+ 4(θ1 − θ2)a2︸ ︷︷ ︸
w

= 0 .

Frey curve E : Y 2 = X (X − u)(X + v), ∆ = 16u2v2w2.

Scale (u, v ,w) to make coprime and make E semistable.

Trivial solution x = 0 =⇒ a = 0 =⇒ w = 0 =⇒ ∆ = 0.



Three Black-Boxes

The proof of Fermat’s Last Theorem uses three big theorems:

1 Mazur: irreducibility of mod ` representations of elliptic curves over Q
for ` > 163 (i.e. absence of `-isogenies).

2 Wiles (and others): modularity of elliptic curves over Q.

3 Ribet: level lowering for mod ` representations—this requires
irreducibility and modularity.

Over totally real fields we have

1 Merel’s uniform boundedness theorem for torsion. No corresponding
result for isogenies.

2 Partial modularity results—no clean statements.

3 Level lowering for mod ` representations works exactly as for
Q—theorems of Fujiwara, Jarvis and Rajaei. Requires irreducibility
and modularity.
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Representations of Elliptic Curves—Crash Course

Let ` be a prime, and E elliptic curve over totally real field K .

ρE ,` : GK → Aut(E [`]) ∼= GL2(F`) GK = Gal(K/K ).

ρE ,` : GK → Aut(T`(E )) ∼= GL2(Z`).

E is modular if there exists a cuspidal Hilbert modular eigenform f such
that ρE ,` ∼ ρf,`.

ρE ,` is reducible if

ρE ,` ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×` .

Goal: Want to bound ` such that ρE ,` is reducible.
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Goal: Want to bound ` such that ρE ,` is reducible.

1 E/K semistable elliptic curve, over Galois totally real field K .

2 ` rational prime unramified in K .

3 ρE ,` is reducible: ρE ,` ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×` .

Fact: υ - `, υ finite =⇒ ρE ,`|Iυ ∼
(

1 ∗
0 1

)
.

Hence ψ1, ψ2 are unramified at all finite υ - ` (i.e. ψi |Iυ = 1).

Serre: υ | ` =⇒ ρE ,`|Iυ ∼
(
χ ∗
0 1

)
or

(
1 ∗
0 χ

)
χ : GK → F×` is the mod ` cyclotomic character: ζσ` = ζ

χ(σ)
` .

Hence, for υ | `,
either ψ1|Iυ = χ|Iυ and ψ2|Iυ = 1;

or ψ1|Iυ = 1 and ψ2|Iυ = χ|Iυ .
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Goal: Want to bound ` such that ρE ,` is reducible.
Know

If υ - ` is finite then, ψi |Iυ = 1.
If υ | ` then

I either ψ1|Iυ = χ|Iυ and ψ2|Iυ = 1;
I or ψ1|Iυ = 1 and ψ2|Iυ = χ|Iυ .

Let
S` = {υ : υ | `}, S = { υ ∈ S` : ψ1|Iυ = χ|Iυ }.

Lemma

Suppose

h+
K = 1 (i.e. the maximal abelian extension of K unramified away for
∞ is K ).

S = ∅.
Then E (K )[`] 6= 0.

Proof.

S = ∅ =⇒ ψ1 : GK → F×` is unramified at all finite places . . .
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Lemma

Suppose

h+
K = 1 (i.e. the maximal abelian extension of K unramified away for
∞ is K ).

S = ∅.
Then E (K )[`] 6= 0.

Proof.

S = ∅ =⇒ ψ1 : GK → F×` is unramified at all finite places

=⇒ ψ1 = 1.

ρE ,` : GK → Aut(E [`]) ∼= GL2(F`), ρE ,` ∼
(

1 ∗
0 ψ2

)
.

In this case, can bound ` by Merel.



If υ - ` is finite then, ψi |Iυ = 1.

If υ | ` then

{
either ψ1|Iυ = χ|Iυ , ψ2|Iυ = 1;

or ψ1|Iυ = 1, ψ2|Iυ = χ|Iυ .

S` = {υ : υ | `}, S = { υ ∈ S` : ψ1|Iυ = χ|Iυ }.

Lemma

Suppose

h+
K = 1 (i.e. the maximal abelian extension of K unramified away

from ∞ is K ).

S = S`.

Then E ′(K )[`] 6= 0, where E ′ is `-isogenous to K .

Proof.

ρE ,` ∼
(
ψ1 ∗
0 ψ2

)
, ρE ′,` ∼

(
ψ2 ∗
0 ψ1

)
.

