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Abstract. Let E be an elliptic curve over the rationals. A crucial step
in determining a Mordell-Weil basis for E is to exhibit some positive
lower bound λ > 0 for the canonical height ĥ on non-torsion points.
We give a new method for determining such a lower bound, which does
not involve any searching for points.

1 Introduction

Let E be an elliptic curve over the rationals Q given by a minimal Weierstrass
model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

The task of explicitly computing a Mordell-Weil basis for E(Q) can be divided
into three steps (see [10]):

(i) A 2-descent (possibly combined with higher descents) is used to determine
a basis P1, . . . , Pr for a subgroup of E(Q) of finite index.

(ii) A positive lower bound λ for the canonical height ĥ(P ) of non-torsion points
is somehow determined. The geometry of numbers now gives an upper bound
B on the index n of the subgroup of E(Q) spanned by P1, . . . , Pr.

(iii) A sieving procedure is finally used to deduce a Mordell-Weil basis.

In step (ii) a rather indirect procedure has been used in the past to determine
a lower bound λ > 0 for the canonical height ĥ(P ) of non-torsion points. The
difference h− ĥ between the logarithmic and canonical heights is known to be
bounded on E(Q); the best current bounds are to be found in [7]. Suppose
that h(P ) − ĥ(P ) ≤ K for all non-zero rational points P . If ĥ(P ) < λ then
h(P ) < K + λ. To show that all non-torsion points P satisfy ĥ(P ) ≥ λ one can
search for all points satisfying h(P ) < K+λ. More explicitly, write x(P ) = X/Z2

where X, Z are coprime integers and Z positive; then we must search for all
points P satisfying

|X| < exp(K + λ), Z < exp ((K + λ)/2) .



If the bound on the height difference K is large, then we are forced to search a
huge region before achieving our goal; this is quite often impractical.

In this paper we propose a more direct method for determining a positive
lower bound λ for the canonical height of non-torsion points.

For reasons to be explained later, it is convenient to work with the subgroup

Egr(Q) = E(Q) ∩ E0(R) ∩
∏
p|∆

E0(Qp);

the subscript “gr” stands for good reduction, and ∆ denotes the minimal dis-
criminant of E, i.e. the discriminant of the minimal model (1). We give a method
of determining a positive lower bound µ for the canonical height of non-torsion
points P in Egr(Q). Then, if c is the least common multiple of the Tamagawa
indices cp = [E(Qp) : E0(Qp)] (including p = ∞), we know that λ = µ/c2 is a
lower bound for the canonical height of non-torsion points in E(Q).

The basic idea of our approach is very simple: on Egr(Q), the canonical height
satisfies

ĥ(P ) ≥ log max {1, |x(P )|} − b

where b is a constant that depends on the model for E and is typically small. Now
if P is ‘far from’ the the point of order 2 on E0(R) then its x-coordinate is large
and so the canonical height is large. If on the other hand P is ‘close to’ the point
of order 2 on E0(R) then x(2P ) is large, and so ĥ(P ) = 1

4 ĥ(2P ) is also large. We
extend this idea as follows. Suppose that we want to prove that a certain µ > 0
is a lower bound for the height for non-torsion points on Egr(Q). We suppose
that there is a non-torsion point P ∈ Egr(Q) satisfying ĥ(P ) ≤ µ and we use
this to deduce a series of bounds |x(nP )| ≤ Bn(µ) where the Bn(µ) are explicit
constants. With the aid of the elliptic logarithm, we solve the simultaneous
inequalities |x(nP )| ≤ Bn(µ) with n = 1, . . . , k for some suitably chosen k. If
there is no solution then we deduce that ĥ(P ) > µ for all non-torsion points on
Egr(Q). Otherwise we simply start again with a smaller value of µ, or a bigger
value of k, or both.

We note that estimates for heights of points of infinite order on elliptic curves
have previously been given by Silverman [11] and Hindry and Silverman [8].
Those estimates are theoretical, and too small for practical use; see the conclud-
ing remarks at the end of the paper.

2 Heights

In this section we gather some basic facts needed about local and canonical
heights, with no claims of originality. A good reference is [13]. The reader is
warned that there are several normalizations of local and canonical heights as
explained in [7, section 4].



