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Abstract

We consider the problem of the evolution of sharp fronts for the surface
quasi-geostrophic (QG) equation. This problem is the analog to the vortex
patch problem for the 2-D Euler equation.

The special interest of the quasi-geostrophic equation lies in its strong
similarities with the 3-D Euler equation, while being a 2-D model. In
particular an analog of the problem considered here, the evolution of sharp
fronts for QG, is the evolution of a vortex line for 3-D Euler. The rigorous
derivation of an equation for the evolution of a vortex line is still an open
problem. The influence of the singularity appearing in the velocity when
using the Biot-Savart law still needs to be understood.

We present two derivations for the evolution of a periodic sharp front.
The first one, heuristic, shows the presence of a logarithmic singularity
in the velocity, while the second, making use of weak solutions, obtains a
rigorous equation for the evolution explaining the influence of that term
in the evolution of the curve.

Finally, using a Nash-Moser argument as the main tool, we obtain
local existence and uniqueness of a solution for the derived equation, in
the C∞ case.

1 Introduction

In this artice we study the surface quasi-geostrophic (QG) equation. The
QG system reads

Dθ

Dt
=

∂θ

∂t
+ u · ∇θ = 0 (1)

where

u = (u1, u2) = (−∂ψ

∂y
,
∂ψ

∂x
) (2)

and

(−4)
1
2 ψ = θ , (3)

where the variable θ represents an active scalar (potential tempera-
ture) convected by the velocity field u and ψ is the stream function.

This equation was originally introduced as a model for atmospheric
turbulence (that is the main reason for the terminology “front”) and has
been studied by numerous people. A derivation of this equation can be
found in [Pe], for the evolution of the temperature on the 2-D bound-
ary of a half-space with small Rossby and Ekman numbers and constant
potential vorticity.
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1.1 QG and 3-D Euler

The main mathematical interest in the quasi-geostrophic system lies in
the strong analogies between the quasi-geostrophic equation and the 3-D
Euler equation. QG presents a 2-D dimensional equation that contains
many of the features of 3-D Euler. We will present briefly the analogies
between these two equations.

In its vorticity formulation the Euler equation reads

Dω

Dt
= (∇u)ω (4)

where u = (u1, u2, u3) is the 3-D velocity satisfying div u = 0. Also,
the vorticity ω is given by ω = curl u.

In particular, we observe that by differentiating (1) we obtain the
equation 1

D(∇⊥θ)

Dt
= (∇u)∇⊥θ (5)

This shows a very strong analogy between the 3-D Euler equation and
QG, where ∇⊥θ plays the role of ω.

We list some further analogies:

• The velocity is recovered via the formulas

u(x) =

∫

R3
K3(y)ω(x+y)dy u(x) =

∫

R2
K2(y)∇⊥θ(x+y)dy

where the kernels Kd, d = 2, 3 are homogeneous of degree 1 − d.
Additionally, the strain matrix (the symmetric part of the gradient
of the velocity) can be recovered via SIO, given by kernels of degree
−d.

• Integral curves of ω, and of ∇⊥θ move with the fluid.

• Both systems have conserved energy.

• |ω| and its analog |∇⊥θ| evolve according to the same type of equa-
tion. (|ω| measures the infinitesimal length of a vortex line).

• Both systems have analog conditions for a break up of a solution
(Beale-Kato-Majda).

These analogies were first noticed by Constantin, Majda and Tabak.
We refer the reader to [Co-Ma-Ta1], [Co-Ma-Ta2] and [Ma-Ta] for a com-
plete presentation. Another detailed exposition is found in [Ma-Be].

One of the most active question about QG is the study of the fron-
togenesis, precisely the formation of a discontinuous temperature front in
finite time. There have been both mathematical and numerical analyses
of QG concerning this question. See [Co-Ma-Ta1], [Co-Ma-Ta2] ,[Cor],
[OhYa], [Co-Ni-So1] and [Co-Ni-So2].

1We use the notation (a, b)⊥ = (−b, a) and so ∇⊥ = (−∂y , ∂x)
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1.2 Connections with the vortex patch problem:
2-D Euler

We notice here that 2-D Euler, in its vorticity formulation, provides us
with a scalar equation that presents a very similar structure to the one
we are considering.

Observe that the 2-D Euler equation reads

Dω

Dt
= 0 (6)

where

(u1, u2) = (−∂ψ

∂y
,
∂ψ

∂x
)

and

4 ψ = ω

Observe that the above system is very similar to (1)-(3) except for
the relationship between the stream function and the active scalar. In
the case of QG the fractional power of the Laplacian makes the equation
more singular.

The question about the global regularity of the vortex patches was
positively answered by Chemin [Ch] in 1993 using paradifferential calcu-
lus. A simpler proof by Bertozzi and Constantin can be found in [Be-Co]
and [Ma-Be].

1.3 Description of the problem

The question about QG that we will be addressing here is the study of
the evolution of smooth sharp fronts, in the periodic setting.

We are interested in the evolution of a periodic sharp front. We con-
sider the front originally given by the curve ϕ0(x) (see figure 1), a smooth
periodic function, and assume that the solution to the equation (1) is of
the same form (i. e. remains as a sharp front), and is given by ϕ(x, t), a
smooth periodic function. This means that the scalar function θ(x, y, t)
is given by

{
θ(x, y, t) = 1 y ≥ ϕ(x, t)
θ(x, y, t) = 0 y < ϕ(x, t)

(7)

We denote by Ω the fundamental region where {y ≥ ϕ(x, t)}. We will
consider − 1

2
≤ x ≤ 1

2
. We denote by Γ the piece of the front in the

fundamental region.
The problem that we address in this article is the derivation and solu-

tion of an equation for the evolution of such a front. We also prove that
the obtained system is locally well-posed.
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Figure 1: Periodic Sharp Front

2 Evolution of a sharp-front for QG: deriva-
tion of the equation

In this section we present two derivations of the equation for the evolution
of a sharp front for the surface quasi-geostrophic equation in the periodic
setting. In the first section we give a heuristic derivation, that shows
interesting features of the velocity as we approach the front. In the second
section we provide a rigorous derivation of the equation, that avoids all
the difficulties shown in the first approach.

2.1 First approach: redefining the velocity

We will start by eliminating the stream function ψ from the system (1)-

(3), by using the second and third equations. The operator (−4x,y)−
1
2

in the cylinder is given by a convolution with the kernel given by the
expression

K(x, y) =
χ(x, y)

(x2 + y2)
1
2

+ η(x, y), (8)

for (x, y) in [− 1
2
, 1

2
] × R, and defined in the rest of the plane by ex-

tending it periodically in x. χ satisfies

χ(x, y) ε C∞0 χ(x, y) = 1 in |x−y| ≤ r and supp χ ⊂ {|x−y| ≤ R}
(9)

where 0 < r < R < 1
2

are positive numbers to be chosen later. Also
η2 satisfies

2In order to avoid irrelevant considerations at ∞ we will consider the correcting function

η to be compactly supported. This has the effect of modifying (−4x,y)−
1
2 by adding a

smoothing operator.
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η(x, y) ε C∞0 η(0, 0) = 0 (10)

Observe that both χ and η can be taken to be even functions.
In our later analysis of the equation, we will need a certain degree of

control over the support of χ. We will obtain control by modifying the
values of both r and R entering in the definition of χ in (9). Notice that
changing the value of r and R does not affect the structure of K given
by (8), since the difference in the function χ created by changing r and R
can be absorbed by the correction-term η.

Under the assumption that the front remains as a front for a small
period of time, we proceed with the derivation of the equation for the
curve ϕ. For a point (x, y) not in the front we obtain

ψ(x, y, t) =

∫

R×R/Z

θ(x̃, ỹ, t)χ(x− x̃, y − ỹ)

[(x− x̃)2 + (y − ỹ)2]
1
2

dx̃dỹ+

+

∫

R×R/Z
θ(x̃, ỹ, t)η(x− x̃, y − ỹ)dx̃dỹ (11)

Since u = ∇⊥ψ and the differential operators (−4x,y)−
1
2 and ∇⊥

commute, we obtain the equation

u(x, y, t) =

∫

R×R/Z

∇⊥x̃,ỹθ(x̃, ỹ, t)χ(x− x̃, y − ỹ)

[(x− x̃)2 + (y − ỹ)2]
1
2

dx̃dỹ+

+

∫

R×R/Z
∇⊥x̃,ỹθ(x̃, ỹ, t)η(x− x̃, y − ỹ)dx̃dỹ (12)

We still need to compute ∇⊥θ. Notice that the tangent vector to the

curve is given by (1,
∂ϕ
∂x

(x, t)), and so the unit exterior normal to the
region Ω along Γ is given by

n =
(
∂ϕ

∂x
(x, t),−1)

√(∂ϕ

∂x
(x, t)

)2

+ 1

We obtain ∇⊥θ as a simple application of the Divergence Theorem.
We have

∇⊥θ(x, y, t) = (−1,−∂ϕ

∂x
(x, t))δ(y − ϕ(x, t)) (13)

Plugging this expression in (12), and carrying out the integration with
respect to ỹ, we obtain

u(x, y, t) = −
∫

R/Z
(1,

∂ϕ

∂x̃
(x̃, t))

χ(x− x̃, y − ϕ(x̃, t))

[(x− x̃)2 + (y − ϕ(x̃, t))2]
1
2

dx̃ (14)

−
∫

R/Z
(1,

∂ϕ

∂x̃
(x̃, t))η(x− x̃, y − ϕ(x̃, t))dx̃
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Since we are interested in the evolution of the front, we look at the
limit of u(x, y, t) as y approaches the front. Notice that the first integral
(14) is divergent as we approach the front, i.e. as y → ϕ(x, t). We look
more closely at the original equation (1) to redefine u as we approach the
front.

Recall that the scalar θ is convected by the fluid and so we have the
equation

(∂t + u · ∇x,y)θ = 0

This equation defines the velocity u up to additive factors in the di-
rection of ∇⊥θ. Precisely, θ satisfies the equation

(∂t + [u + h∇⊥θ] · ∇x,y)θ = 0

for any smooth, periodic function h.
We want to use this observation to correct the singularity of u in the

equation (14). We will add and subtract a term in the direction of ∇⊥θ.
Notice that the direction of ∇⊥θ (see (13)) is the same as the tangent

to the curve, given by (1,
∂ϕ
∂x

(x, t)) . We add and subtract the following
terms

(1,
∂ϕ

∂x
(x, t))

∫

R/Z

χ(x− x̃, y − ϕ(x̃, t))

[(x− x̃)2 + (y − ϕ(x̃, t))2]
1
2

dx̃+

+(1,
∂ϕ

∂x
(x, t))

∫

R/Z
η(x− x̃, y − ϕ(x̃, t))dx̃

We obtain

u(x, y, t) = −(1,
∂ϕ

∂x
(x, t))

∫

R/Z

χ(x− x̃, y − ϕ(x̃, t))

[(x− x̃)2 + (y − ϕ(x̃, t))2]
1
2

dx̃−

−(1,
∂ϕ

∂x
(x, t))

∫

R/Z
η(x− x̃, y − ϕ(x̃, t))dx̃+ (15)

+

∫

R/Z
(0,

∂ϕ

∂x
(x, t)− ∂ϕ

∂x̃
(x̃, t))

χ(x− x̃, y − ϕ(x̃, t))

[(x− x̃)2 + (y − ϕ(x̃, t))2]
1
2

dx̃+

+

∫

R/Z
(0,

∂ϕ

∂x
(x, t)− ∂ϕ

∂x̃
(x̃, t))η(x− x̃, y − ϕ(x̃, t))dx̃

Now, the first two integrals are divergent as we approach the front,
but they are in the direction of ∇⊥θ and so we can redefine the velocity
u to be

u(x, y, t) =

∫

R/Z
(0,

∂ϕ

∂x
(x, t)− ∂ϕ

∂x̃
(x̃, t))

χ(x− x̃, y − ϕ(x̃, t))

[(x− x̃)2 + (y − ϕ(x̃, t))2]
1
2

dx̃ +

+

∫

R/Z
(0,

∂ϕ

∂x
(x, t)− ∂ϕ

∂x̃
(x̃, t))η(x− x̃, y − ϕ(x̃, t))dx̃
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Notice that now we can pass to the limit when (x, y) approaches the
front, i.e. (x, y) → (x, ϕ(x, t)). We obtain

u(x, ϕ(x, t), t) =

∫

R/Z
(0,

∂ϕ

∂x
(x, t)−∂ϕ

∂x̃
(x̃, t))

χ(x− x̃, ϕ(x, t)− ϕ(x̃, t))

[(x− x̃)2 + (ϕ(x, t)− ϕ(x̃, t))2]
1
2

dx̃ +

+

∫

R/Z
(0,

∂ϕ

∂x
(x, t)− ∂ϕ

∂x̃
(x̃, t))η(x− x̃, ϕ(x, t)− ϕ(x̃, t))dx̃

Since u is now purely vertical, the fact that Ω = {y ≥ ϕ(x, t)} is
convected by u means that





∂ϕ
∂t

(x, t)=

∫

R/Z

∂ϕ

∂x
(x, t)− ∂ϕ

∂x̃
(x̃, t)

[(x− x̃)2 + (ϕ(x, t)− ϕ(x̃, t))2]
1
2

χ(x− x̃, ϕ(x, t)− ϕ(x̃, t))dx̃ +

+

∫

R/Z

[∂ϕ

∂x
(x, t)− ∂ϕ

∂x̃
(x̃, t)

]
η(x− x̃, ϕ(x, t)− ϕ(x̃, t))dx̃

ϕ(x, 0) = ϕ0(x)
(16)

which is the equation (17) in Theorem 1. We remark that this deriva-
tion of the above equation is only heuristic.

