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In this article, the analog of the Euler vortex patch problem for the
surface quasi-geostrophic equation is considered.

The surface quasi-geostrophic (QG) equation was originally
introduced as a model for atmospheric turbulence. It rep-

resents the evolution of the temperature on the 2D boundary of
a half space with small Rossby and Ekman numbers. For a more
detailed analysis of the geophysical properties of QG see ref. 1.
The QG equation is given by
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For simplicity we are considering fronts on the cylinder, i.e.,
we take (x, y) in �/� � �. In this setting we define ���1�2 that
comes from inverting the third equation by convolution with the
kernel.†
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The mathematical interest lies in the strong connections with

the 3D Euler equation. Constantin, Majda, and Tabak (2, 3)
noticed that the vorticity 
 of the Euler equation satisfies the
same equation as ���, precisely

D���

Dt
� ��v����.

There are many other analogies that have been analyzed in
refs. 2 and 3. Other analyses of the equation are found in refs.
4–11.‡

The question we are going to explore here is an analog of the
vortex patch problem for 2D Euler equation, i.e. the evolution
of a solution that consists of two regions, where the function �
takes the values 0 and 1, separated by a smooth curve (see Fig. 1).
For 2D Euler the global regularity of the vortex patches has been
proved by Chemin (12). A simpler proof has been obtained by
Bertozzi and Constantin (13) and Majda and Bertozzi (14). See
also refs. 15 and 16.§

We notice that the question we are addressing here is the local
existence of a solution for the QG-vortex patch problem. De-
ciding whether there is global regularity of the solutions is a very
interesting open problem.

I refer the reader to ref. 17 for a discussion of a possible
relationship between the problem studied here and a problem
arising from 3D Euler.

We need the following definition:
Definition. A bounded function � is a weak solution of QG if

for any � � C0
�(��� � � � [0, �]) we have
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where u is determined by Eqs. 2 and 3.
In the case of a sharp front we have the following form for the

scalar

��x, y, t� � 1 if y  ��x, t� and � � 0 otherwise.

[5]

For a sharp front for the surface QS equation we have the
following results.

Theorem 1. If � is a weak solution of the surface QS (see Definition)
of the form described in Eq. 5, then the function � satisfies the
equation,
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Theorem 2. Given any periodic, smooth function �0(x) the initial
value problem determined by Eq. 6 with initial data �(x, 0) 	 �0(x)
has a unique smooth solution for a small time, determined by the
initial data �. Moreover the function � defined by Eq. 5 is a weak
solution of the QG equation.

Abbreviation: QC, quasi-geostrophic.
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To prove Theorem 1 we substitute the above expression for �
in Eq. 4 and try to obtain an equation for the evolution of the
curve �.

Notice that by using Eqs. 2 and 3 we obtain u(x, y, t) 	 K ��(x,
y, t), where K looks locally like the orthogonal of the Riesz
transform. More details about the Riesz transform can be found
in refs. 18 and 19.

u � �����
1�2

��,

we obtain that u is in BMO (see refs. 19 and 20 for more details)
and hence the integrals below will make perfect sense.
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As for the other term in Eq. 4 (considering only the space
integration)
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Now we look more closely to the integrand of the above
expression. We have
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The precise expression of K is given by
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where �(u, v) is supported in �u � v� 	 1⁄4 and � is compactly
supported.
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Hence we have
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Putting these two equalities together we have

¶We move the � that appears in K to the factor (����x, � 1).

Fig. 1. Sharp front.
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From that equality we obtain the equation we were looking for,
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This completes the proof of Theorem 1.
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