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In this work, we show evidence of the existence of singularities
developing in finite time for a class of contour dynamics equations
depending on a parameter 0 < � < 1. The limiting case � 3 0
corresponds to 2D Euler equations, and � � 1 corresponds to the
surface quasi-geostrophic equation. The singularity is point-like,
and it is approached in a self-similar manner.

alpha-patches � quasi-geostrophic equation � blow-up � Euler
equations � self-similar behavior

One of the most important open problems in mathematical
f luid dynamics is whether the solutions to the Euler and

Navier–Stokes equations modeling the evolution of incompress-
ible inviscid and viscous fluids, respectively, may develop sin-
gularities in finite time. Several possible scenarios for a singu-
larity have been proposed in the past (see ref. 1 for an account
of some of them), although none of them led to a rigorous proof
of the formation of singularities. One of these scenarios corre-
sponds to the so-called vortex patch problem that we briefly
describe below.

A vortex patch consist of a 2D region D(t) (simply connected
and bounded) that evolves with a velocity given at each instant
of time by
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where the stream function � is such that � � ���, and the
vorticity � has a constant value �0 over D(t). Vortex patches are,
therefore, weak solutions of Euler equations. The appearance of
finite time singularities at the contour of D(t) was the subject of
strong debate based on numerical results showing that the
curvature of the boundary might grow superexponentially in
time (see refs. 2–4). Nevertheless, work of Chemin (5) and
Bertozzi and Constantin (6) rigorously proved global existence
of regular solutions for the dynamics of the vortex patch, and, at
least in this case, singularities cannot appear.

A very natural singularity scenario would correspond to a
vortex patch of the so-called surface quasi-geostrophic equation
(see ref. 7) for which the relation between the stream function
and potential temperature � (that play the role that vorticity
plays in 2D Euler equations) is � � (��)1/2�. The interest of this
equation lies in its strong analogies to the 3D Euler equation as
it has been argued in ref. 8 and its physical relevance as a model
for the formation of temperature fronts in some geophysical
contexts (see refs. 9 and 10).

Hence, a natural question to ask is whether models for which
� � (��)1�(	/2)� representing an interpolation between 2D
Euler and quasi-geostrophic patches develop singularities for
0 � 	 
 1. In this work, we provide numerical evidence showing
that this scenario is indeed the case and describe the self-similar
structure of such singularities. This result represents a previously
undescribed singularity scenario for incompressible flows.

The Model
Following Zabusky et al. (4), we can invert the relation between
� and � to obtain the following formula for the velocity with 0 �
	 � 1

u�x���, t�, t� �
�0

2� �
C�t�

�x�
��

���, t�

�x���, t� � x����, t��	 d��, [2]

where x�(�, t) is the position of points over C(t), the boundary of
D(t), parameterized with �, and �0 � �� �c	. Here �� is the value
of � in the patch and the factor c	 � �(	/2)�21�	�(2�	/2) results
from inverting (��)1�(	/2). In the limiting case 	 � 1, one should
use the following formula for the velocity (see ref. 7)
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Fig. 1. The evolution of two patches at six consecutive times for 	 � 0.5.
Observe the formation of two corners at finite time. In the plot for t � 16.515
(Bottom Right), the box stands for the magnification of one of the corners
displayed in Fig. 3a.
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The contour dynamics equation is then

dx���, t�
dt

� u�x���, t�, t�.

Given the fact that only the normal component of the velocity is
able to deform the curve, the contour dynamics equation also
can be written as

dx���, t�
dt

� n���, t� � u�x���, t�, t��n���, t�.

In the periodic setting, where the front is described in the form
(x, �(x, t)), x � ���, with � � 1 above the curve, and 0 below the
curve, one arrives then at the following evolution equation:
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[4]

If � is smooth enough, then the integrand in Eq. 4 is not singular.
This formulation is used below to prove local existence. The
generalization of these equations to the case of nonsimply
connected domains D(t) is straightforward.

Local Existence. Here, we sketch the proof of local existence and
uniqueness of a solution. For simplicity, we will restrict to the
periodic case, but it is easy to see that the argument presented
here extends to the case of any sufficiently regular initial contour
or finite set of disconnected initial contours.

