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Abstract We survey approaches to solving the generalized Fermat equation

xp + yq = zr

in relatively prime integers x,y and z, and integers p,q and r ≥ 2.
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1 Le Roy est mort - Vive le Roy

Pythagoras’ formula was purportedly kept secret within the closed circle of his ini-
tiates – but, as with any fact of nature, it became eventually widely known: the
squares of the cathetes sum to the square of the hypotenuse. In the spirit of arith-
metic, spread eight centuries later by Diophantus of Alexandria, one may instead
phrase this statement in terms of integral solutions of the equation

x2 + y2 = z2, with x,y,z ∈ N and gcd(x,y,z) = 1, (1)
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or, equivalently, ask for the coordinates of all rational points on the unit circle. All
these are variants of the problem appearing in the second book of Diophantus, in the
chapter numbered VIII – often quoted accordingly as Diophantus II.VIII. We nowa-
days call the solutions to equation (1) Pythagorean triples. Already in Diophantus
one finds parametrizations for these solutions, given by

x = 2uv; y = u2− v2; z = u2 + v2, (2)

where u and v are positive integers. This fact is easy to verify in one direction; the
proof that all triples are parametrized in this form is one of the most popular of
ancient mathematics and is widely taught to this day.

The work of Diophantus on Arithmetic, a collection of 12 volumes written in
Greek, was lost for centuries. Only in the late sixteenth century were half of these
books, namely I–III and VIII–X, rediscovered in the form of a later Byzantine tran-
scription. These were translated into latin by Bombelli, and then subsequently pub-
lished in Basel by Xylander. It was through the annotated translation of Gaspard
Bachet from 1621 that the Arithmetica finally received a wide diffusion, capturing
the interest of mathematicians of the epoch. Among them, Fermat, a lawyer from
Toulouse, was particularly impressed by the beauty of Diophantus’ solution to (1).
It is on the margin of the text to Diophantus’ Problem II.VIII that Fermat wrote in
1634 his historical note concerning a short proof of the fact that the equation

xn + yn = zn, with x,y,z ∈ N and gcd(x,y,z) = 1, (3)

has no solution for n > 2, a proof which the margin of Bachet’s book was insuffi-
ciently large to contain.

The assertion, henceforth bearing the name Fermat’s Last Theorem – hereafter
denoted FLT for concision – remained an open problem for more than three cen-
turies. Attempts to prove FLT led to some of the most significant developments in
mathematics of the past three hundred years; it is fair to say that it is one of the
problems that has generated the most mathematics in history. The first systematic
approach, initiated by Kummer in the mid 19th century, was based on the theory of
algebraic number fields and in particular cyclotomic fields. The conjecture was fi-
nally proved in 1994 by Wiles, with the help of Taylor, building on a series of ideas
and results, due to Hellegouarch, Frey, Serre and Ribet, that connect the Fermat
equation to elliptic curves, modular forms and Galois representations.

Even before Wiles announced his proof, various generalizations of Fermat’s Last
Theorem had already been considered, to equations of the shape

Axp +Byq =Czr,

for fixed integers A,B and C. In the case where A = B = C = 1, for reasons we
discuss later, we focus our attention on the equation

xp + yq = zr, with x,y,z ∈ N, gcd(x,y,z) = 1 and 1
p +

1
q +

1
r < 1. (4)
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Perhaps the only solutions to this equation are those currently known; i.e. those with
(x,y,z, p,q,r) coming from the solution to Catalan’s equation 1p+23 = 32, and from
the following nine identities:

25 +72 = 34, 73 +132 = 29, 27 +173 = 712, 35 +114 = 1222,
177 +762713 = 210639282, 14143 +22134592 = 657, 92623 +153122832 = 1137,

438 +962223 = 300429072 and 338 +15490342 = 156133.

In the mid 1990s, Andrew Beal, a graduate in mathematics with computational
interests, in the course of carrying out calculations related to Fermat’s equation
and its variations, noted that the solutions listed here all have the property that
min{p,q,r} = 2 and made what is now termed the Beal conjecture, that there are
no non-trivial solutions to (4), once we assume that min{p,q,r} ≥ 3. A prize for
the solution to this problem now amounts to one million U.S. dollars. Other names
attached to conjectures about equation (4) include the Fermat–Catalan conjecture
and the Tijdeman–Zagier conjecture.

As we shall see, the few particular cases of these conjectures that have been
investigated may well support the hope that this new generalization of Pythagoras’
initial equation will also stimulate fascinating new mathematics.

Our main focus for the rest of the paper will be to describe two approaches to
proving results about equation (4). The first of these is essentially a generalization
of the cyclotomic methods that proved successful for Catalan’s equation. The second
is the adaptation of Wiles’ proof of Fermat’s Last Theorem to handle many special
cases of equation (4).

2 Cyclotomic approaches and their limitations

Let us start by noticing that in both equations (3) and (4) one may assume all ex-
ponents to be prime: indeed, if there is a solution with non-prime exponents, by
raising the variables to some power, one obtains a solution with prime exponents. It
thus suffices to consider this case and show that it leads to no non-trivial solutions.
By an elementary observation, sometimes attributed to Euler, we have that

G := gcd
(

x± y,
xp± yp

x± y

)
is a divisor of p, provided that the integers x,y are coprime1. In this section, we will
focus our attention on the special case of (4), given by the Fermat-Catalan equation

xp + yp = zq, with x,y,z ∈ N and gcd(x,y,z) = 1, (5)

1 One verifies this by letting t = x± y and x = t∓ y, as well as using the fact that (t,y) = 1.
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where one may hope to apply cyclotomic theory in a way somewhat analogous to
that of the Fermat equation. Equation (5) also serves as a generalization of the binary
Catalan equation

xp− yq = 1 (6)

which also resisted solution for more than a century (and was finally solved by the
second author, eight years after Wiles’ remarkable proof of Fermat’s Last Theorem).
Here binary refers to the presence of only two unknowns in this equation, a fact
which facilitates an analytic approach to bounding the possible solutions.

Assuming that either (3) or (5) has a non-trivial solution for the prime p – or
the prime pair (p,q) – one distinguishes the cases when G = 1 and G = p. The case
where p - xyz has traditionally been termed the First Case of FLT, or FLT1; we retain
this designation for the Fermat–Catalan equation. If G = p and thus p | xyz, one may
assume, in equation (3) at least, that p | z. It is further easy to show that, in this case,

p2 -
xp± yp

x± y
.

Since the Fermat equation is homogeneous, the assumption that x,y and z are pair-
wise coprime is straightforward – otherwise one could divide by the common divisor
in a solution and obtain one in coprime integers. In the case of (5), however, with
a little work, one can always construct infinitely many “trivial” solutions for which
x,y and z fail to be coprime.

2.1 History of “Fermat’s Last Theorem”

As is well known, Fermat left no published proof of his conjecture. He did, however,
provide a beautiful argument in the biquadratic or quartic case. To be precise, he
considered the more general equation

x4 + y4 = z2 (7)

and, using some astute manipulation of Pythagorean triples, proved that if (x,y,z) is
a non-trivial solution of (7) in, say, positive integers, then one can construct a further
positive solution (x′,y′,z′) of the same equation, in which z′ < z. By repeating the
procedure one eventually finds a solution with z′ = 1, which implies that x′ ·y′ = 0, a
contradiction. This was the first instance of the method of infinite descent in number
theory. Euler gave a proof of the cubic case using such an argument; Gauss gave later
an alternative proof using congruences. Although elementary, both methods require
quite intricate computations and are not easy to memorize. We provide here a short
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elementary proof, which uses some more recent ideas, that date back to Wieferich
and Furtwängler2:

Lemma 1. The equation x3 + y3 + z3 = 0 has no non-trivial integer solutions.

Proof. Assume that (x,y,z) is a non-trivial solution in coprime integers. Let

ρ =
−1+

√
−3

2

be a third root of unity and E = Z[ρ] be the ring of Eisenstein integers, which is a
Euclidean ring. We assume first that 3 - xyz, so that both x+ y, and x2− xy+ y2 are
cubes, say x+ y = s3, and

(x+ρy) = (a+bρ)3

is the cube of a principal ideal. Exactly one of x,y,z must be even – we shall thus
assume that y = 2v is even. Since the units of E are the sixth roots of unity, there is
some δ ∈<−ρ > such that

δ (x+ yρ) = (a+bρ)3 = a3 +b3 +3abρ(a+bρ)

= a3 +b3−3ab2 +3ab(a−b)ρ.

