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Pure vs Applied 1
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U(seful) vs Non-U(seful) 2

The aim of pure mathematics is to get beautiful results on paper by
ignoring real life; the shorter and more compact the result, the
better. Hence, pure mathematicians tend to look down on Applied
Mathematics, with its three-foot-long equations trying to describe
the movement of water down a bath plug, as a grovelling and
unwieldy subject getting dangerously close to engineering.

[Applied mathematics] aims to produce models describing how
things work and by trying to describe systems more and more
accurately gets longer and longer equations so that they frequently
spill over several pages. Applied mathematicians look down on pure
mathematicians as ivory tower dreamers.

– Robert Ainsley, The Bluffer’s Guide to Maths (1988)
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Apologetics 3

If useful knowledge is, as we agreed provisionally to say, knowledge
which is likely, now or in the comparatively near future, to contribute
to the material comfort of mankind, so that mere intellectual
satisfaction is irrelevant, then the great bulk of higher mathematics
is useless. Modern geometry and algebra, the theory of numbers, the
theory of aggregates and functions, relativity, quantum mechanics –
no one of them stands the test better than another, and there is no
real mathematician whose life can be justified on this ground. If this
be the test, then Abel, Riemann, and Poincaré wasted their lives;
their contribution to human comfort was negligible, and the world
would have been as happy a place without them.

– G H Hardy, A Mathematician’s Apology (1940)
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No apology necessary 4

GH Hardy (1877–1947)

Graduate and Fellow of Trinity College, Cambridge
(fourth Wrangler 1898), elected FRS in 1910

Savilian Professor of Geometry, Oxford (1919–1931)

Sadleirian Professor of Mathematics, Cambridge
(1931–1944)

Collaborated with J E Littlewood (1885–1977) and
Srinivasa Ramanujan (1887–1920)

Complex analysis, analytical number theory

Staunch atheist, avid cricket enthusiast

But. . .

Group theory: molecular chemistry, particle physics

Geometry: CAD, computer graphics

Number theory: cryptography

Relativity: GPS

Quantum mechanics: lasers, microelectronics, MRI scanners
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Knots in the æther 5

Sir William Thomson OM GCVO PC PRS, Lord Kelvin
(1824–1907) proposes that atoms are knots in the field lines of
the luminiferous æther.

Theory killed by Michelson–Morley experiment (1887) that
disproves existence of the æther.

But sparks off study and classification of knots as a
mathematical problem in its own right.
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Deoxyribonucleic acid 6

Discovered in 1869 by Friedrich Miescher (1844–1895)

Crystal structure determined by Francis Crick (1916–2004),
James Watson, Rosalind Franklin (1920–1958) and others.
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Deoxyribonucleic acid 7

Double helix structure: two strands of alternating sugar and
phosphate groups.

Each sugar molecule has one of four bases attached:

adenine thymine cytosine guanine

These bond in pairs (A–T and C–G) forming the ladder
structure between the two strands of the helix.
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Supercoiling 8

Average of about 10.5 base pairs per full twist.

More twisting induces supercoiling:

With closed loops of DNA, too:
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Linking number 9

Meanwhile, in knot theory. . .
A knot is an embedded circle in 3–space.
A link is an embedding of more than one circle in 3–space.

The linking number measures how linked two components are:

−2 −1 0 +1 +2
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Linking number 10

Each crossing in an oriented link is positive or negative:

Let K1 and K2 be two components of a link L. Then

lk(K1,K2) = lk(K2,K1) = 1
2

∑
crossings c

involving K1,K2

sign(c)

So, for

we have lk(red, blue) = 1
2 × 6 = 3.
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Linking number 11

For the Whitehead link

lk(red, blue) = 0.

For the Borromean rings

lk(red, blue) = lk(blue, green) = lk(red, green) = 0.
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Type–I topoisomerase 12

A class of enzymes that change the linking number of DNA
strands (and hence the twisting of the double helix).