2.2 Rigorous derivation: using weak solutions

Now we will obtain a rigorous derivation of the equation. In particular,
we will prove

Theorem 1. If θ is a weak solution of the surface quasi-geostrophic (see
Definition 2.1 below) of the form described in (7), then the function ϕ
satisfies the equation,

∂ϕ

∂t
(x, t) =

∫

R/Z

∂ϕ

∂x
(x, t)− ∂ϕ

∂u
(u, t)

[(x− u)2 + (ϕ(x, t)− ϕ(u, t))2]
1
2

χ(x−u, ϕ(x, t)−ϕ(u, t))du +

+

∫

R/Z

[∂ϕ

∂x
(x, t)− ∂ϕ

∂u
(u, t)

]
η(x− u, ϕ(x, t)− ϕ(u, t))du (17)

Moreover, if ϕ satisfies (17), the function θ defined by (7) is a weak
solution of the QG equation.

We begin with the definition of weak solution for QG.

Definition 2.1. A bounded function θ is a weak solution of QG if for any
φ ε C∞0 (R/Z × R× [0, ε]) we have

∫

R+×R/Z×R
θ(x, y, t) ∂tφ (x, y, t)dydxdt+

∫

R+×R/Z×R
θ (x, y, t)u(x, y, t)·∇φ (x, y, t)dydxdt = 0

(18)
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Recall that u(x, y, t) = ∇⊥(4− 1
2 θ) = Ω ∗ θ(x, y, t) where Ω looks

locally like the orthogonal of the Riesz transform. 3 Since θ is bounded
we obtain that u is in BMO. On this see [St2] and [Fe-St] for more details.

In the case we are interested in

θ(x, y, t) = 1 if y ≥ ϕ(x, t) and θ = 0 otherwise

We substitute the above expression for θ in (18) and try to obtain an
equation for the evolution of the curve ϕ.

∫

R+×R/Z×R
θ ∂tφ dydxdt =

∫

y>ϕ(x,t)

∂tφ dxdydt =

=

∫

y=ϕ(x,t)

φ
∂tϕ

(1 + (∂xϕ)2 + (∂tϕ)2)
1
2

(1+(∂xϕ)2+(∂tϕ)2)
1
2 dxdt =

∫

y=ϕ(x,t)

φ ∂tϕ dxdt

As for the other term in (18) (considering only the space integration)

∫

R×R/Z
θ u·∇φ dydx = lim

δ→0

∫

y>ϕ(x,t)+δ

u·∇φ dxdy = lim
δ→0

∫

y=ϕ(x,t)+δ

uφ·(∂ϕ

∂x
,−1)dx

Now we look more closely to the integrand of the above expression.
We have

uφ · (∂ϕ

∂x
,−1) = φ(x, y, t)

∫

v>ϕ(u,t)

Ω(x− u, y − v) · (∂ϕ

∂x
,−1)dudv

The precise expression of Ω is given by

Ω(u, v) = ∇⊥
{ χ(u, v)

(u2 + v2)
1
2

+ η(u, v)
}

And so 4

uφ · (∂ϕ

∂x
,−1) =

= φ(x, y, t)

∫

v>ϕ(u,t)

−(1,
∂ϕ

∂x
)·∇u,v

{
χ(x− u, y − v)

((x− u)2 + (y − v)2)
1
2

+η(x−u, y−v)

}
dudv =

= φ(x, y, t)

∫

v>ϕ(u,t)

−divu,v

(
χ(x− u, y − v)

((x− u)2 + (y − v)2)
1
2

+ η(x− u, y − v),

,
∂ϕ

∂x

( χ(x− u, y − v)

((x− u)2 + (y − v)2)
1
2

+ η(x− u, y − v)
))

dudv =

3More details about the Riesz transform can be found in [St1] and [St2].
4We move the ⊥ that appears in K to the factor (

∂ϕ
∂x

,−1)
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= φ(x, y, t)

∫

v=ϕ(u,t)

−
{

χ(x− u, y − v)

((x− u)2 + (y − v)2)
1
2

+η(x−u, y−v)

}
(1,

∂ϕ

∂x
)·(∂ϕ

∂u
,−1)du =

= φ(x, y, t)

{ ∫

v=ϕ(u,t)

−
∂ϕ

∂u
− ∂ϕ

∂x

((x− u)2 + (y − v)2)
1
2

χ(x− u, y − v)−

−
[∂ϕ

∂u
− ∂ϕ

∂x

]
η(x− u, y − v)du

}

Hence we have

lim
δ→0

∫

y=ϕ(x,t)+δ

uφ · (∂ϕ

∂x
,−1)dx =

=

∫

y=ϕ(x,t)

−φ(x, y, t)

∫

v=ϕ(u,t)

∂ϕ

∂u
− ∂ϕ

∂x

((x− u)2 + (y − v)2)
1
2

χ(x−u, y−v)dudx+

+

∫

y=ϕ(x,t)

−φ(x, y, t)

∫

v=ϕ(u,t)

[∂ϕ

∂u
− ∂ϕ

∂x

]
η(x− u, y − v)dudx

Putting these two estimates together we have

∫

y=ϕ(x,t)

φ(x, y, t)
∂ϕ

∂t
(x, t)dxdt =

=

∫

y=ϕ(x,t)

−φ(x, y, t)

∫

v=ϕ(u,t)

∂ϕ

∂u
− ∂ϕ

∂x

((x− u)2 + (y − v)2)
1
2

χ(x−u, y−v)dudxdt+

+

∫

y=ϕ(x,t)

−φ(x, y, t)

∫

v=ϕ(u,t)

[∂ϕ

∂u
− ∂ϕ

∂x

]
η(x− u, y − v)dudxdt

From that equality we obtain the equation we were looking for





∂ϕ
∂t

(x, t) =

∫

R/Z

∂ϕ

∂x
(x, t)− ∂ϕ

∂u
(u, t)

[(x− u)2 + (ϕ(x, t)− ϕ(u, t))2]
1
2

χ(x− u, ϕ(x, t)− ϕ(u, t))du +

+

∫

R/Z

[∂ϕ

∂x
(x, t)− ∂ϕ

∂u
(u, t)

]
η(x− u, ϕ(x, t)− ϕ(u, t))du

ϕ(x, 0) = ϕ0(x)
(19)
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Finally, notice that all the step in the proof can be reversed, and so
we conclude the proof of Theorem 1.

We will prove that the equation given in Theorem 1 is locally well
posed. In particular we have the following result

Theorem 2. Given any periodic, smooth function ϕ0(x) the initial value
problem determined by the equation (17) with initial data ϕ(x, 0) = ϕ0(x).
has a unique smooth solution for a small time, determined by the initial
data ϕ.

3 Discussion of the Nash-Moser argument

Our main tool for proving local existence and uniqueness of a solution for
the equation (19) will be an inverse function theorem argument. Since we
are interested in the C∞ result we need to run an inverse function the-
orem in the category of Nash-Moser. In this chapter we perform a brief
introduction to Nash-Moser arguments and present the necessary trans-
formations to the equation in order to be able to employ that argument.

There are many surveys of Nash-Moser in the literature. See [Ha],
[Ho], [Ze] and [Al-Ge] for expository articles and [Kl], and [Mo] for some
interesting applications of Nash-Moser. Here we follow the approach of
Richard Hamilton in [Ha].

We quote here the main result we will be using.
Nash-Moser Thm.5

Let F and G be tame spaces and P : U ⊆ F → G be a smooth tame
map. Suppose that the equation

DP (f)h = k

has a unique solution h = V P (f)k ∀fεU & ∀kεG. Also assume that
V P : U ×G → F is a smooth tame map.

Then P is locally invertible and each of the local inverses P−1 is a
smooth tame map.

3.1 Adaptation of the equation

In order to apply the previous theorem, we must first make some necessary
modifications. In particular, we need to define the spaces F and G and
the operator P .

Since we only want to prove local existence of a solution, i.e. tε[0, ε)
we perform the change of variables

t = εt̂ −→ ∂
∂t

= 1
ε

∂
∂t̂

0 ≤ t̂ ≤ 1

So, the equation (16) becomes (after changing the dummy variable x̄
into y)

5See [Ha] pg. 171
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



∂ϕ
∂t̂

(x, εt̂)−ε

∫

R/Z

∂ϕ

∂x
(x, εt̂)− ∂ϕ

∂y
(y, εt̂)

[(x− y)2 + (ϕ(x, εt̂)− ϕ(y, εt̂))2]
1
2

χ(x−y, ϕ(x, εt̂)−ϕ(y, εt̂))dy−

−ε

∫

R/Z

[∂ϕ

∂x
(x, εt̂)− ∂ϕ

∂y
(y, εt̂)

]
η(x− y, ϕ(x, εt̂)− ϕ(y, εt̂))dy = 0

ϕ(x, 0) = ϕ0(x)
(20)

Since we want to make the space of possible solutions into a vector
space, we make the change

ϕ(x, εt̂) = ϕ0(x) + fε(x, t̂)

in order to change the initial data into 0.
The equation becomes





∂fε

∂t̂
(x, t̂)− ε

∫

R/Z

∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂fε

∂x
(x, t̂)− ∂fε

∂y
(y, t̂)

[(x− y)2 + (ϕ0(x)− ϕ0(y) + fε(x, t̂)− fε(y, t̂))2]
1
2
×

×χ(x− y, ϕ0(x)− ϕ0(y) + fε(x, t̂)− fε(y, t̂))dy−

−ε

∫

R/Z

[∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂fε

∂x
(x, t̂)− ∂fε

∂y
(y, t̂)

]
×

×η(x− y, ϕ0(x)− ϕ0(y) + fε(x, t̂)− fε(y, t̂))dy = 0

fε(x, 0) = 0
(21)

Using the structure of (21), we define the Frechet spaces F and G that
appear in the theorem

F = {pairs (v(x, t̂), ε) | vεF, v(x, 0) = 0, εεR)}
G = {pairs (w(x, t̂), ε) | wεG, εεR)} (22)

where F and G are tame Frechet spaces of smooth functions in R/Z ×
[0, 1] graded with the seminorms 6

‖v(x, t̂)‖n
def
= sup

a+b≤n
‖∂a

x∂b
t̂ v(x, t̂)‖L∞x L∞

t̂

The seminorms in F and G are given by

‖|(v(x, t̂), ε)‖|n def
= |ε|+ ‖v(x, t̂)‖n

We define the operator Pϕ0 analogous to P in the above theorem by

6For the Sobolev norms we will use the notation ‖ · ‖Hs and ‖ · ‖L2 , leaving the notation
‖ · ‖s only for the seminorms in F and G
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Pϕ0 : F −→ G

(v, ε) −→ (Tϕ0,εv, ε)

where

Tϕ0,εv(x, t̂) =
∂v

∂t̂
(x, t̂)−ε

∫

R/Z

∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂v

∂x
(x, t̂)− ∂v

∂y
(y, t̂)

[(x− y)2 + (ϕ0(x)− ϕ0(y) + v(x, t̂)− v(y, t̂))2]
1
2
×

×χ(x−y, ϕ0(x)−ϕ0(y)+v(x, t̂)−v(y, t̂))dy−

−ε

∫

R/Z

[∂ϕ0

∂x
(x)−∂ϕ0

∂y
(y)+

∂v

∂x
(x, t̂)−∂v

∂y
(y, t̂)

]
η(x−y, ϕ0(x)−ϕ0(y)+v(x, t̂)−v(y, t̂))dy

(23)
We devote the next chapters to proving that Pϕ0 satisfies the hypoth-

esis of the Nash-Moser Theorem presented above. Using that theorem we
will then prove the desired result.