If δ =±1, then comparing coefficients implies that y≡ 0 mod 3, contradicting our
assumption. We thus have that

x+ yρ =±ρ
c(a+bρ)3, with c =±1 .

We have chosen y ≡ 0 mod 2, whereby xρ−c ≡ w3 mod 2E for some w = ±(a+
bρ) ∈ E . But x≡ x+ y = s3 mod 2, whence we may conclude that

ρ
−c ≡ (w/s)3 mod 2 .

The ideal p := (2) ⊂ E is prime; let π : E → F22 be the natural projection. Since
c 6≡ 0 mod 3, it follows that π(w/s) ∈ F22 is a primitive 9-th root of unity, an im-
possibility. It remains, then, to consider the case where 3 | xyz; we may suppose,
without loss of generality, that 3 | z. Appealing to (9), we find that there is a root of
unity δ such that (α) = δ

(
x+yρ

1−ρ

)
= (a+ bρ)3 and x+ y = 9s3. Since 1−ρ

1−ρ
= −ρ ,

we obtain after dividing the previous identity by its complex conjugate, that there is
another root of unity, say δ ′, such that

x+ yρ

x+ yρ
=

2x− y+ y
√
−3

2x− y− y
√
−3

= δ
′ ·
(

a+bρ

a+bρ

)3

≡ δ
′ mod 3

√
−3 ·E . (8)

If 2x 6≡ y mod 3, letting y′ ≡ y/(2x− y) mod 3, the last identities imply that

2 The second author found this proof, confronted with the own incapacity to recall the details of
the classical proofs, for a seminar. It is possible that the proof may have been known, but we found
no reference to it in the literature
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1+ y′
√
−3

1− y′
√
−3
≡ δ

′ mod 3
√
−3 ·E ,

whence
y′ ≡ y≡ 0 mod 3 ,

contradicting the assumption that 3 | z and gcd(x,y,z) = 1. Finally, suppose that
2x− y =−3d. Inserting this value into (8) yields

d
√
−3+ y

d
√
−3− y

≡ δ
′ mod 3

√
−3 ·E ,

whereby δ ′ =−1 and d ≡ 0 mod 3. Then 2x−y≡ x+y≡ 0 mod 9. Summing these
two congruences, we find 3x≡ 0 mod 9, and thus 3 | x, a contradiction which com-
pletes the proof.

ut

After Euler and Gauss, the quintic and septic cases of FLT were solved with con-
tributions from Dirichlet, Lamé, Legendre and Cauchy. In his proof of the quintic
case, Dirichlet distinguished the cases p - xyz and p | xyz, using descent for the proof
of the second case. Lamé announced in 1841 a full proof of the general case of FLT.
Unfortunately, his proof relied implicitly upon the (incorrect) assumption that the
integers of the form

α =
p−2

∑
k=0

akζ
k ,

with ak ∈ Z and ζ a p-th root of unity, form a ring with unique factorization. Kum-
mer demonstrated that this assumption is, in general, false and that the smallest
prime for which it fails is p = 23. In order to circumvent this difficulty, Kummer
proceeded with an investigation of divisibility in the rings of algebraic integers of
the p-th cyclotomic field, and introduced the notion of ideal numbers, a larger group
in which unique factorization was recovered. This work, stemming from a desire to
attack the Fermat problem, led, in the following decades, to the theory of ideals and
the work of Dedekind, giving rise to the fundamental results underlying what we
presently know as algebraic number theory.

If p is an arbitrary odd prime, we let K = Q[ζ ] denote the p-th cyclotomic
extension. The algebraic integers of this field are O(K) = Z[ζ ] and the ideals of
this ring factorize uniquely as products of prime ideals. If I is the semigroup of
ideals and P the one of principal ideals, i.e. ideals generated by single elements,
the quotient C (K) = I/P is a finite abelian multiplicative group, the class group.
The prime p is called regular, if p does not divide the size h(K) = |C (K)| of the
class group, and irregular otherwise. With respect to the Fermat equation, we have
in Z[ζ ] one of the following factorizations :
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xp = (x+ y) ·
(

xp + yp

x+ y

)
= (x+ y) ·

p−1

∏
c=1

(x+ yζ
c), or

zp = p(x+ y) ·
(

xp + yp

p(x+ y)

)
= p(x+ y) ·

p−1

∏
c=1

(
x+ yζ c

1−ζ

)
,

in case of FLT1 or FLT2, respectively. In either situation, writing α = x+ζ y
(1−ζ )e , with

e = 0 in the first case and e = 1 in the second, one finds that α is coprime to p(x+y)
and is, in fact, a p-th power, albeit not one of an algebraic integer of K, but rather
of the ideal A= (α,z). We thus have

(α) = Ap and NK/Q(α) =
zp

pe(x+ y)
. (9)

We note at this point that, in the case of the Fermat-Catalan equation, the same
construction leads again to (α) = Aq. Using the connection between class groups
and factorization of ideals, Kummer proved his fundamental result on Fermat’s Con-
jecture:

Theorem 1 (Kummer). Equation (3) has no solutions for regular primes p > 2.

For regular primes, it follows from (9) that there exists a ρ ∈ Z[ζ ] such that (α) =
(ρ)p is the p-th power of a principal ideal. Starting from this, the proof of FLT1 is
relatively simple. For the second case, however, Kummer appealed to a sophisticated
variant of infinite descent in the real field K+ ⊂K – the method bears currently his
name, Kummer descent. A modern, complete proof of this result can be found in
the book of Washington [36], Chapter IX. One finds in Rassias’ lovely introductory
work for undergraduates [26], on page 147, more biographical details of Kummer’s
life.

Kummer’s work was followed by a century of active research on the Fermat
equation, which led to the establishment of a large number of conditions known to
imply the truth of the Fermat Conjecture – see e.g. Ribenboim’s famous survey [27].
However, before Wiles’s breakthrough, there were only two known results known
to hold for infinitely many exponents, namely the “elementary” proof [34] given by
Terjanian in 1977 for the fact that (3) has no solution for even exponents n > 2 with
n - xy, as well as the deep analytic proof of Adelman, Fouvry and Heath-Brown,
which showed that FLT1 holds for infinitely many primes3

There are, however, a number of results of interest on FLT that were established
via cyclotomic methods before Wiles’ proof. We review here a few of the most
important of them:

(i) Wieferich and then Mirimanoff and Furtwängler proved that if FLT1 has a non-
trivial solution, then

3 One would expect, for various reasons, that regular primes occur more frequently than irregular
ones. If we knew this, since it has been proved that there are infinitely many irregular primes,
Kummer’s result would already imply that there are infinitely many primes p for which FLT holds.
However no proof of the fact that the set of regular primes is infinite is known, even now.
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ap−1 ≡ 1 mod p2, for a ∈ {2,3}. (10)

Variations on this theme was treated during the following decades by, among
others, Morichima, Lehmer, Skula, Granville and Monagan, the last two of these
eventually proving that if FLT1 had non-trivial solutions, then (10) holds for all
primes a ≤ 89. With this Granville and Monagan were able to prove that FLT1
has no solutions for

p < 714,591,416,091,389.

(ii) Eichler proved that if FLT1 has non-trivial solutions, then the p-rank of the p-
part of the class group A := C (Q[ζ ])p of the p-th cyclotomic field is necessarily
large, namely p-rk(Ap) ≥

√
p− 1. He thus improved upon an earlier result of

Krasner, who had proved that if FLT1 had solutions and p > n0 = (45!)88, then
the Bernoulli numbers Bp−1−2i, i= 1,2, . . . ,b(log p)1/3c had numerators divisible
by p; this implies in particular that p-rk(Ap)≥ b(log p)1/3c.

(iii) In the first half of the 20th century, Harry Schulz Vandiver wrote extensively
on Fermat’s equation, partially fixing some gaps in earlier proofs of Kummer
(and leaving a number of gaps himself, which were fixed only at the end of the
century). We present below his main result as part of Theorem 2.