We define the usual constants associated to a Weierstrass model (1) as follows
(see [12, page 46]):

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Let
f(P ) = 4x(P )3 + b2x(P )2 + 2b4x(P ) + b6,

g(P ) = x(P )4 − b4x(P )2 − 2b6x(P )− b8;

so that x(2P ) = g(P )/f(P ). We let M be the set of all primes of Q (including
∞). For p ∈M, define the function Φp : E(Qp) → R by

Φp(P ) =


1 if P = 0,

max {|f(P )|p, |g(P )|p}
max {1, |x(P )|p}4

otherwise.
(2)

It is straightforward to see that Φp is a continuous and hence bounded function
on E(Qp) (the boundedness follows immediately from the fact that E(Qp) is
compact with respect to the p-adic topology).

We define the local height λp : E(Qp)\{0} → R for all p ∈ M (including
p = ∞) by

λp(P ) = log max {1, |x(P )|p}+
∞∑

i=0

1
4i+1

logΦp(2iP ). (3)

One definition of the canonical height ĥ : E(Q) → R is by the formula

ĥ(P ) =
∑
p∈M

λp(P ). (4)

The canonical height extends to a quadratic form on R ⊗Z E(Q); in particular
ĥ(nP ) = n2 ĥ(P ) for any integer n. Moreover, P ∈ E(Q) is torsion if and only if
ĥ(P ) = 0. For non-torsion rational points the canonical height is strictly positive.

The following lemma is standard; see for example [14].

Lemma 1. Let p be a finite prime and P ∈ E0(Qp)\{0} (i.e. P is a point of
good reduction). Then

λp(P ) = log max {1, |x(P )|p} .

In particular, non-archimedean local heights are non-negative for points of good
reduction; this is not true for points of bad reduction. We are interested in



obtaining a positive lower bound for the canonical height, using its expression
(4) as a sum of local heights, and thus it is sensible to restrict ourselves to points
in Egr(Q)\ {0}.

Our next lemma is immediate from (4) and Lemma 1.

Lemma 2. Suppose P ∈ Egr(Q)\ {0} . Then

ĥ(P ) = λ∞(P ) + log(denom(x(P ))).

2.1 The Archimedean Local Height Difference

Define α ∈ R+ by
α−3 = inf

P∈E0(R)
Φ∞(P ), (5)

where the exponent −3 has been chosen to simplify the formulae appearing later.
This can be computed as in [7] or [10], with a slight adjustment since we are
looking only at points on E0(R). The following lemma can be deduced easily
from the definition of local heights (3).

Lemma 3. If P ∈ E0(R)\{0} then

log max{1, |x(P )|} − λ∞(P ) ≤ logα.

In particular this inequality is true for all P ∈ Egr(Q)\{0}.

3 Multiplication by n

Let n be a positive integer. It is possible that multiplication by n annihilates
some of the groups E0(Qp)/E1(Qp): a non-torsion point P ∈ Egr(Q) will be killed
(mapped into E1(Qp)) if p divides the denominator of x(nP ). In this section we
give a lower estimate for the contribution that multiplication by n makes to the
canonical height of nP .

For finite primes p, let ep be the exponent of the group

Ens(Fp) ∼= E0(Qp)/E1(Qp).

Define
DE(n) =

∑
p<∞, ep|n

2(1 + ordp(n/ep)) log p. (6)

That this sum is finite follows from the following proposition; clearly, it is easily
computable.

Proposition 1. With notation as above, if ep | n then p ≤ (n+ 1)2. Hence the
sum defining DE(n) is finite. Moreover, if P is a non-torsion point in Egr(Q)
and n ≥ 1, then

ĥ(nP ) ≥ λ∞(nP ) +DE(n).