Break one strand, pass other strand through and reattach.

Changes linking number by ±1.

break−−−→ pass through−−−−−−−→ rejoin−−−→
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Type–II topoisomerase 13

A related class of enzymes that knot and unknot DNA.

Cut both strands, pass other strands through and reattach.

Changes linking number by ±2.

cut−−→ pass through−−−−−−−→ rejoin−−−→

Nicholas Jackson Pure and Applied Mathematics



Knotted DNA 14

Type-II topoisomerase can lead to knotted DNA:

31 (trefoil) 62

Can use techniques from knot theory to understand the action
of topoisomerase and other enzymes.

Ernst and Sumners (1995) applied Conway’s tangle calculus to
devise a model for the topology of Tn3 resolvase, one of a
number of enzymes involved in site-specific recombination.
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Skein relations and recombination 15

The Jones polynomial V (K ), Alexander polynomial ∆(K ) and
Kauffman bracket 〈K 〉 can be defined recursively by skein
relations:

(t1/2 − t−1/2)V
( )

= t−1V
( )

− tV
( )

(t1/2 − t−1/2)∆
( )

= ∆
( )

−∆
( )〈 〉

= A
〈 〉

+ A−1
〈 〉

Certain enzymes called recombinases act in a similar way when
performing site-specific recombination.

Tyrosine recombinases act like −→
Serine recombinases act like −→ or −→
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Molecules 16

What about simpler molecules?

ammonia ethene ethane

benzene caffeine ethanol
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Molecular symmetry 17

Schoenflies notation

E Identity
Cn n–fold rotation around an axis

σ (σv , σh) Reflection in a plane
i Inversion in a point

Sn n–fold improper rotation around an axis

ammonia ethane
E , C3, σv E , C3, i , S2
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Polarity 18

Can use symmetry to understand charge distribution across a
molecule.

A molecule is polar if the bond polarities don’t cancel each
other out.

A molecule with an inversion (i) symmetry can’t be polar.

A molecule with a Cn symmetry can’t be polar except along
that axis.

A molecule with a σh symmetry can’t be polar along that axis
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Polarity 19

ammonia caffeine ethanol
(1.42D) (3.64D) (1.69D)

benzene ethene ethane
(0D) (0D) (0D)
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Chirality 20

Some molecules are chiral and have left-handed and right-handed
forms (enantiomers):

L-(+)-lactic acid D-(−)-lactic acid

A molecule can’t be chiral if it has:

improper rotational symmetry (Sn)

inversion symmetry (i)

reflective symmetry (σ)
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Symmetry groups 21

Together, all the symmetries of a molecule form its point group.
Ammonia (NH3) has six symmetries:

identity E

clockwise and anticlockwise 120◦ rotations C+
3 and C−3

three reflections σ1v , σ2v and σ3v

C3v E C+
v C−v σ1v σ2v σ3v

E E C+
v C−v σ1v σ2v σ3v

C+
v C+

v C−v E σ2v σ3v σ1v
C−v C−v E C+

v σ3v σ1v σ2v
σ1v σ1v σ3v σ2v E C−v C+

v

σ2v σ2v σ1v σ3v C+
3 E C−v

σ3v σ3v σ2v σ1v C−3 C+
v E
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Representations and characters 22

Now use heavy mathematical machinery called representation theory

symmetry −−→ matrix
trace−−−→ character

E [ 1 0
0 1 ] 2

C+
3

1
2

[
−1 −

√
3√

3 −1

]
−1

C−3
1
2

[
−1

√
3

−
√
3 −1

]
−1

σ1v
[
1 0
0 −1

]
0

σ2v
1
2

[
−1 −

√
3

−
√
3 1

]
0

σ3v
1
2

[
−1
√
3√

3 1

]
0

Can use this information to calculate vibrational modes of molecular
bonds, which tells us about spectroscopic behaviour.
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Quantum mechanics 23

Physical state of a system represented by a state vector |ψ〉
belonging to a Hilbert space H.