3.2 Application of Nash-Moser: proof of Thm 2

Assuming that we are able to prove all the hypothesis of the theorem
above, we will now show, how its application provides us with the desired
result, the existence and uniqueness of a solution for the evolution of a
sharp front (in the periodic setting), proving Theorem 2.

Once we prove the theorem we will know that the operator Pϕ0 is
invertible in a neighborhood of the origin in G. (Recall (22)). That
means that for every smooth function w(x, t̂) in R/Z × [0, 1] in a certain
neighborhood of the origin in the Frechet space G and every small ε (recall
ε is not necessarily positive) the operator Pϕ0 is invertible. In other words,
there exists v(x, t̂) such that

Tϕ0,εv(x, t̂) = w(x, t̂)

This means we can fix a certain positive value of ε and take w(x, t̂) to be
identically 0. We obtain the existence of v(x, t̂) satisfying Tϕ0,εv(x, t̂) = 0,
i.e.

∂v

∂t̂
(x, t̂)− ε

∫

R/Z

∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂v

∂x
(x, t̂)− ∂v

∂y
(y, t̂)

[(x− y)2 + (ϕ0(x)− ϕ0(y) + v(x, t̂)− v(y, t̂))2]
1
2
×

×χ(x− y, ϕ0(x)− ϕ0(y) + v(x, t̂)− v(y, t̂))dy−

−ε

∫

R/Z

[∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂v

∂x
(x, t̂)− ∂v

∂y
(y, t̂)

]
×

13



×η(x− y, ϕ0(x)− ϕ0(y) + v(x, t̂)− v(y, t̂))dy = 0

Inverting the transformations that we performed in order to reach
the above equation, (adding ϕ0(x) and rescaling t̂) we obtain the desired
solution to the original equation.

4 Pϕ0
is smooth and tame

We devote this chapter to proving that the map Pϕ0 is tame and smooth.
Specifically, we need to obtain the following estimate

‖|Pϕ0(f, ε)‖|k . 1 + ‖|(f, ε)‖|k+r ∀k > k0 (24)

for all (f, ε) in a neighborhood OM of (0, 0) in F , i.e.

‖f‖M ≤ C0 for some M and C0 and |ε| ≤ ε0 (25)

We will determine M in the next chapters. M might be increased in
the next chapters, since some interpolation inequalities will require that
we control a certain fixed number of derivatives.

In terms of Tϕ0,ε the above tame estimate (24) becomes

‖Tϕ0,εf‖k . (1 + ‖f‖k+r) ∀k > k0 (26)

for all (f, ε) in the neighborhood OM defined by (25).
Notation
In the previous inequalities we used the symbol . to indicate the

existence of a constant, that depends only on the initial data ϕ0, k, and
the constants M , C0 and ε0 that appear in (25). We will use this notation
from now on.

In order to prove (26) we have to obtain the following inequality.

∥∥∥∥∥∂a
x∂b

t̂

{
∂f

∂t̂
(x, t̂)−ε

∫

R/Z

∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

[(x− y)2 + (ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))2]
1
2
×

×χ(x−y, ϕ0(x)−ϕ0(y)+f(x, t̂)−f(y, t̂)) dy−

−ε

∫

R/Z

[∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

]
×

×η(x−y, ϕ0(x)−ϕ0(y)+f(x, t̂)−f(y, t̂)) dy

}∥∥∥∥∥
L∞x L∞

t̂

.

. (1 + sup
c+d≤a+b+r

‖∂c
x∂d

t̂ f‖L∞x L∞
t̂

+ |ε|) (27)
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Using the triangle inequality we have 3 inequalities to prove. The
estimate for the first term is trivial. We show in some detail the estimate
for the second term. The third one is completely analog. We have

∥∥∥∥∥∂a
x∂b

t̂

∫

R/Z

∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

[(x− y)2 + (ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))2]
1
2
×

×χ(x−y, ϕ0(x)−ϕ0(y)+f(x, t̂)−f(y, t̂))dy

∥∥∥∥∥
L∞x L∞

t̂

We will obtain the estimate for the above terms using the lemmas
in appendix. We will denote the integrand by Q(x, y, t̂). Notice that
Q(x, y, t̂) is not smooth in x, y but rather sgn(y − x) times a smooth
function. For this reason we break up the integral into two.

∫

R/Z
Q(x, y, t̂)dy =

∫ x+ 1
2

x

Q(x, y, t̂) +

∫ x

x− 1
2

Q(x, y, t̂)dy

Observe that once we have broken up the domain of integration, we
obtain a smooth integrand. It is also clear that both integrals and all
their derivatives are estimated in exactly the same way, so we will only
deal here with the first one. In addition, notice that

Q(x, y) = 0

for y in a neighborhood of both y = x + 1
2

and y = x− 1
2
, due to the

presence of the cut-off function χ in Q. (See (9))
Using these observations and lemma 9 in the appendix we have 7

∂a
x∂b

t̂

∫ x+ 1
2

x

Q(x, y, t̂)dy = ∂b
t̂

{
−

a−1∑
j=0

da−1−j

dxa−1−j

(∂jQ

∂uj
(x, x, t̂)

)
+

∫ x+ 1
2

x

∂aQ

∂xa (x, y, t̂)dy
}

=

= ∂b
t̂

{
−

a−1∑
j=0

a−1−j∑

k=0

ck
∂a−1

∂uj+k∂va−1−j−k
Q(x, x, t̂)+

∫ x+ 1
2

x

∂aQ

∂xa (x, y, t̂)dy
}

=

= −
a−1∑
j=0

a−1−j∑

k=0

ck
∂a−1

∂uj+k∂va−1−j−k
∂b

t̂ Q(x, x, t̂) +

∫ x+ 1
2

x

∂a+bQ

∂xa∂t̂b
(x, y, t̂)dy

Since we are only interested in the L∞x L∞t̂ norm of the above quantity
we note that all the terms in the sum or the integral are of the same form
and can be treated using the lemmas in the appendix. We rewrite Q so
that we can apply our lemmas. We have the following expression (recall
that now y ≥ x + 1

2
)

7We denote by u the first variable in Q. v will be the second, i.e. we regard Q as Q(u, v).
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∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

x− y

[1 + (
ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂)

x− y
)2]

1
2

χ(x−y, ϕ0(x)−ϕ0(y)+f(x, t̂)−f(y, t̂))

Notice that the integrand is the product of 3 tame functions, since
the denominator is bounded below by 1, and hence it is tame. 8

To prove that the operator Pϕ0 is smooth we just notice that the
decomposition showed above decomposes the function in simple blocks
for which is trivial to prove smoothness.

5 Existence and uniqueness of a solution
for the linearized equation

In this chapter we prove the existence and uniqueness of a solution for the
linearized equation, precisely for the equation

DPϕ0(f, ε)(h, ω) = (k, σ) ∀ (k, σ) in G (28)

Recall that

Pϕ0 : F −→ G

(f, ε) −→ (Tϕ0,εf, ε)

where Tϕ0,εf(x, t̂) is given by (23).
Now we compute DPϕ0 . Observe that

DPϕ0(f, ε)(h, ω) = lim
δ→0

(Tϕ0,ε+δω(f + δh)− Tϕ0,ε(f)

δ
,
ε + δω − ε

δ

)

After a simple, long computation we obtain the following expression
for the first component of DPϕ0

∂h

∂t
(x, t̂)− ε

∫

R/Z

∂h

∂x
(x, t̂)− ∂h

∂y
(y, t̂)

[(x− y)2 + (ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))2]
1
2
×

×χ(x− y, ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))dy+

+ε

∫

R/Z

[∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

][
ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂)

]

[(x− y)2 + (ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))2]
3
2

×

8To see that the numerator and denominator are tame use Lemma 8
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×[
h(x, t̂)− h(y, t̂)

]
χ(x− y, ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))dy−

−ε

∫

R/Z

[
h(x, t̂)− h(y, t̂)

][∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

]

[(x− y)2 + (ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))2]
1
2

×

×χv(x− y, ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))dy−

−ε

∫

R/Z

[∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

][
h(x, t̂)− h(y, t̂)

]
×

×ηv(x− y, ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))dy−

−ε

∫

R/Z

[∂h

∂x
(x, t̂)− ∂h

∂y
(y, t̂)

]
η(x− y, ϕ0(x)−ϕ0(y)+ f(x, t̂)− f(y, t̂))dy−

−ω

∫

R/Z

∂ϕ0

∂x
(x)− ∂ϕ0

∂y
(y) +

∂f

∂x
(x, t̂)− ∂f

∂y
(y, t̂)

[(x− y)2 + (ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))2]
1
2
×

×χ(x− y, ϕ0(x)− ϕ0(y) + f(x, t̂)− f(y, t̂))dy−

−ω

∫

R/Z

[∂ϕ0

∂x
(x)−∂ϕ0

∂y
(y)+

∂f

∂x
(x, t̂)−∂f

∂y
(y, t̂)

]
η(x−y, ϕ0(x)−ϕ0(y)+f(x, t̂)−f(y, t̂))dy

The second component of DPϕ0 is just ω. Since we have to solve the
system

DPϕ0(f, ε)(h, ω) = (k, σ)

we obtain that ω = σ and are led to solve the first component.
Notice that the initial condition for the equation above comes from

the fact that hεF and so we have h(x, 0) = 0
We will use the notation g(x, t̂) := ϕ0(x) + f(x, t̂) in order to simplify

the formulas. We will also denote χ(x − y, g(x, t̂) − g(y, t̂))) and η(x −
y, g(x, t̂)−g(y, t̂))) by χ̄(x, y, t̂) and η̄(x, y, t̂) and χv(x−y, g(x, t̂)−g(y, t̂)))
and ηv(x − y, g(x, t̂) − g(y, t̂))) by χ̄v(x, y, t̂) and η̄v(x, y, t̂). The system
we need to solve is

∂h

∂t
(x, t̂)− ε

∫

R/Z

∂h

∂x
(x, t̂)− ∂h

∂y
(y, t̂)

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄(x, y, t̂)dy+
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+ε

∫

R/Z

[
h(x, t̂)− h(y, t̂)

][∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

][
g(x, t̂)− g(y, t̂)

]

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
3
2

χ̄(x, y, t̂)dy−

−ε

∫

R/Z

[
h(x, t̂)− h(y, t̂)

][∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

]

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄v(x, y, t̂)dy−

−ε

∫

R/Z

[∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

][
h(x, t̂)− h(y, t̂)

]
η̄v(x, y, t̂)dy−

−ε

∫

R/Z

[∂h

∂x
(x, t̂)− ∂h

∂y
(y, t̂)

]
η̄(x, y, t̂)dy−

−ω

∫

R/Z

∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄(x, y, t̂)dy−

−ω

∫

R/Z

[∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

]
η̄(x, y, t̂)dy = k(x, t̂) (29)

with the initial condition h(x, 0) = 0.

