
ON THE DIOPHANTINE EQUATION x2 + 7 = ym

SAMIR SIKSEK AND JOHN E. CREMONA

Abstract. In this paper we study the equation x2+7 = ym, in integers
x, y, m with m ≥ 3, using a Frey curve and Ribet’s level lowering
theorem. We adapt some ideas of Kraus to show that there are no
solutions to the equation with m prime and 11 ≤ m < 108.

1. Introduction

In [6, page 380] J.H.E. Cohn makes the challenge of proving the following:

Conjecture 1. The only solutions to the equation

(1) x2 + 7 = ym

with x, y, m ∈ Z and m ≥ 3 are the following:

m x y m x y m x y
3 ±1 2 3 ±181 32 4 ±3 ±2
5 ±5 2 5 ±181 8 7 ±11 2
15 ±181 2

It is known that there are no other solutions with y odd, nor with m
even, nor with 3|m (see [6, page 380]). In [12] Lesage proves various partial
results concerning the equation (1), including the following.

• There are no solutions to equation (1) with m = 5, 7, 13 apart from
those listed in the table above. This he proves by reducing to Thue
equations (see the next section), which he then solves by hand.

• There are no solutions to equation (1) for m = 11 and for m prime
and 17 ≤ m ≤ 5000. This he proves using classical algebraic number
theory, and a computational method.

• If (x, y, m) is a solution to (1) then m ≤ 6.6× 1015. This he proves
using lower bounds for linear forms in logarithms.

It is clearly sufficient to restrict attention to the equation

(2) x2 + 7 = yp

where p is prime. In this note we prove the following.

Theorem 2. Equation (2) has no solutions with p prime and 11 ≤ p ≤ 108.
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In fact we give a practical criterion for the non-existence of solutions to (2)
for any particular prime p ≥ 11. Our proof of Theorem 2 comes down to
the use of a computer program to check the criterion for 11 ≤ p ≤ 108.

We note that our result is still a far way off from Lesage’s bound of 6.6×
1015 quoted above. However, since 108 is greater than the square-root of
6.6× 1015, the following corollary is immediate.

Corollary 3. Equation (1) has no solutions with m composite, apart from
those listed in the above table. Indeed, if (x, y, m) is any solution to (1) not
listed above, then m is a prime satisfying 108 < m < 6.6× 1015.

Finally we discuss the possibility of completely resolving equation (1)
using the method of this paper. This will have to wait until substantial
improvements are made in lower bounds for linear forms in three logarithms.

2. The cases m = 3, 5, 7

In this section we show that there are no solutions to equation (1) when
m = 3, 5, 7 except those listed in the table above. As indicated in the
introduction, these cases are already covered by the literature. We have
however decided to give a very concise treatment of these cases for two
reasons. First, our treatment illustrates the power of the computer algebra
packages used; what previously involved several pages of computation is now
practically effortless. Secondly, it also makes our approach to (1) almost
independent of the previous literature on this equation; we will only assume
henceforth that y is even (and refer to [13] for a proof of this). The case m
even can be safely left to the reader.

Let ρ = (1 +
√
−7)/2; then 1, ρ is a basis for the ring of integers of the

field Q(
√
−7). A standard factorization argument leads us to consider

x− 1

2
+ ρ = ρm−2(U + ρV )m

with U, V integers. Comparing the coefficients of ρ for m = 3, 5, 7 we obtain
the following Thue equations:

U3 + 3U2V − 3UV 2 − 3V 3 = 1,

−U5 − 15U4V − 10U3V 2 + 50U2V 3 + 35UV 4 − 3V 5 = 1

and

−U7+35U6V +147U5V 2−105U4V 3−595U3V 4−231U2V 5+161UV 6+45V 7 = 1

respectively. Fortunately the algebraic number theory package KANT (see [7])
has routines for solving Thue equations; these are also available in Magma
(see [3]). Using either of these packages, we find that the only solutions
to the first equation are (U, V ) = (1, 0), (−2, 3), the only solutions to the
second equation are (U, V ) = (−1, 0), (2,−1), and the only solutions to the
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third equation are (U, V ) = (−1, 0). These respectively give the following
solutions for (1):

(m,x, y) = (3,±1, 2), (3,±181, 32), (5,±5, 2), (5,±181, 8), (7,±11, 2),

as required.

