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Generalized Fermat Equation

xP+y9=2" (p, q, r € Z>3). Solution (x,y, z) is
© non-trivial if xyz # 0.
@ primitive if gcd(x,y,z) = 1.

Conjecture (Darmon & Granville, Tijdeman, Zagier, Beal)
Suppose p~1 4+ g~1 + r~1 < 1. The only non-trivial primitive solutions to
xP+y9=2z"are
1+23=32 25472=3% 734+132=2° 274173=71%
35 +11% =1222, 177 + 762713 = 210639282,
14143 + 22134592 = 657, 92623 + 153122832 = 1137,
438 4+ 962223 = 300429072, 33% 4 15490342 = 156133.

Poonen—Schaefer-Stoll: (2,3,7).
Bruin: (2,3,8), (2,8,3), (2,3,9), (2.4,5), (2,5,4).
Many others . ..



Infinite Families of Exponents

Wiles: (p, p, p).
Darmon and Merel: (p, p,2), (p,p, 3).
Many other infinite families by many people ...

All infinite families use Frey curves, modularity and level-lowering over QQ
(or Q-curves).



Naive idea
xP +yP =z (solve Fermat and Catalan at the same time).

(x+y)(x+Cy)...(x+¢Ply)=2".

x+y = ajgf, aj € finite set.

3e; € Q(¢) : co(x +y)+e(x+Cy)+e(x+3y)=0.

YoE§ + 11&f + 7265 =0 (70,71, 72) € finite set.

Looks like x* + y! 4+ z‘ = 0 solved by Wiles.
Problem 1: trivial solutions (1,0,1) and (0,1, 1) become non-trivial.

Problem 2: weak modularity thms over non-totally real fields.



Improvement: Freitas
xP 4 yP =zt factor LHS over K := Q(¢ +¢71).

(p=1)/2
(x+y) J[ (C+y+0y)=2"  6:=F+¢7 ek
j=1
X+y=ag 55, (x® +y?) + Oixy = ajgf, aj € finite set.
fi(x.y)
Jdej e K : o (x+y)P+efilx,y) +eh(x,y)=0.

703" + Mél + 126 =0 (70,71,71) € finite set.

Looks like x* + y* 4 z* = 0 solved by Wiles.

Problem 1: trivial solutions (1,0, 1) and (0,1, 0) become non-trivial.



Improvement: Freitas Il

xP 4 yP =zt factor LHS over K := Q(¢ + ¢ 1).

(p—1)/2
(x+y) H (X2+y2+0jxy):z£ 0; = I+ (7 eK.
j=1
X+y=ap 56, g € finite set.
(< +y?) + Ojxy = Oéjff, aj € finite set.
fi(x.y)

Y0E8 + &L+ 1265 =0 (v0,71,71) € finite set.

Theorem (Freitas)
Let £ > C. Then the only primitive solutions to x” + y” = 3z% is (1, -1, O)J
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A generalized Fermat equation contrived to fit the method
Let ¢, m, p > 5 be primes, ¢ # p, m # p.
X2 4 y?m = 2P, ged(x,y,z) = 1.

Modulo 8 we get 2t z. WLOG 2 | x. Only expected solution (0,41, 1).

¢ m; _ bi)P
{X Fymi=(a+bi) a,beZ gecd(a,b)=1.

xt —ymi = (a— bi)P

XZZ

((a+ bi)P + (a — bi)P)

N =

p—1
=a- H ((a+ bi) + (a— bi))
j=1

(p—1)/2
=a- J[ ((6;+22+(0;—-2)p°) G =¢+(T ek
j=1



Frey Curve

(p—1)/2
‘=a- [ ((0+2)a+ (65— 2)p%)
j=1

fi(a.b)

ptx = a=da, f(a, b) - Ok = bt

plx = a= plat, fi(a,b) - Ok = pbf

0;=C+¢7 eK.

p=(0;-2)[p

(62 — 2)fi(a, b) + (2 — 01)F(a, b) +4(6; — 62)a*> = 0.

u v

Frey curve E :

Y2 = X(X — u)(X +v),

w

A = 160°v2 w2,

Scale (u, v, w) to make coprime and make E semistable.