Bearing in mind the fact that the Fermat Conjecture has been proved, it is still
of interest to analyze other approaches which may provide alternative proofs of this
Theorem. There are currently two primes known for which the Wieferich condition
(10) is satisfied with a = 2; none are known with a = 3. If one admits the heuristic
assumption that the vanishing of a Fermat quotient

ϕp(a)≡
ap−1−1

p
mod p

has probability 1/p, one may expect on average O(log log(X)) primes p < X for
which the quotient ϕp(a) = 0 for some fixed a < p. However, the same heuristic
argument suggests that one can find at most one prime for which two or more Fermat
quotients vanish simultaneously. One may formulate the following:

Conjecture 1. There exists a constant c ≥ 2 such that for every prime p ∈ N there
are less than c values a ∈ {2,3, . . . , p−2} with ϕp(a) = 0.

If c < 87, this conjecture implies FLT1.
Concerning the criteria in group (ii), Washington provides in [36] heuristic argu-

ments suggesting that
p-rk(Ap)� O(log(p))

for all primes. The Theorem of Eichler would imply FLT1 even if a rather weaker
conjecture holds:

Conjecture 2. There is an integer a > 2 such that for all primes p, the p part of the
class group of the p-th cyclotomic field has rank p-rk(Ap)< p1/a.
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We have mentioned above that there are infinitely many irregular primes. The
first of these were discovered by Kummer, the smallest one being p = 37. How-
ever, if one instead considers the largest real subfield contained in K, which is
K+ = Q[ζ + ζ ], the class number h+ of this field is apparently much smaller and
seems to never be divisible by p. Kummer was the first to suggest, in a letter to
Kronecker from 1852 (see [23]), that this fact might hold for all p. The fact played
an important role in many of the papers of Vandiver, who was seemingly unaware
of Kummer’s letter. The assumption that p - h+p = |C (K∗)|p is therefore called the
Kummer-Vandiver Conjecture, or simply the Vandiver Conjecture. The conjecture
has also deep implications in K-theory; it has been verified numerically for all
primes p < 227. We should mention, however, that there are specialists who accept
some heuristic arguments which suggest that the Conjecture might have counterex-
amples that are as scarce as the Wieferich primes. If this were true, there might
be as many as loglog(X) primes p < X for which the conjecture is false. Those
who believe the Vandiver Conjecture are guided by the fact that there are numerous
striking and rather improbable consequences to p | h+p , and therefore the heuristic
assumption that the value of the residue h+p mod p is uniformly distributed may be
false.

In the context of Fermat’s Last Theorem, two additional conditions of a rather
specialized nature play a role; we formulate them also as assumptions: they have
been computationally verified to hold within the same range as the Kummer–
Vandiver Conjecture.

Assumption C Assume that the exponent of Ap is p, whereby the p-part of the
class group of the p-th cyclotomic field is annihilated by p.

Assumption D Assume that all the units δ ∈ Z[ζp + ζ p]
× for which there exists

an algebraic integer ρ ∈ Z[ζp +ζ p] such that δ ≡ ρ p mod p2Z[ζp +ζ p] are global
p-th powers.

With these definitions, the following theorem holds:

Theorem 2. Suppose that the Kummer–Vandiver Conjecture holds. If, additionally,
Assumption C holds, then FLT1 has no solutions. If, instead, Assumption D holds,
then FLT2 has no solutions.

The first of these claims dates back to Vandiver, who, however supposed only that
p - h+p and had not noticed the necessity of Assumption C. The correct statement
was discovered by Sitaraman [32] in 1995. The second part of the theorem, together
with its proof, are due to Kummer. We note that Theorem 2 provides the only known
cyclotomic criterium which implies that there are no solutions to FLT2.

2.2 The Catalan equation

Due to results of Victor Lebesgue (1853) and Chao Ko (1962), which eliminated
the cases of even exponents, the Catalan Conjecture was reduced to proving that
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xp− yq = 1 has no solution with odd prime exponents (which are easily seen to
be distinct). By considering cyclotomic factorizations, similar to the ones in (9),
one obtains four cases. Cassels proved in 1962 that if (6) has a solution with odd
exponents, then p | y and q | x, while

xp−1
p(x−1)

= vq

for some rational integer v. One may define

α =
x−ζ

1−ζ
and A= (α,y) ,

whence the analogue of equation (9) is (α) = Aq.
Catalan’s conjecture now follows from a combination of analytic methods with

algebraic properties of cyclotomic fields. We present a brief exposition of some of
the ideas that made this proof possible. Denoting by G the Galois group Gal(Q[ζp]/Q),
one notices that the group ring Fq[G] acts on the class a of the ideal A; in other
words, linear combinations of the type θ = ∑σ∈G nσ ·σ , in which the integers nσ

are identified with their remainders modulo q, will act on the class a according to
aθ = ∏σ∈G σ(a)nσ . Since aq = 1, we see that it suffices to consider nq ∈ Fq. We call
an element θ ∈ Fq[G] an annihilator of a if aθ = 1.

Suppose that we are able to find a non-trivial annihilator (1 + j)θ ∈ Fq[G] –
here we denote the restricted action of complex conjugation to K by j ∈ G, so for
instance a j = a. Then αθ = (ρ)q, for some ρ ∈K+; the equality between principal
ideals translates into an identity between algebraic numbers, involving an unknown
unit ε: αθ = ε ·ρq. Assume additionally, that there is a further θ ′ ∈ Fq[G] such that
εθ ′ ∈ (K×)q. Given this, one is able to prove, using additional arguments about the
structure of units in K, that there is a number ν ∈Z[ζ +ζ ] such that (x−ζ )θ ·θ ′ = νq:
note that we eliminated the denominator of α! That these favourable assumptions
situation can be shown to occur follows from an important theorem of Francisco
Thaine [35] (which also leads to a cyclotomic proof of the Main Conjecture of one
dimensional Iwasawa Theory).

Continuing, one now finds a multiple ψ = ∑σ∈G rσ σ ∈ Fq[G] of θ ·θ ′ such that
∑σ∈G rσ = hq for some h≤ p−1

2 , leading to the following equation

ν = xh(1−ζ/x)ψ/q.

The fact that ν ∈R has the important advantage that the rapidly converging binomial
series expansion of the expression

(1−ζ/x)ψ/q = ∏
σ∈G

(σ(1−ζ/x))rσ /q (11)

will in fact converge to ν/xh (rather than to some number that differs from ν/xh by a
q-th root of unity, as would be true generally). With this, we obtain ν = xhg(1/x)+
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F(1/x), with g ∈K[X ] being a polynomial of degree h and F(T ) ∈K[[T ]] a power
series. Finally, appealing to some lower bounds on A which were obtained by Hyyrö,
one can eventually show that, under the given arithmetic conditions, F(1/x) = 0. We
thus have ν = xhg(1/x), which leads to an arithmetic contradiction, completing the
proof of Catalan’s Conjecture.

2.3 The Fermat – Catalan equation

As previously mentioned, in the case that (x,y,z) is a non-trivial solution to the
Fermat-Catalan equation (5) with odd exponents p and q, if we let α = x+ζ y

(1−ζ )e and
A = (α,z) – where e = 1 if p | z and e = 0 otherwise, then we have Aq = (α), a
situation which is reminiscent of both the Fermat and the Catalan equations, and a
starting point for cyclotomic investigations of (5).

In this direction, the second author has tried to adapt the proof of Kummer’s
Theorem to the case of equation (5). It would take too long to explain here the main
points in which this equation differs from (3), necessitating the introduction of addi-
tional methods. Let us only mention that it is possible to restrict our attention to six
cases, depending on whether or not p or q divide any of the factors of x ·y ·z ·(x±y).
After proving a generalization of Kummer’s descent to the p ·q-th cyclotomic field,
it was often possible to either discard cases, or reduce them to conditions about the
vanishing of some Fermat quotient – e.g. 2q−1 ≡ 1 mod q2 or pq−1 mod q2. This
approach succeeds in five cases. Unfortunately, in the sixth case, all classical Kum-
merian methods apparently fail. As a consequence, the second author was unable to
find conditions on p and q which imply that (5) has no solutions. By symmetry, a set
of such conditions could however be derived for the rational Catalan equation, i.e.
the equation (6) in which x,y∈Q is allowed. Note that, after clearing denominators,
this equation is equivalent to

X p +Y pq +Zq = 0 ,

which may be viewed as a “symmetrized Fermat – Catalan” equation.
This first attempt to apply cyclotomic methods thus appears to confirm the some-

what pessimistic expectation that they are not sufficient for solving equation (5) in
any generality.