5.1 Simplifying the equation

We perform a detailed analysis of the most singular terms in the equation
and perform the necessary transformations to simplify them.

We would like to modify h so that the most singular term in the
equation (2nd term) absorbs the following term (3rd term)

ε

∫

R/Z

[
h(x, t̂)− h(y, t̂)

][∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

][
g(x, t̂)− g(y, t̂)

]

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
3
2

χ̄(x, y, t̂)dy

We want to do this since this term is of the type

∫

R/Z

h(x, t̂)− h(y, t̂)

|x− y| θ(x, y)dy

and that will bring up a logarithmic divergence when computing energy
estimates.

For this purpose we want to make the change h(x, t̂) = ϕ(x, t̂)h̄(x, t̂) in
order to obtain an equation for ϕ so that we can cancel those two terms.

The second and third term become

−ε

∫

R/Z

ϕ(x, t̂)
∂h̄

∂x
(x, t̂)− ϕ(y, t̂)

∂h̄

∂y
(y, t̂)

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄(x, y, t̂)dy−
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−ε

∫

R/Z

h̄(x, t̂)
∂ϕ

∂x
(x, t̂)− h̄(y, t̂)

∂ϕ

∂y
(y, t̂)

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄(x, y, t̂)dy+

+ε

∫

R/Z

[
ϕ(x, t̂)h̄(x, t̂)−ϕ(y, t̂)h̄(y, t̂)

][∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

][
g(x, t̂)−g(y, t̂)

]

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
3
2

χ̄(x, y, t̂)dy−

We want to find ϕ so that

−ε

∫

R/Z

h̄(x, t̂)
∂ϕ

∂x
(x, t̂)− h̄(y, t̂)

∂ϕ

∂y
(y, t̂)

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄(x, y, t̂)dy+

+ε

∫

R/Z

[
ϕ(x, t̂)h̄(x, t̂)−ϕ(y, t̂)h̄(y, t̂)

][∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

][
g(x, t̂)−g(y, t̂)

]

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
3
2

χ̄(x, y, t̂)dy

cancel each other, up to smooth terms. Combining the two integrals
in one, we can rewrite the integrand in the following form

|x− y|3

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
3
2

χ̄(x, y, t̂)×

×
{[

ϕ(x, t̂)h̄(x, t̂)− ϕ(y, t̂)h̄(y, t̂)
][∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

][
g(x, t̂)− g(y, t̂)

]

|x− y|3 −

−
[
h̄(x, t̂)

∂ϕ

∂x
(x, t̂)− h̄(y, t̂)

∂ϕ

∂y
(y, t̂)

]
[(x− y)2 + (g(x, t̂)− g(y, t̂))2]

|x− y|3
}

We want to choose ϕ so that the function in curly brackets is a smooth
function or a smooth function, times sgn(x− y).

We look at the factor multiplying h̄(y, t̂) inside the curly brackets. The
factor is

|x− y|−1

{
∂ϕ

∂y
(y, t̂)

[
1 +

(g(x, t̂)− g(y, t̂)

x− y

)2]
−

−ϕ(y, t̂)
[ ∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

x− y

][g(x, t̂)− g(y, t̂)

x− y

]}

Notice that the factor multiplying h̄(x, t̂) is

−|x− y|−1

{
∂ϕ

∂x
(x, t̂)

[
1 +

(g(x, t̂)− g(y, t̂)

x− y

)2]
−
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−ϕ(x, t̂)
[ ∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

x− y

][g(x, t̂)− g(y, t̂)

x− y

]}

and so the analysis of both terms is completely analogous.
We can take ϕ so that it solves,

∂ϕ

∂y
(y, t̂)[1 + (g′(y, t̂))2]− ϕ(y, t̂)[g′′(y, t̂)][g′(y, t̂)] = 0

where the prime (′) stands for the partial derivative with respect to
space.

So we have

∂ϕ

∂y
(y, t̂)− ϕ(y, t̂)

[g′′(y, t̂)][g′(y, t̂)]

[1 + (g′(y, t̂))2]
= 0

and so

ϕ(y, t̂) = c(t̂)× exp
( ∫ y

0

[g′′(ξ, t̂)][g′(ξ, t̂)]

[1 + (g′(ξ, t̂))2]
dξ

)

Since we have taken

h(y, t̂) = ϕ(y, t̂)h̄(y, t̂)

we need to make sure that

ϕ(y, t̂) = ϕ(y + 1, t̂)

in order to preserve the periodicity of h. We must have

c(t̂)× exp
( ∫ y+1

y

[g′′(ξ, t̂)][g′(ξ, t̂)]

[1 + (g′(ξ, t̂))2]
dξ

)
= c(t̂)

and so we must have

exp
( ∫ y+1

y

[g′′(ξ, t̂)][g′(ξ, t̂)]

[1 + (g′(ξ, t̂))2]
dξ

)
= 1

and hence

∫ y+1

y

[g′′(ξ, t̂)][g′(ξ, t̂)]

[1 + (g′(ξ, t̂))2]
dξ = 0

but this is true since

∫ y+1

y

[g′′(ξ, t̂)][g′(ξ, t̂)]

[1 + (g′(ξ, t̂))2]
dξ =

∫ y+1

y

1

2

d

dξ
log[1+(g′(ξ, t̂))2]dξ =

1

2
log[1+(g′(ξ, t̂))2]

∣∣∣
y+1

y
= 0

because g′ is periodic.
Since c(t̂) does not play any role in the periodicity of h we can take

c(t̂) to be identically 1.
With this choice of ϕ the two terms become
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−ε

∫

R/Z

h̄(x, t̂)
∂ϕ

∂x
(x, t̂)− h̄(y, t̂)

∂ϕ

∂y
(y, t̂)

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄(x, y, t̂)dy+

+ε

∫

R/Z

[
ϕ(x, t̂)h̄(x, t̂)−ϕ(y, t̂)h̄(y, t̂)

][∂g

∂x
(x, t̂)− ∂g

∂y
(y, t̂)

][
g(x, t̂)−g(y, t̂)

]

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
3
2

χ̄(x, y, t̂)dy

= ε

∫

R/Z
h̄(y, t̂)sgn(x−y)A1(x, y, t̂)dy−εh̄(x, t̂)

∫

R/Z
sgn(x−y)B(x, y, t̂)dy =

= ε

∫

R/Z
h̄(y, t̂)sgn(x− y)A1(x, y, t̂)dy + εh̄(x, t̂)A2(x, t̂)dy =

where

A1(x, y, t̂)=sgn(x−y)

{
∂ϕ

∂y
(y, t̂)

[
(x−y)2+(g(x, t̂)−g(y, t̂))2

]
−ϕ(y, t̂)

[∂g

∂x
(x, t̂)−∂g

∂y
(y, t̂)

]

×
[
g(x, t̂)− g(y, t̂)

]}
[(x− y)2 + (g(x, t̂)− g(y, t̂))2]−

3
2 χ̄(x, y, t̂)

B(x, y, t̂)=sgn(x−y)

{
∂ϕ

∂x
(x, t̂)

[
(x−y)2+(g(x, t̂)−g(y, t̂))2

]
−ϕ(x, t̂)

[∂g

∂x
(x, t̂)−∂g

∂y
(y, t̂)

]

×
[
g(x, t̂)− g(y, t̂)

]}
[(x− y)2 + (g(x, t̂)− g(y, t̂))2]−

3
2 χ̄(x, y, t̂)

and

A2(x, t̂) = −
∫

R/Z
sgn(x− y)B(x, y, t̂)dy

Notice that A1(x, x, t̂) = 0.
With this choice of ϕ(y, t̂) the most singular term becomes

−ε

∫

R/Z

ϕ(x, t̂)
∂h̄

∂x
(x, t̂)− ϕ(y, t̂)

∂h̄

∂y
(y, t̂)

[(x− y)2 + (g(x, t̂)− g(y, t̂))2]
1
2

χ̄(x, y, t̂)dy

Now we produce several transformations to the equation so that the
most singular term becomes

∫

R/Z

∂h

∂x
(x, t̂)− ∂h

∂y
(y, t̂)

|x− y| θ(x− y)dy
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Precisely, we write ϕ(y, t̂) in the following as ϕ(y, t̂) = ϕ(x, t̂)+[ϕ(y, t̂)−
ϕ(x, t̂)] in the most singular term and start by dividing the equation by
ϕ(x, t̂) and then perform a change of variables in the equation. In partic-
ular we take

x = φ(x̄, t̄)

t̂ = t̄

We use the notation

h̃(x̄, t̄) := h̄(φ(x̄, t̄), t̄) ϕ̃(x̄, t̄) := ϕ(φ(x̄, t̄), t̄) g̃(x̄, t̄) := g(φ(x̄, t̄), t̄)

χ̃(x̄, ȳ, t̄) := χ̄(φ(x̄, t̄), φ(ȳ, t̄), t̄) η̃(x̄, ȳ, t̄) := η̄(φ(x̄, t̄), φ(ȳ, t̄), t̄)

χ̃v(x̄, ȳ, t̄) := χ̄v(φ(x̄, t̄), φ(ȳ, t̄), t̄) η̃v(x̄, ȳ, t̄) := η̄v(φ(x̄, t̄), φ(ȳ, t̄), t̄)

The most singular term becomes (except for the minus sign):

ε

∫

R/Z

1
∂φ

∂x̄
(x̄, t̄)

∂h̃

∂x̄
(x̄, t̄)− 1

∂φ

∂ȳ
(ȳ, t̄)

∂h̃

∂ȳ
(ȳ, t̄)

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)
∂φ

∂ȳ
(ȳ, t̄)dȳ =

= ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)− ∂h̃

∂ȳ
(ȳ, t̄)

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)dȳ+

+ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)

[
1

∂φ

∂x̄
(x̄, t̄)

− 1
∂φ

∂ȳ
(ȳ, t̄)

]

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)
∂φ

∂ȳ
(ȳ, t̄)dȳ =

= ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)− ∂h̃

∂ȳ
(ȳ, t̄)

|x̄− ȳ|[(φ′(ȳ, t̄))2 + (g′(φ(ȳ, t̄), t̄)φ′(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)dȳ+

+ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)

[
1

∂φ

∂x̄
(x̄, t̄)

− 1
∂φ

∂ȳ
(ȳ, t̄)

]

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)
∂φ

∂ȳ
(ȳ, t̄)dȳ+
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+ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)− ∂h̃

∂ȳ
(ȳ, t̄)

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)dȳ−

−ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)− ∂h̃

∂ȳ
(ȳ, t̄)

|x̄− ȳ|[(φ′(ȳ, t̄))2 + (g′(φ(ȳ, t̄), t̄)φ′(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)dȳ

We want to choose the change of variables x = φ(x̄, t̄) in such a way
that the expression in square brackets in the denominator in the first
integral is only a function of time. We want to define φ and a in such a
way that we have

[(φ
′
(ȳ, t̄))2 + (g

′
(φ(ȳ, t̄), t̄)φ

′
(ȳ, t̄))2]

1
2 = a(t̄)

and hence

dy

dȳ
(1 + (g

′
(y, t̄))2)

1
2 = a(t̄) (30)

(1 + (g
′
(y, t̄))2)

1
2 dy = a(t̄)dȳ

Since we want our change of coordinates to be a diffeomorphism from
R/Z to R/Z we can choose, without loss of generality that ȳ = 0 is mapped
into y = 0 and so ȳ = 1 is mapped into y = 1. Therefore we have

∫ y

0

(1 + (g
′
(ξ, t̄))2)

1
2 dξ = a(t̄)ȳ

where we define a(t̄) in order the preserve the periodicity of the front,
i.e.