Proof. Suppose that ep | n. By definition ep is the exponent of Ens(Fp). If p
is a prime of singular reduction for E then Ens(Fp) is a cyclic group of order
p − 1, p + 1 or p depending on whether E has split multiplicative, non-split
multiplicative or additive reduction at p. In either case we see that

n ≥ ep = |Ens(Fp)| ≥ p− 1

and so certainly p ≤ (n+ 1)2. Suppose now that p is a prime of good reduction.
We know that

Ens(Fp) = E(Fp) ∼= Z/d1 × Z/d2

where d2|d1 and d1 = ep. Hence

(
√
p− 1)2 = p+ 1− 2

√
p ≤ |E(Fp)| = d1d2 ≤ d2

1 = e2p ≤ n2,

from which we deduce that p ≤ (n+ 1)2.
In view of Lemma 2, the proof is complete on showing

log(denom(x(nP ))) ≥ DE(n)

for non-torsion P ∈ Egr(Q). This easily follows from the structure of E(Qp), since
if e = ordp(n/ep) then nP ∈ Ee+1(Qp), so ordp(denom(x(nP ))) ≥ 2(e+ 1). ut

4 A Bound for Multiples of Points of Good Reduction

Recall that our aim is to exhibit some positive µ such that ĥ(P ) > µ for all
non-torsion points in Egr(Q). In this section we first suppose that µ > 0 is
given, assume that P is a point in Egr(Q) satisfying ĥ(P ) ≤ µ, and deduce
a sequence of inequalities satisfied by the x-coordinates of the multiples nP
for n = 1, 2, 3, . . .. We then show that for sufficiently small positive µ and a
suitable n (given explicitly in Corollary 1 below), there are no points P such
that x(nP ) satisfies the inequality. In the following two sections we will explain
how to combine the inequalities for several n, enabling us to obtain better values
of µ such that ĥ(P ) > µ for non-torsion points in Egr(Q).

Let α and DE be defined as above in (5) and (6). For µ > 0 and n ∈ Z+

define
Bn(µ) = exp

(
n2µ−DE(n) + logα

)
.

Proposition 2. If Bn(µ) < 1 then ĥ(P ) > µ for all non-torsion points on
Egr(Q). On the other hand, if Bn(µ) ≥ 1 then for all non-torsion points P ∈
Egr(Q) with ĥ(P ) ≤ µ, we have

−Bn(µ) ≤ x(nP ) ≤ Bn(µ).



Proof. Suppose P is a non-torsion point on Egr(Q) with ĥ(P ) ≤ µ. From the
inequalities in Lemma 3 and Proposition 1 we see that

log max{1, |x(P )|} ≤ λ∞(P ) + logα

≤ ĥ(nP )−DE(n) + logα

= n2 ĥ(P )−DE(n) + logα

≤ n2µ−DE(n) + logα.

Thus
max {1, |x(nP )|} ≤ Bn(µ).

If Bn(µ) < 1 then we have a contradiction, and in this case we deduce that
ĥ(P ) > µ for all non-torsion points on Egr(Q).

If instead Bn(µ) ≥ 1, then |x(nP )| ≤ Bn(µ) and the proposition follows. ut

Corollary 1. Define α as in (5). Let p be a prime greater than
√
α, and set

n = ep and µ0 = n−2(DE(n) − logα). Then µ0 > 0 and for all non-torsion
P ∈ Egr(Q) we have

ĥ(P ) ≥ µ0.

Proof. We have DE(n) ≥ 2 log p > logα, so certainly µ0 > 0. Now for all µ < µ0

we have n2µ − DE(n) + logα < 0, so that Bn(µ) < 1 and hence ĥ(P ) > µ by
the Proposition. Since this holds for all µ < µ0, we have ĥ(P ) ≥ µ0 as required.

As pointed out to us by the anonymous referee, we could use this Corollary
by itself to provide a suitable positive lower bound for the height of non-torsion
points in Egr(Q). However we can obtain a better bound (see Example 1 for an
example) by combining the information from several different n simultaneously.

5 Solving Inequalities Involving the Multiples of Points

Proposition 2 gives a sequence of inequalities involving the multiples of non-
torsion points P in Egr(Q) satisfying ĥ(P ) ≤ µ. We would like to solve these
inequalities. One approach is to use division polynomials. We have found this
impractical as the degree and coefficients of division polynomials grow rapidly
with the multiple considered. Instead we have found it convenient to use the
elliptic logarithm.

For the reader’s convenience, we give here a very brief description of the
elliptic logarithm ϕ : E0(R) → R/Z. We can rewrite the Weierstrass model (1)
as

(2y + a1x+ a3)2 = 4x3 + b2x
2 + 2b4x+ b6.