3 Fermat’s Last Theorem

In the previous section, we discussed the cyclotomic approach to the Fermat equa-
tion and its potential limitations. We now sketch the approach of Hellegouarch, Frey,
Serre and Ribet which culminated in Wiles’ proof of Fermat’s Last Theorem.

Theorem 3 (Wiles [37]). The only integer solutions to the Fermat equation
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xn + yn = zn

with n≥ 3 satisfy xyz = 0.

Recall that we call a solution trivial if xyz = 0, otherwise it is called non-trivial.
Thus the theorem states that all solutions to the Fermat equation are trivial. As we
have seen, the theorem is true for exponents n = 3 and 4. Thus it is sufficient to
show, for primes p≥ 5, that all solutions to

xp + yp + zp = 0 (12)

are trivial. Of course, if (x,y,z) is a solution, we may by scaling suppose that
gcd(x,y,z) = 1; we call such a solution primitive. The purpose of this section is
to sketch the proof of Fermat’s Last Theorem and the ideas leading to it. The proof
is based on three main pillars:

(i) Mazur’s Theorem on irreducibility of Galois representations of elliptic curves;
(ii) The modularity theorem, due to Wiles, Breuil, Conrad, Diamond and Taylor;

(iii) Ribet’s level lowering theorem.

Explaining these pillars will involve a detour into some of the most fascinating areas
of modern number theory: elliptic curves, Galois representations, modular forms
and modularity.

3.1 Elliptic curves

There are many possible definitions of an elliptic curve. Let K be a field. An elliptic
curve over K is a curve of genus 1 defined over K with a distinguished K-point.
An alternative definition is: an elliptic curve over K is a 1-dimensional abelian va-
riety over K. The simplest (though conceptually least enlightening) definition is: an
elliptic curve E over K is a smooth curve in P2 given by an equation of the form

E : y2z+a1xyz+a3yz2 = x3 +a2x2z+a4xz2 +a6z3,

with a1, a2, a3, a4 and a6 ∈K. This in fact is a curve of genus 1, and the distinguished
K-point is (x : y : z) = (0 : 1 : 0). If the characteristic of K is not 2 or 3, then we can
transform to a much simpler model given in A2 by

E : Y 2 = X3 +aX +b, (13)

where a and b ∈ K. We call this equation a Weierstrass model. Let

∆ =−16(4a3 +27b2)

which we call the discriminant of E (this is −16 times the discriminant of the poly-
nomial on the right-hand side). The requirement that E is smooth is equivalent to
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the assumption that ∆ 6= 0. The distinguished K-point is now the ‘point at infinity’,
which we denote by ∞ or O . Given a field L ⊇ K, the set of L-points on E is given
by

E(L) = {(x,y) ∈ L2 : y2 = x3 +ax+b}∪{O}.

It turns out that the set E(L) has the structure of an abelian group with O as the
identity element. The group structure is easy to describe geometrically: three points
P1, P2, P3 ∈ E(L) add up to the identity element if and only if there is a line `
defined over L meeting E in P1, P2, P3 (with multiplicities counted appropriately).
The fact that E(L) is an abelian group (where the group operation has a geometric
interpretation) ties in with the fact that E is an abelian variety.

Theorem 4 (The Mordell–Weil Theorem). Let K be a number field and E an el-
liptic curve over K. Then E(K) is a finitely generated abelian group.

When K is a number field we refer to the group E(K) as the Mordell–Weil group of
E over K.

Example 1. As an example, consider the Fermat degree 3 equation over Q:

x3 + y3 = z3. (14)

Viewed as a curve in P2, this is in fact a curve of genus 1. Let us choose the point
(1 : −1 : 0) to be the distinguished point. We now transform this into a Weierstrass
model using the transformation

Y =
36(x− y)

x+ y
, X =

12z
x+ y

, (15)

so that a solution to equation (14) corresponds to a rational point on the elliptic
curve

E : Y 2 = X3−432.

The solution (1 :−1 : 0) to (14) corresponds to the point ∞ = O on E. The model E
is the elliptic curve denoted by 27A in Cremona’s tables [8]. The group E(Q) has
rank zero and, in fact,

E(Q)' Z/3Z.

Indeed,
E(Q) = {O, (36,12), (36,−12)}

where in the group law on E we have

2 · (36,12) = (36,−12) and 3 · (36,12) = O .

Thus the degree 3 Fermat equation (14) has exactly three solutions, and we may
obtain these by taking the three points belonging to E(Q) and transferring them
back to the model (14) using (15). Doing this, we find that the three solutions to
(14) are (1 :−1 : 0), (1 : 0 : 1) and (0 : 1 : 0)—that is, just the trivial solutions.
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Example 2. One can similarly transform the equation

y2 = x4 + z4 (16)

into the elliptic curve
E : Y 2 = X3−4X

which has Mordell–Weil group

E(Q) = {O, (0,0), (2,0), (−2,0)} ' Z/2Z×Z/2Z

and use this information to deduce that the only solutions to (16) are the trivial ones.

It turns out that the proofs by Fermat and Euler of the degree 4 and degree 3 cases of
Fermat’s Last Theorem are simply special cases of what are now standard Mordell–
Weil group computations.

The degree p Fermat equation (12), viewed as defining a curve in P2, has genus
(p−1)(p−2)/2, and thus does not define an elliptic curve for p≥ 5. We do mention
in passing the following celebrated theorem of Faltings.

Theorem 5 (Faltings [13]). Let C be a curve of genus ≥ 2 over a number field K.
Then C(K) is finite.

Faltings’ theorem tells us that for each p≥ 5 the Fermat equation (12) has finitely
many primitive solutions. Faltings’ theorem is ineffective, in the sense that the proof
does not yield an algorithm that is guaranteed to find all solutions.

3.2 Modular forms

Let k and N be positive integers. We define

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c≡ 0 (mod N)

}
.

It is easy to see that Γ0(N) is a subgroup of SL2(Z) of finite index. Let H be the
complex upper-half plane

H= {z ∈ C : Im(z)> 0}.

The group Γ0(N) acts on H via fractional linear transformations(
a b
c d

)
: H→H, z 7→ az+b

cz+d
.

The quotient Y0(N)=Γ0(N)\H has the structure of a non-compact Riemann surface.
This has a standard compactification denoted X0(N) and the difference X0(N)−
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Y0(N) is a finite set of points called the cusps. In fact the Riemann surface X0(N)
has the structure of an algebraic curve defined over Q and is an example of what is
known as a modular curve.

A modular form f of weight k and level N is a function f : H→ C that satisfies
the following conditions

(i) f is holomorphic on H;
(ii) f satisfies the property

f
(

az+b
cz+d

)
= (cz+d)k f (z), (17)

for all z ∈H and (a b
c d ) ∈ Γ0(N);

(iii) f extends to a function that is holomorphic at the cusps.

Observe that (1 1
0 1) ∈ Γ0(N). Thus by (ii), the function f satisfies f (z+ 1) = f (z).

Letting q(z) = exp(2πiz), we see, from the periodicity, that f must have a Fourier
expansion

f (z) = ∑
n≥N0

cnqn

for some integer N0. In fact, one of the cusps is the cusp at i∞ which we can think of
as being arbitrarily high up on the imaginary axis. Note that q(i∞) = 0. We see that
for f to be holomorphic at the cusp i∞ we require cn = 0 for n < 0. Thus we may
write

f (z) = ∑
n≥0

cnqn. (18)

It turns out that set of modular forms of weight k and level N, denoted by Mk(N), is
a finite-dimensional vector space over C.

A cusp form of weight k and level N is modular form f of weight k and level
N that vanishes at all the cusps. As q(i∞) = 0 we see in particular that a cusp form
must satisfy c0 = 0. The cusp forms naturally form a subspace of Mk(N) which we
denote by Sk(N). Of particular interest are the weight 2 cusp forms of level N: these
can be interpreted as regular differentials on the modular curves X0(N). It follows
that the dimension of S2(N) as a C-vector space is equal to the genus of the modular
curve X0(N).