∫ 1

0

(1 + (g
′
(ξ, t̄))2)

1
2 dξ = a(t̄) (31)

Some observations about the change of variables are in order. The
results needed to apply the Nash-Moser theorem require that we solve the
linear equation, but only in a neighborhood OM of the origin. In proving
the tame estimates for P we have restricted f to a neighborhood of the
origin (recall (25)), and so we have

‖g‖L∞ ≤ K ‖∂xg‖L∞ ≤ K ‖∂2
xg‖L∞ ≤ K

where K depends only on ϕ0 and the constant C0 appearing in (25)
(recall that g = f + ϕ0). K is taken to be greater than or equal to

max(‖ϕ0‖L∞ + ‖f‖L∞ , ‖∂xϕ0‖L∞ + ‖∂xf‖L∞ , ‖∂xϕ0‖L∞ + ‖∂xf‖L∞)

Since that gives as a bound on g
′
, looking at (31) we get
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1 ≤ a(t̄) ≤
√

1 + K2

and so using (30) we obtain

1√
1 + K2

≤ dx

dx̄
=

∂φ

∂x̄
(x̄, t̄) =

a(t̂)

(1 + (g
′
(y, t̄))2)

1
2
≤

√
1 + K2 (32)

These bounds will be useful in controlling the support of the cutoff
functions after the change of variables. The function χ̄ is evaluated at

(φ(x̄, t̄)− φ(ȳ, t̄), g̃(x̄, t̄)− g̃(ȳ, t̄))

and since we have obtained upper bounds for g and g
′

and lower and
upper bounds for φ and φ

′
we can choose r and R in the original definition

of the support of χ (See (9)) sufficiently small so that

χ(φ(x̄, t̄)− φ(ȳ, t̄), g̃(x̄, t̄)− g̃(ȳ, t̄))

is supported in the strip |ȳ − x̄| ≤ 1
4
. We still have that χ̃ = 1 if

|ȳ − x̄| ≤ C(K), where we will determine C(K) below.

Since 1√
1+K2

≤ ∂φ
∂x

≤ √
1 + K2 and |g′| ≤ K, the norm of (φ(x̄, t̄) −

φ(ȳ, t̄), g̃(x̄, t̄) − g̃(ȳ, t̄)) is smaller than |ȳ − x̄|√1 + K2 + K2 and bigger

than |ȳ − x̄| 1√
1 + K2

and so we can choose

R =
1

4
√

(1 + 2K2
and r =

1

8
√

1 + 2K2

Hence we can take C(K) = 1

(
√

1 + K2)
r.

With this choice of r and R we can split χ in

χ̃(x̄, ȳ, t̄) = χ(φ(x̄, t̄)− φ(ȳ, t̄), g̃(x̄, t̄)− g̃(ȳ, t̄)) =

= θ(ȳ−x̄)+χ(φ(x̄, t̄)−φ(ȳ, t̄), g̃(x̄, t̄)−g̃(ȳ, t̄))−θ(ȳ−x̄) = θ(ȳ−x̄)+ρ(x̄, ȳ, t̄)

where

{
θ(s) = 1 if sε[−C(K), C(K)], θ even and supp θ ⊂ [− 1

4
, 1

4
]

supp ρ ⊂ {C(K) < |ȳ − x̄| < 1
4
}

After all this transformations the equation becomes

∂h̃

∂t̄
(x̄, t̄)+

−∂φ

∂t̄
(x̄, t̄)

∂φ

∂x̄
(x̄, t̄)

∂h̃

∂x̄
(x̄, t̄)+

−∂φ

∂t̄
(x̄, t̄)

∂φ

∂x̄
(x̄, t̄)

∂ϕ̃

∂x̄
(x̄, t̄)

ϕ̃(x̄, t̄)
h̃(x̄, t̄)+

∂ϕ̃

∂t̄
(x̄, t̄)

ϕ̃(x̄, t̄)
h̃(x̄, t̄)−
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−εa−1(t̄)

∫

R/Z

∂h

∂x̄
(x̄, t̄)− ∂h

∂ȳ
(ȳ, t̄)

|ȳ − x̄| θ(x̄− ȳ)dȳ−

−εa−1(t̄)

∫

R/Z

∂h

∂x̄
(x̄, t̄)− ∂h

∂ȳ
(ȳ, t̄)

|x̄− ȳ| ρ(x̄, ȳ, t̄)dȳ−

−ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)

[
1

∂φ

∂x̄
(x̄, t̄)

− 1
∂φ

∂ȳ
(ȳ, t̄)

]

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)
∂φ

∂ȳ
(ȳ, t̄)dȳ−

−ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)− ∂h̃

∂ȳ
(ȳ, t̄)

[(φ(x̄, t̄)− φ(ȳ, t̄))2 +(g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)dȳ+

+ε

∫

R/Z

∂h̃

∂x̄
(x̄, t̄)− ∂h̃

∂ȳ
(ȳ, t̄)

|x̄− ȳ|[(φ′(ȳ, t̄))2 + (g′(ȳ, t̄)φ′(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)dȳ−

−ε
1

ϕ̃(x̄, t̄)

∫

R/Z

∂h̃

∂ȳ
(ȳ, t̄)

[
ϕ̃(x̄, t̄)− ϕ̃(ȳ, t̄)

]

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃(x̄, ȳ, t̄)dȳ+

+ε
1

ϕ̃(x̄, t̄)

∫

R/Z
h̃(ȳ, t̄)sgn(φ(x̄, t̄)−φ(ȳ, t̄))A1(φ(x̄, t̄), φ(ȳ, t̄), t̄)

∂φ

∂ȳ
(ȳ, t̄)dȳ+

+ε
1

ϕ̃(x̄, t̄)
h̃(x̄, t̄)A2(φ(x̄, t̄), t̄)−

− ε

ϕ̃(x̄, t̄)

∫

R/Z

[
ϕ̃(x̄, t̄)h̃(x̄, t̄)− ϕ̃(ȳ, t̄)h̃(ȳ, t̄)

][ ∂g̃

∂x̄
(x̄, t̄)

∂φ

∂x̄
(x̄, t̄)

−
∂g̃

∂ȳ
(ȳ, t̄)

∂φ

∂ȳ
(ȳ, t̄)

]

[(φ(x̄, t̄)− φ(ȳ, t̄))2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

χ̃v(x̄, ȳ, t̄)
∂φ

∂ȳ
(ȳ, t̄)dȳ−

− ε

ϕ̃(x̄, t̄)

∫

R/Z

[
ϕ̃(x̄, t̄)h̃(x̄, t̄)−ϕ̃(ȳ, t̄)h̃(ȳ, t̄)

][ ∂g̃

∂x̄
(x̄, t̄)

∂φ

∂x̄
(x̄, t̄)

−
∂g̃

∂ȳ
(ȳ, t̄)

∂φ

∂ȳ
(ȳ, t̄)

]
η̃v(x̄, ȳ, t̄)

∂φ

∂ȳ
(ȳ, t̄)dȳ−

−ε
1

ϕ̃(x̄, t̄)

∫

R/Z

[
ϕ̃(x̄, t̄)

1
∂φ

∂x̄
(x̄, t̄)

∂h̃

∂x̄
(x̄, t̄)−ϕ̃(ȳ, t̄)

1
∂φ

∂ȳ
(ȳ, t̄)

∂h̃

∂ȳ
(ȳ, t̄)

]
η̃(x̄, ȳ, t̄)

∂φ

∂ȳ
(ȳ, t̄)dȳ−
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−ε
1

ϕ̃(x̄, t̄)

∫

R/Z

[
h̃(x̄, t̄)

1
∂φ

∂x̄
(x̄, t̄)

∂ϕ̃

∂x̄
(x̄, t̄)−h̃(ȳ, t̄)

1
∂φ

∂ȳ
(ȳ, t̄)

∂ϕ̃

∂ȳ
(ȳ, t̄)

]
η̃(x̄, ȳ, t̄)

∂φ

∂ȳ
(ȳ, t̄)dȳ−

−ω
1

ϕ̃(x̄, t̄)

∫

R/Z

1
∂φ

∂x̄
(x̄, t̄)

∂g̃

∂x̄
(x̄, t̄)− 1

∂φ

∂ȳ
(ȳ, t̄)

∂g̃

∂ȳ
(ȳ, t̄)

[(x̄− ȳ)2 + (g̃(x̄, t̄)− g̃(ȳ, t̄))2]
1
2

∂φ

∂ȳ
(ȳ, t̄)χ̃(x̄, ȳ, t̄)dȳ−

−ω
1

ϕ̃(x̄, t̄)

∫

R/Z

[ ∂g̃

∂x̄
(x̄, t̄)

∂φ

∂x̄
(x̄, t̄)

−
∂g̃

∂ȳ
(ȳ, t̄)

∂φ

∂ȳ
(ȳ, t̄)

]
η̃(x̄, ȳ, t̄)

∂φ

∂ȳ
(ȳ, t̄)dȳ =

k(φ(x̄, t̄), t̄)

ϕ̃(x̄, t̄)

(33)
The above equation can be rewritten in the following for

∂h̃

∂t̄
(x̄, t̄)−εa−1(t̄)

∫

R/Z

∂h̃

∂x̄
− ∂h̃

∂ȳ

|x̄− ȳ| θ(x̄−ȳ)dȳ+εT1(x̄, t̄)h̃(x̄, t̄)+εT2(x̄, t̄)
∂h̃

∂x̄
(x̄, t̄)+

+ε

∫

R/Z
h̃(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ + ε

∫

R/Z
h̃(ȳ, t̄)sgn(x̄− ȳ)T4(x̄, ȳ, t̄)dȳ+

+ωT5(x, t̄) + T6(x̄, t̄)k̃(x̄, t̄) = 0 (34)

where Tk smooth functions, that when considered as operators acting
on g are tame. We will denote the largest of all the degrees by d0. That
means we have the estimates 9

‖Tk(x, t̄)‖n
def
= sup

a+b≤n
‖∂a

x∂b
t̄ Tk(x, t̄)‖L∞x L∞̄

t
. 1 + ‖g‖n+d0

In the next sections we will also need estimates for the L2 norms of
Tk. Notice that we have

‖∂a
x∂b

t̄ Tk‖L2
xL∞̄

t
. ‖∂a

x∂b
t̄ Tk‖L∞

x,t̄
. 1 + sup

α+β≤n+d0

‖∂α
x ∂β

t̄ g(x, t̄)‖L∞x L∞̄
t

9We leave the proof to the interested reader. The ideas are the same as in the proof of P
being tame.
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5.2 Solution to the linearized equation

We make several observations about the most singular term in the above
equation (34). First, we will prove that the operator is translation invari-
ant and so is given by a multiplier.