Let β be the largest real root of the right-hand side; thus β is the x-coordinate
of the unique point of order 2 on E0(R). Let

Ω = 2
∫ ∞

β

dx√
4x3 + b2x2 + 2b4x+ b6

.



If P = (ξ, η) ∈ E0(R) with 2η + a1ξ + a3 ≥ 0 then let

ϕ(P ) =
1
Ω

∫ ∞

ξ

dx√
4x3 + b2x2 + 2b4x+ b6

;

otherwise we let
ϕ(P ) = 1− ϕ(−P ).

The elliptic logarithm can be very rapidly computed using arithmetic-geometric
means; see Algorithm 7.4.8 in [2]. What matters most to us is that ϕ : E0(R) →
R/Z is an isomorphism (of real Lie groups). We shall find it convenient to identify
R/Z with the interval [0, 1).

Suppose that ξ is a real number satisfying ξ ≥ β. Then there exists η such
that 2η + a1ξ + a3 ≥ 0 and (ξ, η) ∈ E0(R). Define

ψ(ξ) = ϕ ((ξ, η)) ∈ [1/2, 1).

In words, ψ(ξ) is the elliptic logarithm of the “higher” of the two points with
x-coordinate ξ.

For real ξ1, ξ2 with ξ1 ≤ ξ2 we define the subset S(ξ1, ξ2) ⊂ [0, 1) as follows:

S(ξ1, ξ2) =


∅ if ξ2 < β

[1− ψ(ξ2), ψ(ξ2)] if ξ1 < β ≤ ξ2

[1− ψ(ξ2), 1− ψ(ξ1)] ∪ [ψ(ξ1), ψ(ξ2)] if ξ1 ≥ β.

The following lemma is clear.

Lemma 4. Suppose ξ1 < ξ2 are real numbers. Then P ∈ E0(R) satisfies ξ1 ≤
x(P ) ≤ ξ2 if and only if ϕ(P ) ∈ S(ξ1, ξ2).

If
⋃

[ai, bi] is a disjoint union of intervals and t ∈ R, we define

t+
⋃

[ai, bi] =
⋃

[ai + t, bi + t]

and (for t > 0)
t

⋃
[ai, bi] =

⋃
[tai, tbi].

Proposition 3. Suppose ξ1 < ξ2 are real numbers and n a positive integer.
Define

Sn(ξ1, ξ2) =
n−1⋃
t=0

(
t

n
+

1
n
S(ξ1, ξ2)

)
.

Then P ∈ E0(R) satisfies ξ1 ≤ x(nP ) ≤ ξ2 if and only if ϕ(P ) ∈ Sn(ξ1, ξ2).

Proof. By Lemma 4 we know that P ∈ E0(R) satisfies ξ1 ≤ x(nP ) ≤ ξ2 if and
only if ϕ(nP ) ∈ S(ξ1, ξ2).

Denote the multiplication by n map on R/Z by νn. If δ ∈ [0, 1) then

ν−1
n (δ) =

{
t

n
+
δ

n
: t = 0, 1, 2, . . . , n− 1

}
.



However ϕ(nP ) = nϕ(P ) (mod 1). Therefore,

ϕ(nP ) ∈ S(ξ1, ξ2) ⇐⇒ ϕ(P ) ∈ ν−1
n (S(ξ1, ξ2)) = Sn(ξ1, ξ2).

ut

6 The Algorithm

Putting together Propositions 2 and 3 we deduce our main result.

Theorem 1. Let µ > 0. If Bn(µ) < 1 for some positive integral n, then ĥ(P ) >
µ for all non-torsion P in Egr(Q).

On the other hand, if Bn(µ) ≥ 1 for n = 1, . . . , k, then every non-torsion
point P ∈ Egr(Q) such that ĥ(P ) ≤ µ satisfies

ϕ(P ) ∈
k⋂

n=1

Sn (−Bn(µ), Bn(µ)) .

In particular, if
k⋂

n=1

Sn (−Bn(µ), Bn(µ)) = ∅ (7)

then ĥ(P ) > µ for all non-torsion P in Egr(Q).