There is a natural family of commuting operators Tn : S2(N)→ S2(N) (with n≥
1) called the Hecke operators. The eigenforms of level N are the weight 2 cusp forms
that are simultaneous eigenvectors for all the Hecke operators. Such an eigenform
is called normalized if c1 = 1 and thus its Fourier expansion has the form

f = q+ ∑
n≥1

cnqn.
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3.3 Modularity

Let E be an elliptic curve over Q. Such an elliptic curve has a model of the form

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, (19)

where the ai ∈ Z, and a (non-zero) discriminant ∆E which is an integer given by a
complicated polynomial expression in terms of the ai. It is possible to change the
model by carrying out a suitable linear substitution in x, y, and and we generally
work with a minimal model: that is one where the ai ∈ Z with discriminant having
the smallest possible absolute value. Associated to E is another, more subtle, invari-
ant called the conductor NE which we shall not define precisely, but we merely point
that it is a positive integer sharing the same prime divisors as the discriminant; that
it measures the ‘bad behavior’ of the elliptic curve E modulo primes; and that it can
be computed easily through Tate’s algorithm [31, Chapter IV].

Now let p - ∆E be a prime. Then we can reduce the equation (19) to obtain an
elliptic curve Ẽ over Fp. The set Ẽ(Fp) is an abelian group as before, but now
necessarily finite, and we denote its order by #Ẽ(Fp). Let

ap(E) = p+1−#Ẽ(Fp).

We are now ready to state a version of the modularity theorem due to Wiles, Breuil,
Conrad, Diamond and Taylor [37], [6]. This remarkable theorem was previously
known as the Taniyama–Shimura conjecture.

Theorem 6 (The Modularity Theorem). Let E be an elliptic curve over Q with
conductor N. There exists a normalized eigenform f = q+∑cnqn of weight 2 and
level N such that cn ∈ Z for all n, and if p - ∆E is prime then cp = ap(E).

In fact, for an eigenform f the Fourier coefficients are determined by the coefficients
cp with prime indices. Thus from the elliptic curve E we can construct the Fourier
expansion of the corresponding eigenform f . What is astonishing is that f then
satisfies the transformation properties (17).

Example 3. We consider the following elliptic curve E over Q:

E : y2 + y = x3− x2−10x−20.

This has conductor 11, the smallest possible conductor, and discriminant−115. The
space S2(11) is 1-dimensional. Naturally every non-zero element of S2(11) is an
eigenform (i.e. an eigenvector for the Hecke operators), and we take as our basis the
unique normalized eigenform which has the following Fourier expansion:

f (z) = q−2q2−q3 +2q4 +q5 +2q6−2q7−·· ·

According to the modularity theorem the eigenform f corresponds to the elliptic
curve E and we may check a few of the coefficients to convince ourselves that this
is the case. For example,
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Ẽ(F2) = {O, (0,0), (0,1), (1,0), (1,1)} .

It follows that a2(E) = 2+1−#E(F2) =−2 agrees with the coefficient c2 =−2 for
q2 in the Fourier expansion for f . The reader can easily verify the relation ap(E) =
cp for the primes p = 3, 5 and 7.

3.4 Galois representations

Let E be an elliptic curve over C. The structure of the abelian group E(C) is par-
ticularly easy to describe. There is a discrete lattice Λ ⊂ C of rank 2 (that is, as an
abelian group Λ ' Z2) depending on E, and an isomorphism

E(C)' C/Λ . (20)

Let p be a prime. By the p-torsion of E(C) we mean the subgroup

E[p] = {Q ∈ E(C) : pQ = 0}.

It follows from (20) that
E[p]' (Z/pZ)2. (21)

This can be viewed as 2-dimensional Fp-vector space.

Example 4. Let
E : y2 = x3 + x. (22)

It turns out that the corresponding lattice is Λ = Z+Zi. The p-torsion subgroup of
C/Λ is {

a+bi
p

+Λ : a,b = 0, . . . , p−1
}
.

The reader will see that this a 2-dimensional Fp-vector space with basis 1/p+Λ

and i/p+Λ .

Now let E be an elliptic curve over Q. Then we may view E as an elliptic curve
over C, and with the above definitions obtain an isomorphism E[p] ' (Z/pZ)2.
However, in this setting the points of E[p] have algebraic coordinates, and are acted
on by GQ := Gal(Q/Q), the absolute Galois group of the rational numbers. Via
the isomorphism (21), the group GQ acts on (Z/pZ)2. As noted, the latter is a
2-dimensional Fp-vector space. We obtain a 2-dimensional representation that de-
pends on the elliptic curve E and the prime p:

ρE,p : GQ→ GL2(Fp). (23)

Example 5. We continue looking at the elliptic curve (22) but now regard it as an
elliptic curve over Q. The 2-torsion subgroup is
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E[2] = {O, (0,0), (i,0), (−i,0)}.

Recall that O is the identity element. The three other elements of E[2] are points of
order 2. Moreover, they satisfy the additional relation

(0,0)+(i,0)+(−i,0) = O.

We can see this from the geometric description of the group law: the three points on
the left-hand side are the intersection of the line y = 0 with E. As 2 · (−i,0) =O we
have that (−i,0) =−(i,0) and thus

(−i,0) = (0,0)+(i,0).

We now see that E[2] is an F2-vector space with basis (0,0) and (i,0). Let us now
use this to write down ρE,2 explicitly. Let σ ∈ GQ. Then σ(i) = i or σ(i) = −i.
Suppose first that σ(i) = i. Then

σ(0,0) = (σ(0),σ(0)) = (0,0), σ(i,0) = (σ(i),σ(0)) = (i,0).

As σ leaves our chosen basis fixed, we have

ρE,2(σ) =

(
1 0
0 1

)
∈ GL2(F2).

Suppose instead that σ(i) =−i. Then

σ(0,0)= (σ(0),σ(0))= (0,0), σ(i,0)= (σ(i),σ(0))= (−i,0)= (0,0)+(i,0).

Thus the action of σ with respect to our chosen basis is given by the matrix

ρE,2(σ) =

(
1 1
0 1

)
∈ GL2(F2).

We record the image of the representation ρE,2:

ρE,2(GQ) =

{(
1 0
0 1

)
,

(
1 1
0 1

)}
.

We note that the representation ρE,2 is reducible, in the sense that all elements of

the image share a common eigenvector
(

1
0

)
.

We return to our general setting of an elliptic curve E over Q and a prime p. We
say that the representation ρE,p is reducible if the matrices of the image ρE,p(GQ)
share some common eigenvector. Otherwise we say that ρE,p is irreducible.

We have now given enough definitions to be able to state Mazur’s theorem; this is
often considered as historically the first step in the proof of Fermat’s Last Theorem.
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Theorem 7 (Mazur [24]).

(i) Let E be an elliptic curve over Q and p > 163 be prime. Then ρE,p is irreducible.
(ii) Let E be an elliptic curve over Q with full 2-torsion (that is E[2] ⊆ E(Q)) and

let p≥ 5 be prime. Then ρE,p is irreducible.

It turns out that an elliptic curve E over Q such that ρE,p is reducible corresponds
to a rational point on the modular curve X0(p) that is not a cusp. Mazur proved
his theorem by determining the rational points on this infinite family of curves.
In a sense, Mazur’s theorem is not unlike Fermat’s Last Theorem, which is also a
statement about the rational points on an infinite family of curves.

We mention in passing the relationship between reducible mod p representations
and isogenies. An isogeny of elliptic curves E, E ′ is a non-constant map φ : E→ E ′

defined by algebraic equations that takes the point at infinity on E to the point at in-
finity on E ′. A non-trivial consequence of the Riemann–Roch theorem is that isoge-
nies respect the group law, and so are in a sense algebro-geometric homomorphisms.
A p-isogeny is an isogeny φ : E → E ′ such that the kernel of φ has order p. Let E
be defined over Q. Then the existence of an p-isogeny φ : E → E ′ defined over Q
is equivalent to the representation ρE,p being reducible. In fact, if Q is a non-zero
element of the kernel of φ , then Q is a non-zero eigenvector for all the elements of
the image of ρE,p. We can restate (i) of Mazur’s theorem as saying that an elliptic
curve E defined over Q has no p-isogenies for p > 163.

3.5 Ribet’s level lowering theorem

Let E be an elliptic curve over Q. We saw above that, for each prime p, the curve
E gives rise to a mod p Galois representation ρE,p : GQ → GL2(Fp). Let f be an
eigenform. Deligne and Serre showed that such an f gives rise, for each prime p,
to a Galois representation ρ f ,p : GQ → GL2(Fpr), where r ≥ 1 depends on f . If
E corresponds to f via the Modularity theorem (Theorem 6) then, unsurprisingly,
ρE,p ∼ ρ f ,p (the two representations are isomorphic). Thus the representation ρE,p
is modular in the sense that it arises from a modular eigenform. Recall that if f
corresponds to E via modularity then the conductor of E is equal to the level of f .
Sometimes it is possible to replace f by another eigenform of smaller level which
has the same mod p representation. This process is called level lowering. We now
state a special case of Ribet’s level lowering theorem. Ribet’s theorem is in fact part
of Serre’s modularity conjecture [29] that was proved by Khare and Wintenberger
[20], [21].