Trivial solution x =0 — a=0 — w=0 — A =0.
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Three Black-Boxes

The proof of Fermat's Last Theorem uses three big theorems:

@ Mazur: irreducibility of mod ¢ representations of elliptic curves over Q
for £ > 163 (i.e. absence of {-isogenies).

@ Wiles (and others): modularity of elliptic curves over Q.

© Ribet: level lowering for mod ¢ representations—this requires
irreducibility and modularity.

Over totally real fields we have
@ Merel's uniform boundedness theorem for torsion. No corresponding
result for isogenies.
@ Partial modularity results—no clean statements.

© Level lowering for mod ¢ representations works exactly as for
Q—theorems of Fujiwara, Jarvis and Rajaei. Requires irreducibility
and modularity.
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Goal: Want to bound £ such that pg 4 is reducible.
O E/K semistable elliptic curve, over Galois totally real field K.

@ / rational prime unramified in K.

© pgis reducible:  pg, ~ (Qél * ) , Vi Gk = F).
’ ’ Y2
- _ 1 =x
Fact: vil, wfinite = Dpggli, ~ (0 1) :

Hence 11, 12 are unramified at all finite v 1 ¢ (i.e. ¥;|;, = 1).

_ X % 1 =*
Serre: vl = ~ or
‘ pE,Z|/u <O 1> (0 X>

X : Gk — F is the mod ¢ cyclotomic character: (7 = (2((0).

Hence, for v | ¢,
e either 1|, = x|;, and ¢»|;, =1;
o or 1|, =1and ¥, = x|,



Goal: Want to bound £ such that pg , is reducible.
Know
o If v {{is finite then, ¥;|;, = 1.

o If v | £ then
» either ’(ﬂ1|/v = X|/U and 1/)2‘/1) =1;
> or 1|, =1 and 92|, = X|i,.
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Know
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o If v | £ then
» either 1|, = x|;, and ¢»|;, = 1;
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Lemma
Suppose

o ht =1 (i.e. the maximal abelian extension of K unramified away for
oo is K).
o S=0.
Then E(K)[¢] # 0.

Proof.

S=0 = 1 : Gk — F is unramified at all finite places
= Y1 =1.

— ~ _ 1 =x
pEl . GK = Aut(E[@]) = GLQ(]F@), pEj ~ (0 ¢ ) .

In this case, can bound / by Merel.



o If v {{is finite then, ¥;|;, = 1.

ith — Y
o If v | £ then either Y11, = x[1,, V2, =1;
or w1|lv :]_7 ¢2|IU :X’/U'
Se={v o[}y,  S={veS i, =xl }
Lemma
Suppose

° h; =1 (i.e. the maximal abelian extension of K unramified away
from oo is K).

e S5=25,.
Then E'(K)[{] # 0, where E' is {-isogenous to K.

Proof.

PEL ™~ (%1 1;2) ) PE 0~ (%2 ;) .

$5=S5 — 1 : Gk — IFZX is unramified at all finite places ...




Question: Is there a non-empty proper subset S C Sy and a character
Y Gk — F) such that ¢|;, =1 for (finite) v ¢ S, and ¢|;, = x/;, for
veS?
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Class Field Theory (Momose?, Kraus?, David?)

e J non-empty proper subset S C Sy, and ¢ : Gk — F such that
> |, =1 for (finite) v ¢ S, and
> Y|, = x|y, forvesS.

Let L = K(1). View ¥ : Gal(L/K) — F/.

Local Artin map O, : K — Gal(L/K).

Let u € Ok be a totally positive unit.

Will compute ¥(©,,(u)) as v ranges over M.

Suppose v | co. Then u > 0 in K,. So ©,(u) =1. So ¢¥(©,(u)) = 1.
Suppose v t 0. By local reciprocity ©,,(u) € I,,.

» If v ¢S then ¥(©,(u)) =1.
» If v e Sthen  ¢(0,(u)) = x(Ou(u)) = Normg, /g, (u)*

Global reciprocity = H@“(”) =1

— HNormFU/Fe(u) =1 (TGIFK)
veS
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Question: Is there a non-empty proper subset S C Sy and a character
Y Gk — F such that ¢|;, =1 for (finite) v ¢ S, and |, = x/;, for
veS§?

If answer is no then can bound ¢ by Merel.