We denote by

Ωh̃(x, t) = a−1(t̄)

∫

R/Z

∂h̃

∂ȳ
(ȳ, t̄)− ∂h̃

∂x̄
(x̄, t̄)

|ȳ − x̄| θ(ȳ − x̄)dȳ

and

τδf(x̄) = f(x̄− δ)

We want to prove that

(τδΩh̃)(x̄, t̄) = (Ωτδh̃)(x̄, t̄)

Now

(τδΩh̃)(x̄, t̄) = a−1(t̄)

∫

R/Z

∂h̃

∂ȳ
(ȳ, t̄)− ∂h̃

∂x̄
(x̄− δ, t̄)

|ȳ − x̄ + δ| θ(ȳ − x̄ + δ)dȳ =

= a−1(t̄)

∫

R/Z

∂h̃

∂ȳ
(ȳ − δ, t̄)− ∂h̃

∂x̄
(x̄− δ, t̄)

|ȳ − x̄| θ(ȳ − x̄)dȳ

and

(Ωτδh̃)(x̄, t̄) = a−1(t̄)

∫

R/Z

∂h̃

∂ȳ
(ȳ − δ, t̄)− ∂h̃

∂x̄
(x̄− δ, t̄)

|y − x| θ(ȳ − x̄)dȳ =

= a−1(t̄)

∫

R/Z

∂h̃

∂ȳ
(ȳ − δ, t̄)− ∂h̃

∂x̄
(x̄− δ, t̄)

|y − x| θ(ȳ − x̄)dȳ

As a consequence we have

Ω̂h̃(k) = m̃(k)
̂̃
h(k)

Notice that the same is true for the operator P given by

P h̃(x̄, t̄) =

∫

R/Z

h̃(ȳ, t̄)− h̃(x̄, t̄)

|ȳ − x̄| θ(ȳ − x̄)dȳ

We will prove that this operator P is symmetric, and since

T h̃(x̄, t̄) =
[
P (

∂

∂x̄
)(h̃)

]
(x̄, t̄)
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we obtain that T is skew-symmetric
Now

∫

R/Z
P (h̃)(x̄, t̄)g(x̄, t̄)dx̄ =

∫

R/Z

∫

R/Z

θ(ȳ − x̄)

|ȳ − x̄| [h̃(ȳ, t̄)−h̃(x̄, t̄)]g(ȳ, t̄)dȳdx̄ =

= −
∫

R/Z

∫

R/Z

θ(ȳ − x̄)

|ȳ − x̄| [h̃(ȳ, t̄)− h̃(x̄, t̄)]g(x̄, t̄)dȳdx̄ =

=
1

2

∫

R/Z

∫

R/Z

θ(ȳ − x̄)

|ȳ − x̄| [h̃(ȳ, t̄)− h̃(x̄, t̄)][g(ȳ, t̄)− g(x̄, t̄)]dȳdx̄

where in the second line we have interchanged the dummy variables x
and y and used the fact that θ is an even function. Since we have proven
that T is skew-symmetric and we know that T is given by a multiplier m̃,
we obtain that the multiplier is purely imaginary. So we have

T̂ h̃(k) = i ·m(k)
̂̃
h(k)

where m(k) is real.
We want to prove local existence of a solution for the equation (34),

using energy methods. That is, we intend to prove the existence of a
solution for a regularized evolution equation in certain Banach space and
obtain energy estimates that allow us to pass to the limit.

We choose a smooth function ζ , even and compactly supported. We
define the operator SR by

SRf(x) =
1

R

∫

R/Z
ζ
(x− y

R

)
f(y)dy

where 0 < R < 1.

In particular we want to solve

∂hR

∂t̄
= εSR(a−1(t̄)

∫

R/Z

∂hR

∂ȳ
(ȳ, t̄)− ∂hR

∂x̄
(x̄, t̄)

|ȳ − x̄| θ(ȳ−x̄)dȳ)−εSR(T1(x̄, t̄)hR(x̄, t̄))−

−εSR(T2(x̄, t̄)
∂hR

∂x̄
(x̄, t̄))− εSR(

∫

R/Z
hR(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ)−

−εSR(

∫

R/Z
hR(ȳ, t̄)sgn(ȳ−x̄)T4(x̄, ȳ, t̄)dȳ)−ωSR(T5(x̄, t̄))−SR(T6(x̄, t̄)k̃(x̄, t̄))

(35)
with the initial condition hR(x, 0) = 0, in some Banach Space, and

obtain energy estimates independent of R so that we can pass to the limit
when R tends to 0.

First we want to obtain the estimate
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‖hR‖L2
x
≤ c

for all t̄ in [0, 1] with c independent of R.

We multiply (35) by h and integrate with respect to x̄. We have

1

2

d

dt̄

∫

R/Z
|hR|2dx̄ = ε

∫

R/Z
SR(a−1(t̄)

∫

R/Z

∂hR

∂ȳ
(ȳ, t̄)− ∂hR

∂x̄
(x̄, t̄)

|ȳ − x̄| θ(ȳ−x̄)dȳ)hR(x̄, t̄)dx̄−

−ε

∫

R/Z
SR(T1(x̄, t̄)hR(x̄, t̄))hR(x̄, t̄)dx̄−ε

∫

R/Z
SR(T2(x̄, t̄)

∂hR

∂x̄
(x̄, t̄))hR(x̄, t̄)dx̄−

−ε

∫

R/Z
SR(

∫

R/Z
hR(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ)hR(x̄, t̄)dx̄−

−ε

∫

R/Z
SR(

∫

R/Z
hR(ȳ, t̄)sgn(ȳ − x̄)T4(x̄, ȳ, t̄)dȳ)hR(x̄, t̄)dx̄−

−ω

∫

R/Z
SR(T5(x̄, t̄))hR(x̄, t̄)dx̄−

∫

R/Z
SR(T6(x̄, t̄)k̃(x̄, t̄))hR(x̄, t̄)dx̄

The ideas involve in proving this estimate are very standard. We just
outline the main ideas needed.

Since Ω(·) is skew-symmetric we have

ε

∫

R/Z
SR(a−1(t̄)

∫

R/Z

∂hR

∂ȳ
(ȳ, t̄)− ∂hR

∂x̄
(x̄, t̄)

|ȳ − x̄| θ(ȳ − x̄)dȳ)hR(x̄, t̄)dx̄ = 0

We also need to prove that the following commutator

[T2(x̄, t̄), SR]
∂

∂x̄

is bounded in L2 uniformly in R. Now

[T2(x̄, t̄), SR]
∂f

∂x̄
= T2(x̄, t̄)SR(

∂f

∂x̄
)− SR(T2(x̄, t̄)

∂f

∂x̄
) =

=

∫

R/Z
T2(x̄, t̄)

1

R
ζ(

x̄− ȳ

R
)
∂f

∂ȳ
dȳ −

∫

R/Z

1

R
ζ(

x̄− ȳ

R
)T2(ȳ, t̄)

∂f

∂ȳ
dȳ =

=

∫

R/Z
T2(x̄, t̄)

1

R2 ζ′(
x̄− ȳ

R
)f(ȳ, t̄)dȳ−

∫

R/Z

1

R2 ζ′(
x̄− ȳ

R
)T2(ȳ, t̄)f(ȳ, t̄)dȳ+

+

∫

R/Z

1

R
ζ(

x̄− ȳ

R
)T ′2(ȳ, t̄)f(ȳ, t̄)dȳ =
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=

∫

R/Z

T2(x̄, t̄)− T2(ȳ, t̄)

x̄− ȳ

x̄− ȳ

R

1

R
ζ′(

x̄− ȳ

R
)f(ȳ, t̄)dȳ+

∫

R/Z

1

R
ζ(

x̄− y

R
)T ′2(ȳ, t̄)f(ȳ, t̄)dȳ

From this equality we obtain

‖[T2(x̄, t̄), SR]
∂f

∂x̄
‖L2

x̄
. ‖T ′2‖L∞̄x ‖f‖L2

x̄

where we assume that ζ satisfies

∫

R/Z
ζ2(x̄)dx̄ < ∞

∫

R/Z
(ζ′)2(x̄)dx̄ < ∞

The same ideas allow us to obtain the general estimate

∫

R/Z

∣∣∂
khR

∂kx̄
(x̄, t̄)

∣∣2dx̄ ≤ c

with c independent of R.
We still need to prove that the system

∂hR

∂t̄
= εSR(a−1(t̄)

∫

R/Z

∂hR

∂ȳ
− ∂hR

∂x̄

|ȳ − x̄| θ(ȳ− x̄)dȳ)−εSR(T1(x̄, t̄)hR(x̄, t̄))−

−εSR(T2(x̄, t̄)
∂hR

∂x̄
(x̄, t̄))− εSR(

∫

R/Z
hR(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ)−

−εSR(

∫

R/Z
hR(ȳ, t̄)sgn(ȳ−x̄)T4(x̄, ȳ, t̄)dȳ)+ωSR(T5(x̄, t̄))+SR(T6(x̄, t̄)k̃(x̄, t̄))

hR(x̄, 0) = SR(h0(x̄))

has a solution in some Banach space.
We will use Picard’s Theorem:
Let O ⊂ B be an open subset of a Banach space B and let F : O → B

be a mapping that satisfies the following:

1. F (X) maps O to B

2. F is locally Lipshitz continuous, i.e. for any XεO there exists L > 0
and an open neighborhood UX ⊂ O of X such that

‖F (X̂)− F (Ŷ )‖B ≤ L‖X̂ − Ŷ ‖B for all X̂, Ŷ εUX .

Then for any X0εO, there exists a time T such that that ODE

dX

dt
= F (X), X|t=0 = X0εO,

has a unique (local) solution XεC1[(−T, T ); O].

Denote the right hand side of the above equation by F (t̄, h)
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We need to prove

‖F (t, h1)− F (t, h2)‖B ≤ L‖h1(t̄)− h2(t̄)‖B (36)

where B is some Banach space. We take B = Hk(R/Z) for some large
k.

It is clear that to prove that F is Lipshitz we have to prove that each
of the terms in the right hand side is Lipshitz. We have

‖εSR(a−1(t̄)

∫

R/Z

∂h1,R

∂ȳ
(ȳ, t̄)− ∂h1,R

∂x̄
(x̄, t̄)

|ȳ − x̄| θ(ȳ − x̄)dȳ)−

−εSR(a−1(t̄)

∫

R/Z

∂h2,R

∂ȳ
(ȳ − t̄)− ∂h2,R

∂x̄
(x̄, t̄)

|ȳ − x̄| θ(ȳ − x̄)dȳ)‖Hk
x
≤

≤ C‖ 1

a(t̄)
‖L∞×‖SR(h1,R(x̄, t̄)−h2,R(x̄, t̄))‖Hk+2+δ ≤ for any δ > 0

≤ 1

R2+δ
‖h1,R(x̄, t̄)− h2,R(x̄, t̄)‖Hk

2nd term

‖εSR(T1(x̄, t̄)h1,R(x̄, t̄))− εSR(T1(x̄, t̄)h2,R(x̄, t̄))‖Hk ≤

≤ C(T1)‖h1,R(x̄, t̄))− h2,R(x̄, t̄))‖Hk

3rd term

‖εSR(T2(x̄, t̄)
∂h1,R

∂x̄
(x̄, t̄))− εSR(T2(x̄, t̄)

∂h2,R

∂x̄
(x̄, t̄))‖Hk ≤

≤ C(T2)‖SR(
∂h1,R

∂x̄
(x̄, t̄)−∂h2,R

∂x̄
(x̄, t̄))‖Hk ≤ C(T2)‖SR(h1,R(x̄, t̄)−h2,R(x̄, t̄))‖Hk+1

≤ C(T2)
1

R
‖SR(h1,R(x̄, t̄)−h2,R(x̄, t̄))‖Hk ≤ C(T2)

1

R
‖h1,R(x̄, t̄)−h2,R(x̄, t̄)‖Hk

4th term

‖εSR(

∫

R/Z
h1,R(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ)−εSR(

∫

R/Z
h2,R(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ)‖Hk ≤

≤ C(T3)‖h1,R(x̄, t̄)− h2,R(x̄, t̄)‖Hk
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5th term

‖εSR(

∫

R/Z
h1,R(ȳ, t̄)sgn(ȳ − x̄)T4(x̄, ȳ, t̄)dȳ)−

−εSR(

∫

R/Z
h2,R(ȳ, t̄)sgn(ȳ − x̄)T4(x̄, ȳ, t̄)dȳ)‖Hk ≤

≤ C(T4)‖h1,R(x̄, t̄)− h2,R(x̄, t̄)‖Hk

Observe that the terms involving k cancel each other out.
In order to apply Picard’s Theorem we still need to define the neigh-

borhood O and check the remaining hypothesis about F . Since we have
taken B = Hk(R/Z) and F considered as an operator in h loses 1 + δ

derivatives, we take O to be {hεHk+2| ‖h‖Hk+2 ≤ C} where C is the
constant appearing in the energy estimates obtained above.

That way we can assure that F : O → B is satisfied. Since we have
proven above that F is Lipshitz for h in O, we can conclude that the
mollified equation has a solution for tε[0, T (R)].

Notice that we can make T independent of R using the a priori energy
estimates that we have obtained above. Precisely, since we know that
the solution that we have obtained for [0, T (R)] still remains in O, we
can iterate Picards theorem until T (R) reaches 1. Recall that we have
re-scaled our original equation using the parameter ε and so we are only
considering tε[0, 1]. In addition we can not (a priori) extend the solution
past that point since we have obtained the energy estimates only for that
time.