Physical quantity (observable) represented by hermitian matrix
Â acting on H.

Possible values of observable A given by eigenvalues of Â, and
possible outcome states (immediately after measurement) given
by corresponding eigenvectors of Â.

Until measurement performed, system is in an indeterminate
state: a linear superposition of all possible states.

|cat〉 = 1√
3
|alive〉+ 1√

3
|dead〉+ 1√

3
|bloody furious〉

Heisenberg’s uncertainty principle:

σAσB > 1
2 |〈[Â, B̂]〉|

where [Â, B̂] = ÂB̂ − B̂Â.

σxσp > 1
2 |〈[x̂ , p̂]〉| = ~

2
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possible outcome states (immediately after measurement) given
by corresponding eigenvectors of Â.
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possible outcome states (immediately after measurement) given
by corresponding eigenvectors of Â.
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Spin 24

Stern–Gerlach experiment (1922) revealed that atoms and
subatomic particles have intrinsic angular momentum (spin),
quantised in multiples of ~

2 .

h = 6.626×10−34Js is Planck’s constant.

~ = h/2π = 1.054×10−34Js

Measure relative to different axes via operators Jx , Jy and Jz .

These operators don’t commute:

[Jx , Jy ] = JxJy − JyJx = Jz

[Jx , Jz ] = JxJz − JzJx = Jy

[Jy , Jz ] = JyJz − JzJy = Jx

This generates the Lie algebra su2 from which we can recover
the Lie group SU2
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Pauli spin matrices 25

Wolfgang Pauli (1900–1958)

Pauli spin matrices

Representation of the spin operators
for spin–1

2 particles (like electrons,
protons, neutrons):

σx = [ 0 1
1 0 ]

σy =
[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
The fundamental representation of
SU2.
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Isospin 26

mp = 938MeV, mn = 939MeV.

Both p and n affected the same by the strong force.

What if the proton and neutron are different states of the same
particle (a nucleon)?

Creation and annihilation of nucleons described by

τx = [ 0 1
1 0 ] τy =

[
0 −i
i 0

]
τz =

[
1 0
0 −1

]
New property: isospin

Fundamental (2–dimensional) representation of SU2

corresponds to (p, n) doublet.

We find other doublets behaving in the same way: (Ξ0,Ξ−),
(K 0,K+) and (K−, K̄ 0).

Three-dimensional representation of SU2 leads to triplets:
(Σ−,Σ0,Σ+), (π−, π0, π+) and (ρ−, ρ0, ρ+)
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Quarks: strangeness and charm 27

New particles discovered with property dubbed strangeness
Murray Gell-Mann postulated that all of these particles are
composed of two or three quarks: p = uud , n = udd ,
Ξ0 = uss, Ξ− = dss, π+ = ud̄ , π0 = 1√

2
(uū + dd̄), . . .

Used knowledge of representation theory to organise particles
into SU3 multiplets:

The Eightfold Way.
Successfully predicted existence of Ω−.

“If I have seen further than others, it is because I have been
surrounded by dwarves.” – Murray Gell-Mann (attributed)
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Summary 28

The division between “pure” and “applied” mathematics is not
as well-defined as I was told at A-level.

Things which have no applications today might be very
important in a few decades’ time.

Knot theory: failed 19th century Theory of Everything,
interesting but abstract branch of geometric topology, turns
out to be useful in understanding action of enzymes on DNA
and deriving models of DNA recombination.

Group theory: abstract algebraic machinery originally devised in
early 19th century to understand solutions of polynomial
equations, effective at describing symmetry, can be used to
predict chemical and physical properties of molecules.

Representation theory of Lie groups: devised in late 19th and
early 20th century to understand groups and algebras with
continuous structure, is exactly what particle physicists needed
to formulate and understand the Standard Model.
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