Theorem 8 (Ribet’s level lowering theorem [28]). Let E be an elliptic curve over
Q with minimal discriminant ∆ and conductor N. Let p≥ 3 be prime. Suppose

(i) the curve E is modular;
(ii) the mod p representation ρE,p is irreducible.
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Let
Np = N

/
∏
`||N,

p |ord`(∆)

`. (24)

Then ρE,p ∼ ρg,p for some eigenform g of weight 2 and level Np.

Of course we now know, thanks to the Modularity theorem (Theorem 6) that all
elliptic curves over Q are modular. Thus condition (i) in Ribet’s theorem is auto-
matically satisfied. But we still include it for historical interest.

We can make the relationship ρE,p∼ ρg,p in Ribet’s theorem more explicit. Write
g = q+∑n≥1 dnqn for the Fourier expansion of g. It turns out that the dn belong to
the ring of integers OK of a number field K that depends on g. The relationship
ρE,p ∼ ρg,p is equivalent to the existence of a prime ideal P of OK that divides
pOK such that aq(E)≡ dq (mod P) for all primes q - N p.

Example 6. Consider the elliptic curve

E : y2 = x3− x2−77x+330

with Cremona reference 132B1. Cremona’s database [8] gives us the minimal dis-
criminant and conductor

∆ = 24×310×11, N = 22×3×11. (25)

The database also tells us that the only isogeny the curve E has is a 2-isogeny. Thus
ρE,p is irreducible for p≥ 3. We apply Ribet’s Theorem with p = 5. From the above
recipe (24) for the level we find that Np = 44. It is possible to check that ρE,p ∼ ρg,p
where g is the following eigenform has weight 2 and level 44:

g = q+q3−3q5 +2q7−2q9−q11 + · · · .

All the coefficients of g belong to Z. We tabulate aq(E) and the coefficients dq for
primes q < 50. The reader will note that the relationship aq(E)≡ dq (mod 5) holds
for all primes q in the range except for q = 3 which does divide N.

q 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
aq(E) 0 −1 2 2 −1 6 −4 −2 −8 0 0 −6 0 10 0

dq 0 1 −3 2 −1 −4 6 8 −3 0 5 −1 0 −10 0

3.6 The proof of Fermat’s Last Theorem

We are now able to sketch a proof of Fermat’s Last Theorem. Suppose p ≥ 5 is
prime, and x, y and z are non-zero pairwise coprime integers such that xp+yp+zp =
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0. We may reorder (x,y,z) so that y is even and xp ≡ −1 (mod 4). We let E be the
following elliptic curve which depends on the solution (x,y,z):

E : Y 2 = X · (X− xp) · (X + yp). (26)

The curve E is called the Frey–Hellegouarch curve. The minimal discriminant and
conductor of E are:

∆ =
x2py2pz2p

28 , N = ∏
`|∆

`.

The choice 2 | y and xp ≡−1 (mod 4) ensures that 2 || N.

We now consider ρE,p. The 2-torsion subgroup for E is

E[2] = {O, (0,0), (xp,0), (−yp,0)}.

Note that E[2] ⊆ E(Q). As p ≥ 5 we know by Mazur’s theorem (Theorem 7) that
ρE,p is irreducible. Moreover E is modular by the Modularity theorem. The hy-
potheses of Ribet’s theorem are satisfied. We compute Np = 2 using the recipe in
(24). It follows that ρE,p ∼ ρg,p where g has weight 2 and level 2. A simple compu-
tation shows that there are no eigenforms of weight 2 and level 2. This contradiction
completes the proof of Fermat’s Last Theorem.

Some Historical Remarks. In the early 1970s, Hellegouarch (e.g. [19]) had the idea
of associating to a non-trivial solution of the Fermat equation the elliptic curve (26);
he noted that the number field generated by its p-torsion subgroup E[p] has surpris-
ingly little ramification. In the early 1980s, Frey [18] observed that this elliptic curve
enjoys certain remarkable properties that should rule out its modularity. Motivated
by this, in 1985 Serre [29] made precise his modularity conjecture and showed that it
implies Fermat’s Last Theorem. Serre’s remarkable paper also uses several variants
of the Frey–Hellegouarch curve to link modularity to other Diophantine problems.
Ribet announced his level-lowering theorem 1987, thereby proving that modularity
of the Frey–Hellegouarch curve implies Fermat’s Last Theorem. The proof of the
Modularity theorem was completed around 1999 by Breuil, Conrad, Diamond and
Taylor [6]. A semistable elliptic curve is one with squarefree conductor. We note
from (25) that the Frey–Hellegouarch curve is semistable. In 1994 Wiles [37], with
some help from Taylor [33], proved modularity of semistable elliptic curves over Q,
thereby proving Fermat’s Last Theorem.

4 The (more) generalized Fermat equation

We now return to the generalized Fermat equation

xp + yq = zr, (27)
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where x,y and z are integers, and the exponents p,q and r are (potentially distinct)
positive integers. We restrict our attention to primitive solutions, i.e. those with
gcd(x,y,z) = 1, since, without such a restriction, it is easy to concoct uninterest-
ing solutions in a fairly trivial fashion. Indeed, if we assume, say, that p,q and r are
pairwise relatively prime, then we can choose integers u,v and w such that

uqr ≡−1 (mod p), vpr ≡−1 (mod q) and wpq≡−1 (mod r).

If we are given any integers a,b and c with a+b = c, multiplying this equation by
auqrbvprcwpq, we thus have that(

a(uqr+1)/pbvrcwq
)p

+
(

aurb(vpr+1)/qcwp
)q

=
(

auqbvpc(wpq+1)/r
)r

.

We call (p,q,r) the signature of equation (27). The behaviour of primitive solu-
tions depends fundamentally upon the size of the quantity

σ(p,q,r) =
1
p
+

1
q
+

1
r
,

in particular, whether σ(p,q,r) > 1, σ(p,q,r) = 1 or σ(p,q,r) < 1. If we set
χ = σ(p,q,r)− 1, then χ is the Euler characteristic of a certain stack associated
to equation (27). It is for this reason that the cases σ(p,q,r)> 1, σ(p,q,r) = 1 and
σ(p,q,r)< 1 are respectively termed spherical, parabolic and hyperbolic.

4.1 The spherical case σ(p,q,r)> 1

In this case, we may assume that (p,q,r) is one of (2,2,r), (2,q,2), (2,3,3),
(2,3,4), (2,4,3) or (2,3,5). In each of these situations, the (infinitely many) rel-
atively prime integer solutions to (27) come in finitely many two parameter families
(the canonical model to bear in mind here is that of Pythagorean triples); in the
(most complicated) (2,3,5) case, there are precisely 27 such families, as proved by
Johnny Edwards [11] in 2004 via an elegant application of classical invariant theory.
In the case (p,q,r) = (2,4,3), by way of example, we find that the relatively prime
solutions x,y and z satisfy one of the following four parametrizations :

x = 4ts(s2−3t2)(s4 +6t2s2 +81t4)(3s4 +2t2s2 +3t4),
y =±(s2 +3t2)(s4−18t2s2 +9t4),
z = (s4−2t2s2 +9t4)(s4 +30t2s2 +9t4),

where s 6≡ t (mod 2) and 3 - s,
x =±(4s4 +3t4)(16s8−408t4s4 +9t8),
y = 6ts(4s4−3t4),
z = 16s8 +168t4s4 +9t8,
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where t is odd and 3 - s,
x =±(s4 +12t4)(s8−408t4s4 +144t8),
y = 6ts(s4−12t4),
z = s8 +168t4s4 +144t8,

where s≡±1 (mod 6), or
x = 2(s4 +2ts3 +6t2s2 +2t3s+ t4)(23s8−16ts7−172t2s6−112t3s5

−22t4s4−112t5s3−172t6s2−16t7s+23t8),
y = 3(s− t)(s+ t)(s4 +8ts3 +6t2s2 +8t3s+ t4),
z = 13s8 +16ts7 +28t2s6 +112t3s5 +238t4s4

+112t5s3 +28t6s2 +16t7s+13t8,

where s 6≡ t (mod 2) and s 6≡ t (mod 3). Here, s and t are relatively prime integers.
Details on these parametrizations (and much more besides) can be found in Cohen’s
exhaustive work [7].