3. The Frey Curve and Level-Lowering

In this section we associate a Frey curve to any putative solution of our
equation (2). For a general approach of how to associate Frey curves to
ternary Diophantine equations we refer the reader to a useful recent paper
of Bennett and Skinner [2]. Our approach is however self-contained in this
regard.

Suppose p ≥ 11 is prime and x, y are integers satisfying equation (2),
and the conditions:

(3) x ≡ 1 (mod 4) and y is even.

There is no loss of generality in making this assumption, as we know from
the comments made in the introduction that y must be even and so x odd,
and we can replace x by −x, if necessary, to get x ≡ 1 (mod 4).

We associate to this solution the ‘Frey curve’:

(4) Ex,y : Y 2 = X3 + xX2 +
yp

4
X.

Lemma 4. Ex,y has the global minimal model

(5) Y 2 + XY = X3 +
(x− 1)

4
X2 +

yp

64
X.

Its minimal discriminant and conductor respectively are

(6) ∆ =
−7y2p

212
, N = 14

∏
lprime

l|y, l 6=2,7

l.

Proof. This follows easily from Tate’s algorithm. �

We now come to level-lowering. Let E be the following elliptic curve
over Q:

E : Y 2 + XY + Y = X3 + 4X − 6;

this is curve 14A1 in [5]. Write ρp for the Galois representation

ρp : Gal(Q/Q) → Aut(E[p])

on the p-torsion of E, and let ρx,y
p be the corresponding Galois representation

on the p-torsion of Ex,y. If l is a prime, let al(E) be the trace of Frobenius of
the curve E at l, and let al(Ex,y) denote the corresponding trace of Frobenius
of Ex,y.

Lemma 5. With x, y, p as above, the Galois representations ρx,y
p , ρp are

isomorphic. Moreover,
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(i) al(Ex,y) ≡ al(E) (mod p) if l is a prime of good reduction for both
curves.

(ii) al(Ex,y)al(E) ≡ l + 1 (mod p) if l 6= 2, 7 and l|y.

Proof. By the work of Wiles and others [4] the curve Ex,y is modular. More-
over, by Theorem 4, it is semi-stable. Thus by a theorem of Mazur [14,
Theorem 4] the Galois representation ρx,y

p on the p-torsion is surjective (re-
call p ≥ 11). Applying Ribet’s ‘level lowering’ theorem [15], we see that ρx,y

p

is isomorphic to some representation ρ of weight 2 and level 14. However
S2(Γ0(14)) has dimension 1. Moreover, the curve E is (up to isogeny) the
unique curve of conductor 14. It follows that ρ = ρp is the Galois represen-
tation on the p-torsion of the curve E. The rest of the lemma follows from
[10, Proposition 3]. �

4. The Method of Kraus

In this section we mimic Kraus’s approach (see [9]) to solving the equation
a3 + b3 = cp. We explain the idea briefly. Suppose p ≥ 11 is a given prime,
and we would like to prove the non-existence of solutions to equation (2).
Choose a small integer n such that q = np + 1 is also prime. Suppose (x, y)
is a solution to (2). Then working modulo q we see that x2 + 7 = yp is
either 0 or an n-th root of unity. Since n is small, we can list all such x
(mod q). We compute aq(E), and aq(Ex,y) for eachx in the list. We may
then find that for no x in our list are the relations in Lemma 5 satisfied. If
this is the case then we have a contradiction, and we deduce that there are
no solutions to (2) for the given prime p.

We now write this more formally. Suppose q is a prime number satisfying
q ≡ 1 (mod p), and write q = np + 1. Let

µn(Fq) =
{
ζ ∈ F∗

q : ζn = 1
}

.

Define

A(n, q) =

{
ζ ∈ µn(Fq) :

(
ζ − 7

q

)
= 0 or 1

}
.

For each ζ ∈ A(n, q), let δζ be an integer satisfying

δ2
ζ ≡ ζ − 7 (mod q).

Let aq(ζ) be the trace of Frobenius of the curve

Eζ : Y 2 = X3 + δζX
2 +

ζ

4
X

defined over Fq. (Nonsingularity of this curve is easily checked, since q > 7.)
We can now state our sufficient condition for the insolubility of (2).