In practice we have found the following procedure effective. We start with
µ = 1, k = 5 and compute Bn(µ) for n = 1, . . . k. If any of these values of
Bn(µ) < 1 then we have succeeded in proving that µ = 1 is a lower bound
for the canonical height of non-torsion points of good reduction. Otherwise we

compute
k⋂

n=1

Sn (−Bn(µ), Bn(µ)) (as a union of intervals); if this is empty, then

again we have succeeded in proving that µ = 1 is a lower bound. Finally, if this
intersection is non-empty we have failed to prove that µ = 1 is a suitable lower
bound.

Our course now proceeds differently according to whether we have succeeded
or failed to show that µ = 1 is a lower bound. If we succeed, we now repeatedly
multiply µ by 1.1 and use the same method to try to prove that the new value
of µ is still a lower bound. We return the last succeeding value of µ as the output
to the algorithm.

If, on the other hand, we failed with µ = 1 then we repeatedly multiply µ by
0.9 and increase k by 1 until we achieve success; the bound returned is then the
first successful value of µ.

It is easy to use the proof of Corollary 1 to Proposition 2 to show that
our algorithm will succeed in obtaining a positive lower bound µ, after a finite
number of steps.

Alternative strategies are clearly possible here; instead of using scaling fac-
tors of 11/10 and 9/10 we could instead use a larger factor such as 2 or 1/2



respectively, and then successively replace the scaling factor by its square root
and apply a back-tracking method to converge to the optimal value of µ; the
details may be left to the reader.

7 Reduced Models

The canonical height is independent of the model chosen for the elliptic curve.
Our lower bound is however not model-independent. The constant α defined
in (5) is dependent on b2, b4, b6; all other constants and maps in the above
discussion are model-independent. To improve our lower bound for the canonical
height it is sensible to choose a model that minimises the value of α. We have no
theoretical method for deciding on the best model here. The models for elliptic
curves appearing in Cremona’s tables [3], [5] (as well as those appearing in the
earlier Antwerp IV tables [1]) are known as standardized models: we say that the
model (1) for E is a standardized model if it is minimal with a1, a3 ∈ {0, 1}, and
a2 ∈ {−1, 0, 1}. Each elliptic curve has a unique standardized model. Practical
experience shows that—for the purpose of obtaining a good lower bound for the
canonical height—it is usually preferable to choose a model that reduces, in the
sense of [4] but with respect to translations only, the cubic polynomial

f(X) = 4x3 + b2x
2 + 2b4x+ b6.

We call this model the reduced model. For the convenience of the reader we give
here the formulae, adapted from [4], for doing this.

If the discriminant ∆ > 0, then we let

P = b22 − 24b4, Q = 2b2b4 − 36b6.

Let r be the nearest integer to −Q/(2P ). The reduced model for E is given by
replacing x by x+ r in (1).

If ∆ < 0 we let β be the unique real root of f . Let

h0 = 36β2 + 24b2β + 48b4 − b22, h1 = 24b2β2 + 6(b22 − 8b4)β + 4b2b4.

Let r be the nearest integer to −h1/(2h0). Again, the reduced model for E is
given by replacing x by x+ r in (1).

8 Examples

We have implemented our algorithm in pari/gp, and used the program to com-
pute some examples.

Example 1. Consider the elliptic curve E (with code 60490d1 in [5]), given by
the standardized model

y2 + xy + y = x3 + 421152067x+ 105484554028056.



Our program shows that for non-torsion points in Egr(Q)

ĥ(P ) > 1.9865.

If we apply the method used to prove Corollary 1 to Proposition 2 above, we
do not obtain as good a bound. Here log(α) = 3.3177 . . . and

√
α = 5.253 . . . ,

so we should use a prime p ≥ 7. Rather than use p = 7 for which ep = 9
we do better to take p = 19 with n = ep = 6. Then DE(6) = 2 log 114 and
µ0 = (2 log 114− 3.317)/36 = 0.17.

We note that the curve E has only one real component. Moreover, it has good
reduction at all primes except 2, 5, 23 and 263 where the Tamagawa indices are
2, 21, 2 and 3 respectively. Hence if P ∈ E(Q) then 42P ∈ Egr(Q). It follows
that

ĥ(P ) > 1.9865/422 = 0.001126

for non-torsion points in E(Q).
This curve has rank 1, and a point of infinite order is

P = (3583035/169, 24435909174/2197)

with ĥ(P ) = 6.808233192. It follows that the index of the subgroup 〈P 〉 in E(Q)
is at most

√
6.808233192/0.001126 < 78. We may check that P /∈ pE(Q) for all

primes p < 78 (using the method of p-saturation introduced in [10]) and deduce
that E(Q) = 〈P 〉.