4.2 The parabolic case σ(p,q,r) = 1

If we have σ(p,q,r) = 1, then, up to reordering,

(p,q,r) = (2,6,3),(2,4,4),(4,4,2),(3,3,3) or (2,3,6).

As in Examples 1 and 2, each equation now corresponds to an elliptic curve of
rank 0 over Q; the only primitive non-trivial solution comes from the signature
(p,q,r) = (2,3,6), corresponding to the Catalan solution 32−23 = 1.

4.3 The hyperbolic case σ(p,q,r)< 1

It is the hyperbolic case, with σ(p,q,r) < 1, where most of our interest lies. Here,
we are now once again considering the equation and hypotheses (4). As mentioned
previously, it is expected that the only solutions to (4) are with (x,y,z, p,q,r) corre-
sponding to the identity 1p +23 = 32, for p≥ 6, or to

25 +72 = 34, 73 +132 = 29, 27 +173 = 712, 35 +114 = 1222,
177 +762713 = 210639282, 14143 +22134592 = 657, 92623 +153122832 = 1137,

438 +962223 = 300429072 and 338 +15490342 = 156133.

A less ambitious conjecture would be that (4) has at most finitely many solutions
(where we agree to count those coming from 1p +23 = 32 only once). In the rest of
this section, we will discuss our current knowledge about this equation.
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4.4 The Theorem of Darmon and Granville

What we know for sure in the hyperbolic case, is that, for a fixed signature (p,q,r),
the number of solutions to equation (4) is at most finite :

Theorem 9 (Darmon and Granville [9]). If A,B,C, p,q and r are fixed positive
integers with

1
p
+

1
q
+

1
r
< 1,

then the equation
Axp +Byq =Czr

has at most finitely many solutions in coprime non-zero integers x,y and z.

Proof. The proof by Darmon and Granville is extremely elegant and we cannot
resist giving a brief sketch. The hypothesis 1/p+1/q+1/r < 1 is used to show the
existence of a cover φ : D→ P1 that is ramified only above 0, 1, ∞, where the curve
D has genus≥ 2. Moreover, this cover has the property that the ramification degrees
above 0 are all divisors of p, above 1 are all divisors of q, and above ∞ are all divisors
of r. Now let (x,y,z) be a non-trivial primitive solution to the equation Axp +Byp =
Czr. The above properties of the cover φ imply that the points belonging to the
fiber φ−1(Axp/Czr) are defined over a number field K that is unramified away from
the primes dividing 2ABCpqr. It follows from a classical theorem of Hermite that
there are only finitely many such number fields K. Moreover, by Faltings’ theorem,
for each possible K there are only finitely many K-points on D. It follows that the
equation Axp +Byp =Czr has only finitely many primitive solutions.

It is worth noting that the argument used in the proof is ineffective, due to its depen-
dence upon Faltings’ theorem; it is not currently known whether or not there exists
an algorithm for finding all rational points on an arbitrary curve of genus ≥ 2.

4.5 A brief survey of what we know

What we would really like to do goes rather further than what the theorem of Dar-
mon and Granville tells us. Indeed, we would like to obtain finiteness results for
equation (4) where we allow the exponent triples (p,q,r) to range over infinite fam-
ilies. In the following tables, we list all known (as of 2015) instances where equation
(4) has been completely solved. For references to the original papers we recommend
the exhaustive survey [4]. The first table collects all known infinite families treated
to date :
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(p,q,r) reference(s)
(n,n,n) Wiles, Taylor-Wiles

(n,n,k),k ∈ {2,3} Darmon-Merel, Poonen
(2n,2n,5) Bennett
(2,4,n) Ellenberg, Bennett-Ellenberg-Ng, Bruin
(2,6,n) Bennett-Chen, Bruin
(2,n,4) Bennett-Skinner, Bruin
(2,n,6) Bennett-Chen-Dahmen-Yazdani

(3 j,3k,n), j,k ≥ 2 immediate from Kraus
(3,3,2n) Bennett-Chen-Dahmen-Yazdani
(3,6,n) Bennett-Chen-Dahmen-Yazdani

(2,2n,k), k ∈ {9,10,15} Bennett-Chen-Dahmen-Yazdani
(4,2n,3) Bennett-Chen-Dahmen-Yazdani

(2 j,2k,n), j,k ≥ 5 prime, n ∈ {3,5,7,11,13} Anni-Siksek

Our second table lists “sporadic” triples where the solutions to (4) have been de-
termined, and infinite families of exponent triples where the (p,q,r) satisfy certain
additional local conditions.

(p,q,r) reference(s)
(3,3,n)∗ Chen-Siksek, Kraus, Bruin, Dahmen
(2,2n,3)∗ Chen, Dahmen, Siksek
(2,2n,5)∗ Chen
(2m,2n,3)∗ Bennett-Chen-Dahmen-Yazdani
(2,4n,3)∗ Bennett-Chen-Dahmen-Yazdani
(3,3n,2)∗ Bennett-Chen-Dahmen-Yazdani

(2,3,n), n ∈ {6,7,8,9,10,15} Poonen-Schaefer-Stoll, Bruin, Zureick-Brown, Siksek, Siksek-Stoll
(3,4,5) Siksek-Stoll

(5,5,7), (7,7,5) Dahmen-Siksek

The asterisk here refers to conditional results. For instance, in case (p,q,r) =
(3,3,n), we have no solutions if either 3≤ n≤ 109, or n≡±2 modulo 5, or n≡±17
modulo 78, or

n≡ 51,103,105 modulo 106,

or for n (modulo 1296) one of

43,49,61,79,97,151,157,169,187,205,259,265,277,295,313,367,373,385,403,
421,475,481,493,511,529,583,601,619,637,691,697,709,727,745,799,805,

817,835,853,907,913,925,943,961,1015,1021,1033,1051,1069,1123,
1129,1141,1159,1177,1231,1237,1249,1267,1285.

The results mentioned here have been proved by essentially two distinct methods.
For a number of fixed triples, the problem has been reduced (via arguments similar
to those of Darmon and Granville, or otherwise) to one of determining Q-rational
points on certain curves of genus 2 or higher. These points were subsequently found
via Chabauty-type methods and appeal to a version of the Mordell-Weil sieve. In
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each case where equation (4) has been solved for an infinite family of triples (p,q,r),
however, a different approach has been utilized, relying upon Frey–Hellegouarch
curves and connections between them and modular forms.

5 The modular approach and the generalized Fermat equation

It is natural to ask if the proof of Fermat’s Last Theorem can be adapted to resolve
(4), at least for certain signatures (p,q,r). Roughly speaking a Frey–Hellegouarch
curve is an elliptic curve E over Q, attached to a solution of a Diophantine equation
satisfying two conditions:

(i) the discriminant of E has the form A ·Bp where A is a known (small) integer and
p is a prime;

(ii) every prime q | B divides the conductor exactly once.

Examining the recipe (24) in Ribet’s theorem the reader will note that the level Np
depends only on the known quantity A. For example, in the proof of Fermat’s Last
Theorem, A is a power of 2 and the level Np = 2.

Alas, only a few signatures have workable Frey–Hellegouarch curves. In the fol-
lowing table we record some of the known ones.

Equation Frey–Hellegouarch Curve
ap +bp = c2 Y 2 = X3 +2cX2 +apX
ap +bp = c3 Y 2 = X3 +3cX2−4bp

a3 +b3 = cp Y 2 = X3 +3(a−b)X2 +3(a2−ab+b2)X
a2 +b3 = cp Y 2 = X3 +3bX +2a

These and similar Frey–Hellegouarch curves have been used to prove many of
the results surveyed in Section 4.5.

5.1 A sample signature : (p, p,2)

To illustrate the approach we look specifically at the equation xp + yp = z2 where
p ≥ 7 is prime. Here we follow the paper of Darmon and Merel [10] who showed
that the only primitive solutions are (±1,∓1,0), (1,0,±1), (0,1,±1). Let (x,y,z) =
(a,b,c) be a primitive solution satisfying ab 6= 0. As in the preceding table, we
associate to this the Frey–Hellegouarch curve

E : Y 2 = X3 +2cX2 +apX .