In order to obtain a solution to the linearized equation (34), we observe
that since we have the bounds

‖hR‖Hk ≤ C

we can use the Banach-Alaoglu Theorem to obtain the existence of a
function h and a sequence of functions hRj such that

hRj ⇀ h in Hk

and hence using Rellich’s Theorem we can conclude that

hRj → h in Hs for s < k

Observation 3. The problem about the uniqueness of the limiting func-
tion h and the possible existence of other limits coming from the Banach-
Alaoglu theorem gets ruled out, once we prove that h satisfies the linearized
equation and that the solution to the linearized equation is unique.

Observe that since hR → h in Hs for s < k and hR → h in C([0, T ], Hs)

we also obtain that hR → h in C([0, T ], Cs′) using Sobolev embeddings.
(Notice that the equation provides us with derivatives in time for the so-
lution).
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Recall that the final form of the linearized equation is

∂h̃

∂t̄
(x̄, t̄)−εa−1(t̄)

∫

R/Z

∂h̃

∂ȳ
(ȳ, t̄)− ∂h̃

∂x̄
(x̄, t̄)

|ȳ − x̄| θ(ȳ−x̄)dȳ+εT1(x̄, t̄)h̃(x̄, t̄)+εT2(x̄, t̄)
∂h̃

∂x̄
(x̄, t̄)+

+ε

∫

R/Z
h̃(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ + ε

∫

R/Z
h̃(ȳ, t̄)sgn(ȳ − x̄)T4(x̄, ȳ, t̄)dȳ+

+ωT5(x̄, t̄) + T6(x̄, t̄)k̃(x̄, t̄) = 0 (37)

Uniqueness follows as an application of Gronwall’s inequality to the
difference of two solutions h1 − h2.

Observation 4. Notice that the time of existence of the solution to the
mollified equation is independent of k and hence we obtain the existence
of a C∞ solution.

6 DPϕ0
’s inverse is smooth and tame

We still need to prove that the inverse of the map DPϕ0 is smooth and
tame. Recall that

DPϕ0(f, ε)(h, ω) = (k, σ) ∀ (k, σ) in G

and hence the inverse V Pϕ0
10 is given by

V P ((f, ε))(k, σ) = (h, ω)

In this notation the tame estimate we need to prove is

|‖(h, ω)‖|n . 1 + |‖(f, ε)‖|n+s + |‖(k, σ)‖|n+s (38)

Recall that in the previous chapter we have proved that σ = ω, and
so the in terms of h the above inequality is equivalent to

‖h‖n . 1 + |ε|+ |ω|+ ‖f‖n+s + ‖k‖n+s (39)

In order to prove this estimate we are going to use the equation ob-
tained in chapter 5, for h̃ and k̃, (34)

We will prove the tame estimate in terms of h̃

‖h̃‖n . 1 + |ε|+ |ω|+ ‖g‖n+s + ‖k‖n+s (40)

and use that

h̃(x̄, t̄) = h̄(φ(x̄, t̄), t̄) =
h(φ(x̄, t̄), t̄)

ϕ(φ(x̄, t̄), t̄)

to conclude the estimate, once we proved that the change of coordi-
nates φ and the auxiliary function ϕ are tame maps with respect to g.

10We follow Hamilton’s notation for the inverse.
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6.1 Change of coordinates x = φ(x̄, t̄)

We prove that the change of coordinates x = φ(x̄, t̄) and its inverse x̄ =
ψ(x, t) are both tame.

Recall that

φ′(ȳ, t̄)[1 + (g′(ȳ, t̄))2]
1
2 = a(t̄)

and so

ȳ =
1

a(t̄)

∫ y

0

[1 + (g′(ξ, t))2]
1
2 dξ := ψ(y, t)

where

a(t) =

∫ 1

0

[1 + (g′(ξ, t))2]
1
2 dξ

First notice that since the function w(r) = [1 + r2]
1
2 has all its deriva-

tives bounded independently of r we have the following tame estimate

‖∂k
t a(t)‖L∞t . 1 + ‖∂k+2

t g‖L∞t

We still need to prove that ψ is tame. Since we know that 1 ≤ a(t) ≤√
1 + K2. we can use the lemmas in the appendix to obtain that 1

a(t)
is

tame. We will denote the largest of the degrees of tamenes of a and a−1

by d1.

As for the second term

∫ y

0

[1 + (g′(ξ, t))2]
1
2 dξ, using the same remark

about w, we have

‖∂a
y ∂b

t

∫ y

0

[1 + (g′(ξ, t))2]
1
2 dξ‖L∞x L∞t ≤ ‖∂a+1

x ∂b+2
t g‖L∞x L∞t

Using the lemmas in the appendix we have that ψ is tame, precisely

‖∂a
x∂b

t ψ(x, t)‖L∞x L∞t ≤ 1 + ‖∂a+1
x ∂b+2

t g‖L∞x L∞t

In order to prove that the inverse map (φ) is tame we use the identity

ψ(φ(x̄, t̄), t̄) = Id(x̄)

We have

∂xψ(φ(x̄, t̄), t̄)∂x̄φ(x̄, t̄) = 1

and so

∂xψ(φ(x̄, t̄), t̄)∂2
x̄φ(x̄, t̄) + ∂2

xψ(φ(x̄, t̄), t̄)(∂x̄φ(x̄, t̄))2 = 0

...
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∂xψ(φ(x̄, t̄), t̄)(∂k
x̄φ(x̄, t̄))+

k∑
j=2

∑

a1+...+aj=k
ai>0

ck,a1,...,aj ∂j
xψ(φ(x̄, t̄), t̄)∂a1

x̄ φ(x̄, t̄)...∂as
x̄ φ(x̄, t̄) = 0

so we have

∂k
x̄φ(x̄, t̄) =

−1

∂xψ(φ(x̄, t̄), t̄)

{ k∑
j=2

∑

a1+...+aj=k
ai≥1

ck,a1,...,aj ∂j
xψ(φ(x̄, t̄), t̄)∂a1

x̄ φ(x̄, t̄)...∂as
x̄ φ(x̄, t̄)

}

we will use the following interpolation inequalities

‖ψ‖Cj . ‖ψ‖
k−j
k−1
C1 ‖ψ‖

j−1
k−1
Ck

‖φ‖Ca . ‖φ‖
k−a−1

k−2
C1 ‖φ‖

a−1
k−2
Ck−1

Since 1√
1 + K2

≤ ∂xψ(x, t) ≤ √
1 + K2 using the interpolation in-

equalities we obtain

‖∂k
x̄φ(x̄, t̄)‖L∞̄x L∞̄

t
≤ C

{ k∑
j=2

‖ψ‖
j−1
k−1
Ck ‖φ‖

k−j
k−2
Ck−1

}

Suppose that we know by the induction hypothesis that

‖φ‖Ck−1 . ‖ψ‖Ck−1 + 1

By interpolation we have

‖ψ‖Ck−1 + 1 . (‖ψ‖Ck + 1)
k−2
k−1

when ‖ψ‖C1 . 1.
Inserting this in the above inequality produces

‖∂k
x̄φ(x̄, t̄)‖L∞̄x L∞̄

t
. ‖∂kψ‖L∞̄x L∞̄

t

and since the right hand side is tame with respect to g we have just
proved the same property for φ. The above argument can be trivially
extended to time derivatives, and so we have proved that φ is tame.

We will denote the degree of tameness of φ by d2.

6.2 Auxiliary function ϕ

Recall the definition of ϕ

ϕ(y, t) = exp
( ∫ y

0

[g′′(ξ, t)][g′(ξ, t)]

[1 + (g′(ξ, t))2]
dξ

)
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The first observation is that since we have defined the neighborhood
of the origin we have ‖g‖2 ≤ C and hence we have

1

eC2 ≤ ‖exp
( ∫ y

0

[g′′(ξ, t)][g′(ξ, t)]

[1 + (g′(ξ, t))2]
dξ

)
‖ ≤ eC2

and so

1

eC2 ≤ |ϕ| ≤ eC2

Notice that for a function of the form

h = ef

we have

h(k) = h
∑

a1+...+as=k
aj≥1

ca1,...,asf (a1) × ...× f (as)

In our case f is

f =

∫ y

0

[g′′(ξ, t)][g′(ξ, t)]

[1 + (g′(ξ, t))2]
dξ

As we have noticed before

dk

drk

1

1 + r2 ≤ ck

independent of r. Since f is the product of 3 tame functions, we have
that f itself is tame. Together with the interpolation inequalities in the
appendix, that completes the proof of the fact that ϕ is tame. We will
denote the degree by d3.

In order to simplify the presentation we notice here that since k̃(x̄, t̄) =
k(φ(x̄, t̄), t̄) and we have proved that φ is tame with respect to g we obtain
the tame estimate (we denote the degree by d4.

‖k̃‖n . 1 + ‖k‖n+d4 + ‖g‖n+d4

In the next section we will use the tame estimates that we have proved
for Ti, a, φ, ϕ and k̃. We will assume that all of them have the same degree
that we will denote by d, i.e. d = max(d0, d1, d2, d3, d4).

6.3 Tame estimates for the inverse: modifying
the definition of energy

Now we try to obtain tame estimates for h̃. Recall

∂h̃

∂t̄
(x̄, t̄)−εa−1(t̄)

∫

R/Z

∂h̃

∂ȳ
− ∂h̃

∂x̄

|x̄− ȳ| θ(x̄−ȳ)dȳ+εT1(x̄, t̄)h̃(x̄, t̄)+εT2(x̄, t̄)
∂h̃

∂x̄
(x̄, t̄)+
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+ε

∫

R/Z
h̃(ȳ, t̄)T3(x̄, ȳ, t̄)dȳ + ε

∫

R/Z
h̃(ȳ, t̄)sgn(x̄− ȳ)T4(x̄, ȳ, t̄)dȳ+

+ωT5(x̄, t̄) + T6(x̄, t̄)k̃(x̄, t̄) = 0 (41)

We will obtain L2 estimates for h̃ and its derivatives and then use
Sobolev embedding theorems to obtain the L∞ results.

First we define the energy

Ea,b(t̄) =
1

2

∫

R/Z

(
∂a+bh̃

∂x̄a∂t̄b
(x̄, t̄)

)2

dx̄

We need to prove the estimates

Ea,b(t̄) . 1 + ‖k‖2a+b+s + ‖g‖2a+b+s (42)

for some s independent of a and b.

Due to technical problems controlling some of the terms involved in
Ea,b we need to introduce the following auxiliary quantity.

Ea,b,l(t̄) =
1

2

∫

R/Z

(
∂a+b

∂x̄a∂t̄b
Ql(h̃)(x̄, t̄)

)2

dx̄

where Q is an operator given by multiplication by a function that
behaves like log|k| for large k in Fourier space. We take

Q(f)(x) =

∫

R/Z

f(u)− f(x)

|u− x| %(u− x)du

where % is a smooth even function, supported in [− 1
4
, 1

4
]. Moreover %

is identically 1 on a fixed neighborhood around the origin. We need to

include this cut-off function, since otherwise 1
|x− u| is not well defined

for u, x in R/Z.

We want to obtain the estimate

Ea,b,l(t̄) . C(l)(1 + ‖k‖2a+b+s + ‖g‖2a+b+s) (43)

We will obtain this estimate in 3 steps.

1. Obtain E0,0,l(t̄) . C(l)(1 + ‖g‖2s + ‖k‖2s).
2. Obtain Ea,0,l(t̄) . C(l)(1 + ‖g‖2a+s + ‖k‖2a+s) using induction on a.

3. Incorporate time derivatives and run induction on b. We will prove
the estimate

Ea,b,l(t̄) . 1 + ‖g‖2a+b+s + ‖k‖2a+b+s + Ea+1,b−1,l+1(t̄)

and use the induction hypothesis

Eα,β(t̄) ≤ C(l)(1 + ‖g‖2α+β+s + ‖k‖2α+β+s)

for any α and β < b to conclude the argument.