For this curve the bound between logarithmic and canonical heights can be
shown by the method of [7] to be at most 22.8, so finding a lower bound for
ĥ through searching would be prohibitive. However, if we apply the method
of [7] to the subgroup Egr(Q) we find that the height difference for points in
the subgroup is only 3.3, so in fact we could have found a lower bound for the
restriction of ĥ to the subgroup by searching for points with small logarithmic
height.

Finally, we can use our bound to prove that E(Q) = 〈P 〉 more simply as
follows. First we apply p-saturation with p = 2, 3 and 7 to show that the index
[E(Q) : 〈P 〉] is not divisible by the primes dividing the Tamagawa numbers;
then we observe that while P /∈ Egr(Q), we have 2P ∈ Egr(Q). It follows that
[E(Q) : Egr(Q)] = 2, when a priori this index could have been as large as 42.
And moreover the index m = [E(Q) : 〈P 〉] = [Egr(Q) : 〈2P 〉] is coprime to 2, 3, 7
and satisfies m2 ≤ ĥ(2P )/1.9865 < 14, so m = 1.

This method of saturating E(Q), by first saturating Egr(Q) and separately
saturating at primes dividing the Tamagawa numbers, can also be used for curves
of higher rank, though the details are more complicated. We will return to this
in a future paper.

Example 2. (Statistics) We ran our program on all the 4081 optimal curves
in our online tables [5] with conductors 7000–8000. The smallest lower bound we
obtained for that range was 0.022 for curve 7042d1, and the largest was 11.879
for 7950r1. It took 941 seconds to compute the lower bounds for these curves,
an average of 0.23 seconds for each curve.



Applications. Using this method we intend to show that the generators listed
for the curves in the database [5] do generate the full Mordell-Weil group, modulo
torsion, in every case. The present situation (January 2006) is that not all have
been checked, the exceptions being those for which we have not yet obtained
a lower bound for the height of non-torsion points, and hence do not have a
bound in the index of saturation. Similarly, the algorithm described here will
be incorporated into the first author’s program mwrank (see [6]) for computing
Mordell-Weil groups via 2-descent.

9 Concluding Remarks

As pointed out by the referee, it would be possible to extend this method to
elliptic curves defined over any totally real number field; we leave the details to
the interested reader. It would be rather harder, though, to extend our method to
fields with a non-real complex embedding since we would then have to intersect
subsets of the unit square instead of the unit interval.

Lastly, at the insistence of the referee, we conclude with a few words com-
paring our lower bound for the canonical height and earlier theoretical bounds,
due to Silverman [11] and to Hindry and Silverman [8]. The bounds of [11] are
not completely explicit. In [8], Hindry and Silverman give a lower bound for the
canonical height of non-torsion points on elliptic curves over number fields (and
function fields). For example, if E is an elliptic curve over Q, write

σ =
log|∆|
logN

where ∆ is the minimal discriminant and N is the conductor of E. Specializing
Theorem 0.3 of [8] we obtain that

ĥ(P ) ≥ 2 log|∆|
(20σ)8101.1+4σ

.

for non-torsion points P ∈ E(Q). For example, for the elliptic curve E in our
Example 1, this gives the lower bound for non-torsion points

ĥ(P ) ≥ 3.2 . . .× 10−42,

as compared with our lower bound for non-torsion points ĥ(P ) > 0.001126.
However such a crude numerical comparison is not very useful, for two reasons:

– The bounds in [8] are much more general; undoubtedly the methods there
could produce better bounds if specialised to elliptic curves over the ratio-
nals. It would be interesting to pursue this.

– A conjecture of Lang (mentioned in [8]) states that there is some absolute
constant c > 0 such that ĥ(P ) ≥ c log|∆| for all elliptic curves E and non-
torsion points P ∈ E(Q). The objective of [8] seems to have been to prove a
statement that is as close as possible to Lang’s conjecture. Our aim is rather
different.
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