In the periodic setting, we consider the scalar function �(x, y,
t) as given by

���x, y, t� � 1 y  ��x, t�
��x, y, t� � 0 y � ��x, t�

where �x , y , t ,� � ���� � � � ��� . [5]

To obtain an equation involving only the curve describing the
front, we start by inverting (�‚)1�(	/2)� � � and then use the
relationship u � (�(����y), ����x) between the velocity and
the stream function to eliminate � from the system.

The expression obtained for the velocity becomes singular as
we approach the front, but the singularity is in the direction of
the tangent to the front. We can use the fact that � is convected
by the fluid (i.e., D��Dt � ����t � u��� � 0) to observe that u
can be modified by adding a term in the direction of ��� because
� always satisfies (�t � [u � h���]��x,y)� � 0. By using the
adequate function h, it is possible to obtain a less singular
expression for the equation, we obtain
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	/2

�� �x � x̃, ��x, t� � ��x̃, t��dx̃ � l.o.t.

Fig. 2. The evolution of two patches at six consecutive times for 	 � 1.
Observe the formation of two corners at finite time. In the plot for t � 4.464
(Bottom Right), the box stands for the magnification of one of the corners
displayed in Fig. 3b. Fig. 3. Close caption of the corner region at t � 16.515 for 	 � 0.5 (a) and t �

4.464 for 	 � 1 (b). Observe that the singularity is point-like in both cases.
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For the above equation, it is possible to set up a Nash–Moser
argument (11) following the ideas introduced in ref. 7, which thus
provides as a result the local existence and uniqueness for the
front.

The Numerical Method. We have numerically solved Eq. 2 for 0 �
	 � 1 for the case of two vortex patches,

dx��t�
dt

� �
k�1

2
�k

2� �
Ck�t�

dx�k

�x��t� � x�k�t��	
. [6]

The initial state consists of two identical circular vortex patches
of unit radius whose centers are separated by 2.5 vortex radii and
such that �k � �1. The evolution is calculated by using ideas
developed in refs. 3 and 12 for the case of the 2D Euler
equations. In particular, as described in ref. 12, contours are
represented by an adaptive node spacing adjusted nonlocally at
each time step and cubic spline interpolation between nodes.
Contour integrals along each cubic contour segment are evalu-
ated as follows: series expansions on small parameters are used
to evaluate both singular and regular integrands. However, in the
latter case, convergence is not always satisfied and then the
contour integral is numerically evaluated with a fifth-order
adaptive Runge–Kutta method. After node representation of
contours, Eq. 6 is transformed in a set of coupled ordinary
differential equations that are forward time-integrated with a
variable time-step fourth-order Runge–Kutta method. Time-
step size �t is adjusted with �x, which is the minimum distance

between nodes in contours C1(t) and C2(t) at a time t. In
particular we choose �t � A�x, where A is tuned for different
values of 	. For the case 	 � 1, we simulate the two vortex
patches version of Eq. 3,

dx��t�
dt

� n��t� � �
k�1

2
�k

2� �
Ck�t�

dx�k

�x��t� � x�k�t��	
� n��t�, [7]

Fig. 4. The corner region. (a) A magnification of the profiles close to one of
the corners at 10 consecutive times in the interval t � (3.46, 4.46). One patch
is represented with thick lines and the other with thin lines. (b) Evolution of
the maximum curvature of the patches with time.

Fig. 5. Evidence of finite time singularity. (a) Evolution of the inverse of the
maximum curvature with time. (b) Evolution of the minimum distance be-
tween patches with time. (Insets) Here, we represent the latest stage of the
evolution together with its linear interpolation.

Fig. 6. Rescaled profiles at 20 different times in the interval (3.46,4.46) for
the case 	 � 1. Clearly, it converges toward a �-independent profile.
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where singularities in the integrands are removed; however, the
numerical ideas presented above are still valid. In fact, Eq. 7 is
also valid for 0 � 	 � 1.