Theorem 6. Let E be the curve defined above. Let p be a prime number
≥ 11. Suppose that there exists an integer n ≥ 2 satisfying the following:

(a) The integer q = np + 1 is a prime.

(b) Either aq(E)2 6≡ 4 (mod p), or
(
−7
q

)
= −1.
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(c) For all ζ ∈ A(n, q), we have

aq(ζ)2 6≡ aq(E)2 (mod p).

Then the equation x2 + 7 = yp does not have any solutions in integers.

Proof. Suppose that (a),(b),(c) are satisfied and that the equation x2 + 7 =
yp does have a solution (x, y). We suppose without loss of generality that
the condition (3) is satisfied, and we let Ex,y be the curve defined in the
previous section.

Now let q = np+1 be as in the statement of the theorem. First we claim

that q 6 |y. Suppose that q|y. From (2) we see that
(
−7
q

)
= 1. Thus from

condition (b) we see that aq(E) 6≡ ±2 (mod p). But q|y implies that q is a
prime of multiplicative reduction for Ex,y. Hence ([8, p. 295]) aq(Ex,y) = ±1.
From Lemma 5(ii)

aq(E) ≡ ±(q + 1) ≡ ±2 (mod p).

This contradiction shows that q 6 |y, and so q is a prime of good reduction
for both curves. Clearly there is some ζ ∈ A(n, q) such that

yp ≡ ζ (mod q), and x ≡ ±δζ (mod q).

It follows that aq(Ex,y) = ±aq(ζ). Moreover aq(Ex,y) ≡ aq(E) (mod p),
from Lemma 5(i). Thus aq(E) ≡ ±aq(ζ)( (mod p)) contradicting condition
(c) of the theorem. Hence there is no solution to (2). �

5. The Computation

We wrote a simple program using the package Pari/GP (see [1]) to test
whether a given prime p satisfies the conditions of the Theorem, by finding
a suitable integer n. Using this program we verified that the equation (2)
has no solutions for all primes p satisfying 11 < p < 108, and also for all p in
the ranges 10k < p < 10k + 1000 for 8 ≤ k ≤ 20. In the range p < 108, the
largest value of n needed was n = 284 for p = 73342163; this computation
took about 4 days on an 850MHz AMD Athlon.

Details may be obtained from
http://www.maths.nott.ac.uk/personal/jec/ftp/progs: the program
itself is in the file eqn x27yp.gp, and the output giving a suitable value
of n for each of the 5761451 primes p in the range 11 ≤ p < 108 is in
eqn x27yp.out (which is 5761451 lines long!).

6. Epilogue

Suppose P is a polynomial with rational coefficients and at least two
distinct roots. A theorem of Schinzel and Tijdeman [16] states there is an
effectively computable constant c(P ) such that if x, y, m are integers with
|y| > 1, m > 1, satisfying

P (x) = ym
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then m < c(P ). The constant here depends on the constants appearing in
effective lower bounds for linear forms in logarithms.

To obtain a reasonable bound for m in our equation (1) we need a good
lower bound for linear forms in three (complex) logarithms. It seems to us
that the bounds in the literature (e.g. [17]) will not give us a bound on m
that is much sharper than Lesage’s bound quoted in the introduction, and
this is clearly out of reach of our computational method. However it is our
hope that bounds for linear forms in three logarithms will be improved as
bounds for linear forms in two logarithms have been improved [11]. It may
then be possible to completely settle equation (1) (and so establish Cohn’s
conjecture) using the method of this paper.

Acknowledgment. We are indebted to the referee for pointing out to us the
papers of Lesage [12] and of Bennett and Skinner [2].
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[12] J.-L. Lesage, Différence entre puissances et carrés d’entiers, Journal of Number
Theory 73 (1998), 390–425.

[13] W. Ljunggren, On the diophantine equation Cx2 + D = yn, Pacific J. Math. 14
(1964), 585–596.

[14] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.
[15] K. Ribet, On modular representations of Gal(Q/Q) arising from modular forms,
Invent. Math. 100 (1990), 431–476.

[16] A. Schinzel and R. Tijdeman, On the equation ym = P (x), Acta Arith. XXXI
(1976), 199–204.



THE EQUATION x2 + 7 = ym 7

[17] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres
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