Suppose answer is YES. Let u be a totally positive unit. Then

H Normg, /,(u) =1 (1 Fy).
v€eS

Therefore, there is a non-empty proper subset T C Gal(K/Q) such that

0| Br(u) Bt (u) _Norm<<Hu )—1).
oeT

Lemma (Freitas—S). For each non-empty proper subset T C Gal(K/Q),
there exists totally positive unit u such that Br(u) # 0.



Frey curve again
Recall

@ p>5and K:@(CP+C;1).
e Frey curve E/K is semistable.

Lemma

For p=5,7,11, 13, and £ > 5, £ # p, the mod ¢ representation PE is
irreducible.

Proof.

h:g =1 for all these p. Use above and
@ Classification of /-torsion over fields of

degree 2 by Kamienny,
degree 3 by Parent,
degrees 4, 5, 6 by Derickx, Kamienny, Stein, and Stoll.

@ “A criterion to rule out torsion groups for elliptic curves over number
fields”, Bruin and Najman.

@ Computations of K-points on modular curves.




Is it modular?

Let g be a prime, and E elliptic curve over totally real field K.
Peq © Gk — Aut(E[q]) = GL2(Fy) Gk = Gal(K/K).

PE,q : Gk — Aut( Tq(E)) = GL2(Zq).
E is modular if there exists a cuspidal Hilbert modular eigenform § such
that pe g ~ prq-
Three kinds of modularity theorems:

Kisin, Gee, Breuil, ...: if g =3, 5 or 7 and p(Gg) is 'big’ then E is
modular.

Thorne: if g =5, and /5 ¢ K and Pp(Gk) is dihedral then E is modular.

Skinner & Wiles: if p(Gg) is reducible (and other conditions) then E is
modular.

Fix g = 5 and suppose v/5 ¢ K. Remaining case 7(Gk) reducible.



Skinner & Wiles

o K totally real field,
e E/K semistable elliptic curve,
@ 5 unramified in K,

® pg s is reducible:
_ *
PEs5 ™~ (%1 ¢2> . i Gk = Ty

Theorem (Skinner & Wiles)
Suppose K(11/1») is an abelian extension of Q. Then E is modular.

Plan: Start with K abelian over Q. Find sufficient conditions so that
K(v¢1/12) € K((5). Then (assuming these conditions) E is modular.
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Reducible Representations of Elliptic Curves (again)

K real abelian field.

PES5 ™~ <¢1 1;;) ) Vi + Gk — FZ.

Fact: ¢1¢p =x where x : Gx — F¢ satisfies (7 = éda).

(1 Xﬁlﬁ%.

Y2 3 X
K(ih1/v2) € K(Cs)K(¥3),  K(¥1/12) © K(G)K(47).

Plan: If K(v?) = K or K(¢3) = K then K(11/12) C K((s). Then E is
modular.



Theorem (Anni-S)

Let K be a real abelian number field. Write Ss = {q | 5}. Suppose
(a) 5 is unramified in K;

(b) the class number of K is odd;

(c) for each non-empty proper subset S of Ss, there is some totally
positive unit u of Ok such that

H Normg, /p,(u mod q) # 1.
qes

Then every semistable elliptic curve E over K is modular.

Proof.
@ By Kisin, ...and Thorne, can suppose that pg 5 is reducible.
@ By (c), 91 or 1, is unramified at all finite places.

@ So 9?2 or 13 is unramified at all places.
o By (b), K(12) = K or K(12) = K.




Modularity of the Frey Curve

Recall

@ p>5and K:Q(Cp—l—C;l).
e Frey curve E/K is semistable.

Corollary
For p=5, 7, 11, 13, the Frey curve E is modular.

Proof.

For p =7, 11, 13 apply the above. For p =5 we have K = Q(V/5).
Modularity of elliptic curves over quadratic fields was proved by Freitas, Le
Hung & S. Ol

v




Theorem (Anni-S)

Let p=3,5,7,11 or 13. Let £, m > 5 be primes. The only primitive
solutions to
X% 4 y?m = 2P bi-infinite!

are (£1,0,1) and (0, £1,1).
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modular forms (based on algorithms of Dembélé, Donnelly, Voight and
Greenberg).
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Thank You!