This is modular by Theorem 6. By a variant of Mazur’s theorem (Theorem 7) the
mod p representation ρE,p is irreducible. Now an application of the Ribet’s theorem
shows that ρE,p ∼ ρg,p where g is an eigenform of weight 2 and level 32. This is
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where we diverge from the proof of Fermat’s Last Theorem: there is an eigenform
of weight 2 and level 32. It turns however that this eigenform is rather special as
it corresponds to an elliptic curve with complex multiplication. It follows from this
fact that ρg,p : GQ→ GL2(Fp) is not surjective. To complete the resolution of the
equation xp +yp = z2, Darmon and Merel needed to show that if ab 6=−1 then ρE,p
is in fact surjective and hence cannot be isomorphic to ρg,p. To do this, they showed
that if ρE,p is not surjective then it gives rise to a rational point on one of a family of
certain modular curves, and completed the proof by determining the rational points
on this family. This last step is somewhat similar to the proof of Mazur’s theorem.

6 Modularity over number fields

Even when we are interested in Diophantine equations in rational integer unknowns,
factorization arguments often force us to consider Diophantine equations where the
coefficients or unknowns lie in a number field. Consider for example the equation

a4 +b2 = cp, gcd(a,b,c) = 1 (28)

where the exponent p is prime. This equation is not known to have a Frey–
Hellegouarch curve defined over Q. We can, however, factor the left-hand side as
(a2 +bi)(a2−bi) where i =

√
−1. It is not hard to show using the arithmetic of the

Gaussian ring Z[i] that

a2 +bi = α
p, a2−bi = α

p.

where α ∈ Z[i] and α is its conjugate. Eliminating b we obtain the equation

α
p +α

p = 2a2.

This is an (p, p,2) equation. However, unlike the equations we met in Section 5.1,
some of the unknowns belong to Z[i]. We ignore this uncomfortable fact for now and
simply imitate the approach in the previous section to associate a Frey–Hellegouarch
curve to this equation. The Frey–Hellegouarch curve is

E : y2 = x3 +2ax2 +2α
px (29)

which has discriminant 29(αα
2)p. We note that the discriminant is close to being

a perfect p-th power. To solve our original generalized Fermat equation (28) with
signature (4,2, p) and unknowns belonging to Z, we need to consider an elliptic
curve that is defined over Q(i). It is natural to ask how much of modularity and
level lowering carry over to the setting of number fields. If we ask these questions
for elliptic curves over general number fields then the answers are conjectural with
almost no satisfactory theorems. However there are two situations where there are
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satisfactory theorems and these have been applied to certain generalized Fermat
equations: Q-curves and elliptic curves over totally real fields.

6.1 Q-curves

A Q-curve is an elliptic curve E over a number field K that is isogenous to all its
conjugates. The Frey curve (29) is an example of a Q-curve: it is defined over the
number field Q(i) and it happens to be isogenous to its conjugate y2 = x3 +2ax2 +
2α

px (the conjugate is obtained simply by conjugating the coefficients of the elliptic
curve).

A consequence of the proof of Khare and Wintenberger of Serre’s modularity
conjecture is that Q-curves are modular. The modularity of the Q-curve E given
by (29) was used by Ellenberg [12] and by the first author, Ellenberg and Ng [5]
to completely solve a4 +b2 = cp showing in fact that there no non-trivial primitive
solutions with n ≥ 4 (here n does not have to be prime). The first author and Chen
[3] have used modularity of Frey–Hellegouarch Q-curves to show that the equation
a2 +b6 = cn has no non-trivial solutions with gcd(a,b,c) = 1 and n≥ 3.

6.2 Elliptic curves over totally real fields

A number field K of degree n has n embeddings into the complex numbers ι j :
K ↪→ C with j = 1, . . . ,n. For example if K = Q(θ) is a number field of degree n
then θ is the root of an irreducible degree n polynomial with rational coefficients.
Such a polynomial has n distinct complex roots θ1, . . . ,θn, and the embedding ι j
satisfies ι j(θ) = θ j. The embedding ι j is real if ι j(K)⊂ R. Equivalently if θ j ∈ R.
If all the embeddings are real then we say that K is a totally real (number) field. An
example of a totally real field is the cubic field K =Q(θ) where θ = ζ7+ζ

−1
7 . Here

θ is a root of the polynomial x3 + x2− 2x− 1. The roots θ j of the polynomial are
2cos(2π j/7) with j = 1, 2, 3 which are all real.

Elliptic curves over totally real fields are conjecturally expected to be modular
in the sense that they correspond to what are known as Hilbert modular forms (the
classical modular forms of Section 3.2 are a special case of Hilbert modular forms).
There has been substantial progress towards proving modularity for elliptic curves
over totally real fields thanks to the work of Barnet-Lamb, Breuil, Diamond, Gee,
Geraghty, Kisin, Skinner, Wiles and many others (many of these results in fact inte-
grate level lowering with modularity). Building on this work, modularity of elliptic
curves over real quadratic fields was recently proved by Freitas, Le Hung and Sik-
sek [14]. To solve Diophantine problems via Frey curves that are defined over totally
real fields one needs not only modularity and level lowering, but also irreducibility
theorems for mod p representations of elliptic curves. Over the rationals, as we saw
in Section 3.4, this is provided by Mazur’s theorem. No such theorem is known
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over any number field other than Q. However Frey curves are almost semistable and
this fact can usually be used [17] together with the celebrated uniform boundedness
theorem of Merel [25] to supply the required irreducibility result.

As an example we mention the equation

a2`+b2m = cp, gcd(a,b,c) = 1. (30)

studied by Anni and Siksek [1]. Here `, m≥ 5 and p≥ 3 are primes. A complicated
factorization argument is used to reduce this to a Fermat equation with signature
(`,`,`) with coefficients and unknowns belonging to the totally real field Q(ζp +
ζ−1

p ). The corresponding Frey curves over this field are shown to be modular using
the above-mentioned works for p = 3, 5, 7, 11 and 13. This is then used to show
that the only solutions to (30) are the trivial ones.

7 A way forward: Darmon’s program

The Frey–Hellegouarch approach used in the proof of Fermat’s Last Theorem and
in the resolution of many other equations (as sketched in previous sections) attaches
an elliptic curve to a hypothetical solution of the equation in question and then uses
modularity to make deductions about this solution. It is natural to ask:

(i) Are there geometric objects other than elliptic curves that are somehow modular?
(ii) If so, can these be used as an alternative, perhaps to add flexibility and tackle

generalized Fermat equations for which no Frey–Hellegouarch elliptic curve is
known?

An abelian variety is a connected and projective algebraic group. Roughly
speaking this means that it is defined by algebraic equations in projective space
and carries a group structure (that happens to be abelian). An abelian variety has
a dimension d ≥ 1, and abelian varieties of dimension 1 are simply elliptic curves.
Are abelian varieties over Q modular? The answer should be ‘yes’, except that the
precise meaning of word modular in this generality is not yet resolved.

An abelian variety of dimension d is said to be of GL2-type if its endomorphism
ring is an order in a number field of degree d. A Theorem of Khare and Winten-
berger [20] states that abelian varieties of GL2-type over Q are modular in a very
precise sense (that is in fact very close to that of elliptic curves in Section 3.3).
Abelian varieties of GL2-type over totally real fields are expected to be modular in
the sense that they correspond to Hilbert modular forms. Darmon exploits this idea
to attack the equation xp + yp = zr, where p and r are primes and gcd(x,y,z) = 1 as
usual. He attaches a hypothetical non-trivial solution to an abelian variety of GL2-
type over the totally real field Q(ζr + ζ−1

r ). Using this he proves several beautiful
theorems about possible solutions, though all are dependent on yet unproven conjec-
tures. The biggest obstruction to Darmon’s program is the absence of a Mazur-style
irreducibility theorem for mod p representations of abelian varieties of GL2-type.
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The Darmon program holds the greatest promise for further substantial progress
on the generalized Fermat equation. Just as Frey’s original work was the spark that
led to the formulation of Serre’s modularity conjecture, and the proofs of Ribet’s
theorem and the Modularity theorem, so we hope that Darmon’s program will sup-
ply the impetus for new theorems for abelian varieties of GL2-type that in turn allow
us to make deductions about the generalized Fermat equation.
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