S = S` =⇒ ψ2 : GK → F×` is unramified at all finite places . . .



Question: Is there a non-empty proper subset S ⊂ S` and a character
ψ : GK → F×` such that ψ|Iυ = 1 for (finite) υ /∈ S , and ψ|Iυ = χ|Iυ for
υ ∈ S?



Class Field Theory (Momose?, Kraus?, David?)

∃ non-empty proper subset S ⊂ S`, and ψ : GK → F×` such that
I ψ|Iυ = 1 for (finite) υ /∈ S , and
I ψ|Iυ = χ|Iυ for υ ∈ S .

Let L = K (ψ). View ψ : Gal(L/K )→ F×` .

Local Artin map Θυ : K×υ → Gal(L/K ).

Let u ∈ OK be a totally positive unit.

Will compute ψ(Θυ(u)) as υ ranges over MK .

Suppose υ | ∞. Then u > 0 in Kυ. So Θυ(u) = 1. So ψ(Θυ(u)) = 1.

Suppose υ -∞. By local reciprocity Θυ(u) ∈ Iυ.
I If υ /∈ S then ψ(Θυ(u)) = 1.
I If υ ∈ S then ψ(Θυ(u)) = χ(Θυ(u)) = NormFυ/F`(u)−1.

Global reciprocity =⇒
∏

Θυ(u) = 1

=⇒
∏
υ∈S

NormFυ/F`(u) = 1 (1 ∈ F`).
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Question: Is there a non-empty proper subset S ⊂ S` and a character
ψ : GK → F×` such that ψ|Iυ = 1 for (finite) υ /∈ S , and ψ|Iυ = χ|Iυ for
υ ∈ S?

If answer is no then can bound ` by Merel.

Suppose answer is YES. Let u be a totally positive unit. Then∏
υ∈S

NormFυ/F`(u) = 1 (1 ∈ F`).

Therefore, there is a non-empty proper subset T ⊂ Gal(K/Q) such that

` | BT (u) BT (u) := Norm

((∏
σ∈T

uσ

)
− 1

)
.

Lemma (Freitas–S). For each non-empty proper subset T ⊂ Gal(K/Q),
there exists totally positive unit u such that BT (u) 6= 0.
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Frey curve again
Recall

p ≥ 5 and K = Q(ζp + ζ−1p ).
Frey curve E/K is semistable.

Lemma

For p = 5, 7, 11, 13, and ` ≥ 5, ` 6= p, the mod ` representation ρE ,` is
irreducible.

Proof.

h+
K = 1 for all these p. Use above and

Classification of `-torsion over fields of
I degree 2 by Kamienny,
I degree 3 by Parent,
I degrees 4, 5, 6 by Derickx, Kamienny, Stein, and Stoll.

“A criterion to rule out torsion groups for elliptic curves over number
fields”, Bruin and Najman.

Computations of K -points on modular curves.



Is it modular?

Let q be a prime, and E elliptic curve over totally real field K .

ρE ,q : GK → Aut(E [q]) ∼= GL2(Fq) GK = Gal(K/K ).

ρE ,q : GK → Aut(Tq(E )) ∼= GL2(Zq).

E is modular if there exists a cuspidal Hilbert modular eigenform f such
that ρE ,q ∼ ρf,q.

Three kinds of modularity theorems:

Kisin, Gee, Breuil, . . . : if q = 3, 5 or 7 and ρ(GK ) is ‘big’ then E is
modular.

Thorne: if q = 5, and
√

5 /∈ K and Pρ(GK ) is dihedral then E is modular.

Skinner & Wiles: if ρ(GK ) is reducible (and other conditions) then E is
modular.

Fix q = 5 and suppose
√

5 /∈ K . Remaining case ρ(GK ) reducible.



Skinner & Wiles

K totally real field,

E/K semistable elliptic curve,

5 unramified in K ,

ρE ,5 is reducible:

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Theorem (Skinner & Wiles)

Suppose K (ψ1/ψ2) is an abelian extension of Q. Then E is modular.

Plan: Start with K abelian over Q. Find sufficient conditions so that
K (ψ1/ψ2) ⊆ K (ζ5). Then (assuming these conditions) E is modular.



Reducible Representations of Elliptic Curves (again)

K real abelian field.

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Fact: ψ1ψ2 = χ where χ : GK → F×5 satisfies ζσ5 = ζ
χ(σ)
5 .