Evidence of Singularities
We performed several numerical experiments for different
values of 	. In Fig. 1, we present the profiles at t � 0, 7.066,
11.046, 13.103, 15.383, and 16.515 for 	 � 0.5, and in Fig. 2, we
present the same at t � 0, 1.962, 3.3, 4.031, 4.369, and 4.464 for
	 � 1 (the surface quasi-geostrophic equation). As we can see,
two corners with high values of curvature do develop in the last
plots. It looks like a sharp front appears, in the sense that the
boundary of the two patches seems to collapse along a curve. In
fact, this is not the case, as one can see from Fig. 3, where the
two curves appear clearly separated except for one point at which
they get so close that they seem to touch each other (the corner).
In Fig. 4, a magnification of the corner region at several times
is represented, together with a representation of the maximum
curvature of the patch contour as a function of time.

The fast growth of the curvature suggests that it might blow up
at a finite time t0. In fact, if we rescale the spatial variable in the
form x� � (t0 � t)�y� and introduce the new time variable � �
�log(t0 � t), Eq. 2 transforms into

�y�
��

� �y� �
�0

2� �
C���

�y�
��

���, ��

�y���,�� � y����, ���	 d��, [8]

provided that � � 1�	. Convergence to �-independent solutions
to Eq. 8 would represent convergence to solutions of Eq. 2 such
that the maximum curvature (inverse of the minimum radius of
curvature R) grows as

� �
1
R

�
C

�t0 � t�1/	 as t 3 t0. [9]

The minimum distance between the two contours would follow
the law

d � C�t0 � t�1/	 as t 3 t0.

To test these laws, we represent in Fig. 5, for the case 	 � 1, the
values of ��1 and d with respect to the time for the whole

simulation period. Along the evolution we can identify several
regimes. At approximately t  3, a crossover between tendencies
does take place, leading to a linear behavior for both ��1 and d
as we can see in Fig. 5 Inset. It is clear from the figure the
tendency toward zero of both. In fact, we stopped the simulation
when ��1 reached values of the order 10�4, which is indistin-
guishable from zero in the figure. This abrupt change between
different regimes is quite characteristic of problems involving
singularities. Finally, in Fig. 6, we represent the numerical
profiles depicted in Fig. 4a rescaled a rate (t0 � t)�(1/	) in both
spatial directions. It is clear from the plot that they converge to
a stationary profile that would be a �-independent solution of Eq.
8 and a self-similar solution of Eq. 2.

Finally, we have repeated the simulation for several values of
	 to verify our scaling laws. In Table 1, we summarize the results
obtained for some values of 	. In particular, we have performed
a least-squares fitting to the curvature law (Eq. 9) for a set of
values of the curvature �i close to the collapse time t0. This
technique estimates t0, the exponent 1�	, and the proportionality
constant C in Eq. 9. Observe that t0 increases very rapidly as 	
tends to zero. In fact, it is known (5, 6) that t0 � � for 	 � 0, which
suggests that t0 should be very large for small values of 	, but
eventually the patches also should develop a point-like singu-
larity. We have run experiments for 0 � 	 � 0.5, which confirm
this.

The computational part of this work was performed on the
HIDRA 40 processor (AMD Athlon XP at 2 Ghz) BEOWULF
cluster at the Centro de Apoyo Tecnológico of the Universidad
Rey Juan Carlos (Madrid) and on the superordenador virtual
gallego (80 processor Pentium 4 at 3.2 Ghz) at Centro de
Supercomputación de Galicia.

To summarize, we have presented in this work a previously
undescribed kind of singularity and supported its existence in
both scaling arguments and numerical evidence. A rigorous
study of the stationary or quasistationary solutions of Eq. 8
would lead to an eventual proof of the existence of these
singularities.
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Table 1. Fitted parameters of the curvature law (Eq. 9)

	 1�	 ti ranges �i ranges N Fitted 1�	 t0 C

0.5 2 [15.266, 16.511] [136,4011] 1,487 2.19 16.8568 5.90
0.6 1.67 [11.236, 11.891] [145,2748] 693 1.77 12.0438 4.58
0.7 1.43 [8.476, 8.976] [107,5253] 1,022 1.51 9.0157 3.71
0.8 1.25 [6.419, 7.226] [34,5804] 781 1.27 7.2383 3.19
0.9 1.11 [5.234, 5.520] [62,2662] 507 1.17 5.5313 2.66
1 1 [4.223, 4.464] [46,190] 365 1.00 4.4698 2.41

N represents the size of the sample (ti, �i) considered.
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