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The Riemann Hypothesis

Problem

Prove that all nontrivial zeroes of Riemann’s zeta function ζ have
real part 1

2 .
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Euler’s product formula
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Riemann’s functional equation
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The Riemann Hypothesis

Let π(x) be the number of prime numbers less than or equal to x :

π(10) = 4, π(100) = 25, π(1000) = 168, π(10 000) = 1229, . . .

The Prime Number Theorem

x

ln(x)
−→ π(x) as x −→∞

The logarithmic integral

li(x) =

∫ x

0

1

t
dt

If the Riemann Hypothesis is true, then∣∣π(x)− li(x)
∣∣ < ln(x)

√
x

8π .

The Millennium Prize Problems



The Navier–Stokes Equations

Problem

Prove or disprove that in three space dimensions and time, given an
initial velocity field, there exists a vector velocity and a scalar
pressure field, which are both smooth and globally defined, that
solve the Navier–Stokes equations.

Navier–Stokes equations

∂v

∂t
+ (v · ∇)v = −∇p + ν∆v + f(x, t)

ν is the kinematic viscosity,

f(x, t) is the external force,

∇ = ∂
∂x + ∂

∂y + ∂
∂z is the gradient operator, and

∆ = ∂2

∂x2
+ ∂2

∂y2 + ∂2

∂z2
is the Laplacian operator.
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P vs NP

Problem

Determine whether every language accepted by some
nondeterministic algorithm in polynomial time is also accepted by
some (deterministic) algorithm in polynomial time.
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Yang–Mills Existence and Mass Gap

Problem

Prove that for any compact simple gauge group G , a non-trivial
quantum Yang–Mills theory exists on R4 and has a mass gap ∆ > 0.

Yang–Mills Theory: nonabelian quantum field theory
underlying the Standard Model.

R4: 4–dimensional Euclidean space.

Gauge group G : underlying symmetry group of the theory.

Electromagnetic interactions: U1

Weak interactions: SU2

Strong interactions: SU3

Mass gap ∆: mass of lightest particle predicted by the theory.
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The Hodge Conjecture

Problem

Show that every Hodge class on a projective complex manifold X is
a linear combination with rational coefficients of the cohomology
classes of complex subvarieties of X .

Hdgk(X ) = H2k(X ,Q) ∩ Hk,k(X ).

Projective complex manifold: manifold with some extra
structure.

Cohomology group Hn(X ; A): topological gadget describing
the n–dimensional structure of X , counted using elements of A.

Hn(X ) := Hn(X ;Z) (count with integers).

Hk,k(X ): subgroup of H2k(X ) consisting of cohomology
classes represented by harmonic forms of type (k , k).
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The Birch–Swinnerton-Dyer Conjecture

Problem

Let C be a rational elliptic curve. Show that the Taylor expansion of
the Hasse L–series L(C , s) at s = 1 has the form

L(C , s) = c(s − 1)r + higher order terms

with c 6= 0 and r = rank(C ).

Elliptic curve: y2 = x3 + ax + b
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The Poincaré Conjecture

Problem

Prove that every closed, simply-connected 3–manifold is
homeomorphic to the 3–sphere S3.

Definition

An n–manifold is an object (a Hausdorff topological space) that
locally “looks like” (is homeomorphic to) ordinary n–dimensional
space Rn.
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