ψ1

ψ2
=

χ

ψ2
2

=
ψ2
1

χ
.

∴ K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2
2), K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2

1).

Plan: If K (ψ2
1) = K or K (ψ2

2) = K then K (ψ1/ψ2) ⊆ K (ζ5). Then E is
modular.



Reducible Representations of Elliptic Curves (again)

K real abelian field.

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Fact: ψ1ψ2 = χ

where χ : GK → F×5 satisfies ζσ5 = ζ
χ(σ)
5 .

ψ1

ψ2
=

χ

ψ2
2

=
ψ2
1

χ
.

∴ K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2
2), K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2

1).

Plan: If K (ψ2
1) = K or K (ψ2

2) = K then K (ψ1/ψ2) ⊆ K (ζ5). Then E is
modular.



Reducible Representations of Elliptic Curves (again)

K real abelian field.

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Fact: ψ1ψ2 = χ where χ : GK → F×5 satisfies ζσ5 = ζ
χ(σ)
5 .

ψ1

ψ2
=

χ

ψ2
2

=
ψ2
1

χ
.

∴ K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2
2), K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2

1).

Plan: If K (ψ2
1) = K or K (ψ2

2) = K then K (ψ1/ψ2) ⊆ K (ζ5). Then E is
modular.



Reducible Representations of Elliptic Curves (again)

K real abelian field.

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Fact: ψ1ψ2 = χ where χ : GK → F×5 satisfies ζσ5 = ζ
χ(σ)
5 .

ψ1

ψ2
=

χ

ψ2
2

=
ψ2
1

χ
.

∴ K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2
2), K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2

1).

Plan: If K (ψ2
1) = K or K (ψ2

2) = K then K (ψ1/ψ2) ⊆ K (ζ5). Then E is
modular.



Reducible Representations of Elliptic Curves (again)

K real abelian field.

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Fact: ψ1ψ2 = χ where χ : GK → F×5 satisfies ζσ5 = ζ
χ(σ)
5 .

ψ1

ψ2
=

χ

ψ2
2

=
ψ2
1

χ
.

∴ K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2
2), K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2

1).

Plan: If K (ψ2
1) = K or K (ψ2

2) = K then K (ψ1/ψ2) ⊆ K (ζ5). Then E is
modular.



Reducible Representations of Elliptic Curves (again)

K real abelian field.

ρE ,5 ∼
(
ψ1 ∗
0 ψ2

)
, ψi : GK → F×5 .

Fact: ψ1ψ2 = χ where χ : GK → F×5 satisfies ζσ5 = ζ
χ(σ)
5 .

ψ1

ψ2
=

χ

ψ2
2

=
ψ2
1

χ
.

∴ K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2
2), K (ψ1/ψ2) ⊆ K (ζ5)K (ψ2

1).

Plan: If K (ψ2
1) = K or K (ψ2

2) = K then K (ψ1/ψ2) ⊆ K (ζ5). Then E is
modular.



Theorem (Anni–S)

Let K be a real abelian number field. Write S5 = {q | 5}. Suppose

(a) 5 is unramified in K ;

(b) the class number of K is odd;

(c) for each non-empty proper subset S of S5, there is some totally
positive unit u of OK such that∏

q∈S
NormFq/F5

(u mod q) 6= 1 .

Then every semistable elliptic curve E over K is modular.

Proof.

By Kisin, . . . and Thorne, can suppose that ρE ,5 is reducible.

By (c), ψ1 or ψ2 is unramified at all finite places.

So ψ2
1 or ψ2

2 is unramified at all places.

By (b), K (ψ2
1) = K or K (ψ2

2) = K .



Modularity of the Frey Curve

Recall

p ≥ 5 and K = Q(ζp + ζ−1p ).

Frey curve E/K is semistable.

Corollary

For p = 5, 7, 11, 13, the Frey curve E is modular.

Proof.

For p = 7, 11, 13 apply the above. For p = 5 we have K = Q(
√

5).
Modularity of elliptic curves over quadratic fields was proved by Freitas, Le
Hung & S.



Theorem (Anni–S)

Let p = 3, 5, 7, 11 or 13. Let `, m ≥ 5 be primes. The only primitive
solutions to

x2` + y2m = zp bi-infinite!

are (±1, 0, 1) and (0,±1, 1).

Proof makes use of level-lowering and Magma computations of Hilbert
modular forms (based on algorithms of Dembélé, Donnelly, Voight and
Greenberg).

Thank You!
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