37



In order to obtain 1 and 2 we prove the tame estimates for E0,0,0(t̄)
and Ea,0,0(t̄) using induction (notice that we take l = 0) and use the fact
that

Ea,0,l(t̄) ≤ C(l)Ea+1,0,0(t̄)

to obtain the desired estimates.
In order to obtain the estimate for E0,0,0(t̄) we multiply the equation

(41) by h̃ and integrate with respect to x̄. We have

E′
0,0,0(t̄) = ε

1

a(t̄)

∫

R/Z

∫

R/Z

∂h̃

∂ȳ
(ȳ, t̄)− ∂h̃

∂x̄
(x̄, t̄)

|x̄− ȳ| θ(x̄− ȳ)dȳh̃(x̄, t̄)dx̄−

−ε

∫

R/Z
T1(x̄, t)h̃2(x̄, t̄)dx̄− ε

∫

R/Z
T2(x̄, t̄)

∂h̃

∂x̄
(x̄, t̄)h̃(x̄, t̄)dx̄−

−ε

∫

R/Z

∫

R/Z
h̃(ȳ, t̄)T3(x̄, ȳ, t̄)dȳh̃(x̄, t̄)dx̄−

−ε

∫

R/Z

∫

R/Z
h̃(ȳ, t̄)sgn(x̄− ȳ)T4(x̄, ȳ, t̄)dȳh̃(x̄, t̄)dx̄−

−
∫

R/Z
T5(x̄, t̄)h̃(x̄, t̄)dx̄−

∫

R/Z
T6(x̄, t̄)k̃(x̄, t̄)h̃(x̄, t̄)dx̄

Using the skew-symmetry of the most singular term and integrating
by parts in the term containing T2 we obtain

E′
0,0,0(t̄) . (‖T1‖L∞ + ‖∂T2

∂x̄
‖L∞ + ‖T3‖L∞ + ‖T4‖L∞)E0,0,0(t̄)+

+‖T5‖2L∞ + ‖T6‖2L∞‖k̃‖2L2 + E0,0,0(t̄) .

. 1 + ‖g‖2d + ‖g‖d+1E0,0,0(t̄) + ‖k‖2d
and hence using Gronwall’s inequality we obtain

E0,0,0(t̄) . e‖g‖d+1 [E0,0,0(0) +

∫
‖g‖2d + ‖k‖20] . 1 + ‖g‖2d + ‖k‖20

since we are proving this estimates in a neighborhood of the origin
and we know that the exponent of e is smaller than C. This proves the
estimate (1) for any s > d, say s = d + 1 and M = d + 1. We will still
need to increase M in the next estimates.

Now we try to obtain the estimate for Ea,0,0(t̄). We differentiate the
equation (41) a times with respect to x̄ and then multiply the equation

by ∂ah̃
∂x̄a (x̄, t̄) and integrate with respect to x̄. We obtain
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1

2
E′

a,0,0(t̄) = εa−1(t̄)

∫

R/Z

∂a

∂x̄a

{ ∫

R/Z

∂h̃

∂ȳ
(ȳ, t̄)− ∂h̃

∂x̄
(x̄, t̄)

|x̄− ȳ| θ(x̄−ȳ)dȳ

}
∂ah̃

∂x̄a (x̄, t̄)dx̄−

−ε

∫

R/Z

∑

α+β=a

cα,β
∂αT1

∂x̄α (x̄, t̄)
∂β h̃

∂x̄β
(x̄, t̄)

∂ah̃

∂x̄a (x̄, t̄)dx̄−

−ε

∫

R/Z

∑

α+β=a

cα,β
∂αT2

∂x̄α (x̄, t̄)
∂β+1h̃

∂x̄β+1
(x̄, t̄)

∂ah

∂x̄a (x̄, t̄)dx̄−

−ε

∫

R/Z

∫

R/Z
h̃(ȳ, t̄)

∂aT3

∂x̄a (x̄, ȳ, t̄)
∂ah̃

∂x̄a (x̄, t̄)dȳdx̄−

−ε

∫

R/Z

∂a

∂x̄a

( ∫

R/Z
h̃(ȳ, t̄)sgn(x̄− ȳ)T4(x̄, ȳ, t̄)dȳ

)∂ah̃

∂x̄a (x̄, t̄)dx̄−

−ω

∫

R/Z

∂aT5

∂x̄a (x̄, t̄)
∂ah̃

∂x̄a (x̄, t̄)dx̄−

−
∫

R/Z

∑

α+β=a

cα,β
∂αT6

∂x̄α (x̄, t̄)
∂β k̃

∂x̄β
(x̄, t̄)

∂ah̃

∂x̄a (x̄, t̄)dx̄

Obtaining the required estimate is a simple exercise using the skew-
symmetry of the main term, and the interpolation inequalities described
in the appendix combined with Gronwall’s inequality.

We have

Ea,0,0(t̄) . 1 + ‖g‖2a+s + ‖k‖2a+s

and hence

Ea,0,l(t̄) . 1 + ‖g‖2a+s+1 + ‖k‖2a+s+1

In order to obtain the estimate 3 we need to commute the operator Q
past the different operators in the equation.

The following formula for Ql can be proved by induction.

∂Ql(h̃)

∂t̄
(x̄, t̄) = εa−1(t̄)

∫

R/Z

∂Ql(h̃)

∂x̄
(x̄, t̄)− ∂Ql(h̃)

∂ȳ
(ȳ, t̄)

|x̄− ȳ| θ(x̄− ȳ)dȳ−

−εT1(x̄, t̄)Ql(h̃)(x̄, t̄)−ε
∑

m+n=l−1

∫

R/Z
Qm(h̃)(ȳ, t̄)Qn(

T1(x̄, t̄)− T1(ȳ, t̄)

|x̄− ȳ| %(x̄−ȳ))dȳ−

−εT2(x̄, t̄)
∂Ql(h̃)

∂x̄
(x̄, t̄)−ε

∑

m+n=l−1

∫

R/Z
Qm(

∂h̃

∂ȳ
)(ȳ, t̄)Qn(

T2(x̄, t̄)− T2(ȳ, t̄)

|x̄− ȳ| %(x̄−ȳ))dȳ−
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−ε

∫

R/Z
h̃(ȳ, t̄)Ql(T3)(x̄, ȳ, t̄)dȳ−εQl(

∫

R/Z
h̃(ȳ, t̄)sgn(x̄−ȳ)T4(x̄, ȳ, t̄)dȳ)−ωQl(T5(x̄, t̄))−

−
∫

R/Z
T6(ȳ, t̄)Ql−1(

k̃(x̄, t̄)− k̃(ȳ, t̄)

|x̄− ȳ| %(x̄− ȳ))dȳ−

−
∫

R/Z
k̃(ȳ, t̄)Ql−1(

T6(x̄, t̄)− T6(ȳ, t̄)

|x̄− ȳ| %(x̄− ȳ))dȳ (44)

In order to prove the estimate for Ea,b,l(t̄) we differentiate the equation
(44) a-times with respect to x̄ and b-times with respect to t̄, and multiply
the resulting equation by

∂a+b

∂x̄a∂t̄b
Ql(h̃)(x̄, t̄)

and integrate with respect to x̄. We have

1

2
E′

a,b,l(t̄) = ε
∑

i+j=b

ci,j
∂i

∂t̄i
(a−1(t̄))×

×
∫

R/Z

∫

R/Z

∂a+1+jQl(h̃)

∂x̄a+1∂t̄j
(x̄, t̄)− ∂a+1+jQl(h̃)

∂ȳa+1∂t̄j
(ȳ, t̄)

|x̄− ȳ| θ(x̄−ȳ)dȳ
∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−
∑

i+j=b

∑

α+β=a

ci,j,α,β ε

∫

R/Z

∂α+iT1

∂x̄α∂t̄i
(x̄, t̄)

∂β+jQl(h̃)

∂x̄β∂t̄j
(x̄, t̄)

∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−ε
∑

i+j=b

ci,j

∑

m+n=l−1

∫

R/Z

∂a

∂x̄a

{ ∫

R/Z

∂iQm(h̃)

∂t̄i
(ȳ, t̄)

∂j

∂t̄j
Qn(

T1(x̄, t̄)− T1(ȳ, t̄)

|x̄− ȳ| ×

×%(x̄− ȳ))dȳ
}∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−
∑

α+β=a

∑

i+j=b

ci,j,α,β ε

∫

R/Z

∂α+iT2

∂x̄α∂t̄i
(x̄, t̄)

∂β+1+jQl(h̃)

∂x̄β+1∂t̄j
(x̄, t̄)

∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−
∑

i+j=b

ci,j

∑

m+n=l−1

ε

∫

R/Z

∂a

∂x̄a

{ ∫

R/Z

∂iQm(
∂h̃

∂ȳ
)

∂t̄i
(ȳ, t̄)

∂j

∂t̄j
Qn(

T2(x̄, t̄)− T2(ȳ, t̄)

|x̄− ȳ| ×

×%(x̄− ȳ))dȳ
}∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−
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−ε
∑

i+j=b

ci,j

∫

R/Z

∫

R/Z

∂ih̃

∂t̄i
(ȳ, t̄)

∂a+j

∂x̄at̄j
Ql(T3)(x̄, ȳ, t̄)dȳ

∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−ε
∑

i+j=b

ci,j

∫

R/Z

∂a

∂x̄a

{
Ql(

∫

R/Z

∂ih̃

∂t̄i
(ȳ, t̄)sgn(x̄−ȳ)

∂j

∂t̄j
T4(x̄, ȳ, t̄)dȳ)

}∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−ω

∫

R/Z

∂a+b

∂x̄at̄b
Ql(T5(x̄, t̄))

∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−
∑

i+j=b

ci,j

∫

R/Z

∂a

∂x̄a

{ ∫

R/Z

∂iT6

∂t̄i
(ȳ, t̄)

∂j

∂t̄j
Ql−1(

k̃(x̄, t̄)− k̃(ȳ, t̄)

|x̄− ȳ| %(x̄−ȳ))dȳ
}
×

×∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄−

−
∑

i+j=b

ci,j

∫

R/Z

∂a

∂x̄a

{ ∫

R/Z

∂ik̃

∂t̄i
(ȳ, t̄)

∂j

∂t̄j
Ql−1(

T6(x̄, t̄)− T6(ȳ, t̄)

|x̄− ȳ| %(x̄−ȳ))dȳ
}
×

×∂a+bQl(h̃)

∂x̄a∂t̄b
(x̄, t̄)dx̄

As before, a careful analysis of each terms, using integration by parts,
interpolation inequalities and the skew-symmetry we obtained the desired
result. We leave the details to the interested reader.

To conclude the proof of the tame estimate we use Sobolev embeddings.
Recall that we are interested in the L∞ norms, not the L2.

We have

‖h̃‖a+b . sup
i+j=a+b

‖∂j
t̄ h̃‖

Hi+1
x̄ L∞̄

t
= sup

i+j=a+b
Ei+1,j,0(t̄) . 1+‖g‖2a+b+s+1+‖k‖2a+b+s+1

and so we obtain the desired estimate.
In order to conclude the argument we still need to prove that the

inverse is smooth. Recall that the inverse map is h = V P (f)k where
V P : U ×G −→ F .

In order to prove the smoothness we will use the following

Theorem 5. Let L : (U ⊆ F )×H −→ K be a family of invertible linear
maps of Frechet spaces and let V : (U ⊆ F ) ×K −→ H be the family of
inverses. If L is smooth and V is continuous then V is smooth and we
also have

DV (f)k, g = −V (f)DL(f)V (f)k, g
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A proof can be found in [Ha].
We will apply the above theorem taking DP as the operator L. We

have already proved in chapter 4 that such operator is smooth and tame.
We have just proved in this chapter that the inverse V P is tame. In order
to complete the proof we just need to prove that V P is continuous. Recall
that we have produced the following transformations to h

h(x, t̂) = ϕ(x, t̂)h̄(x, t̂)

and

h̄(φ(x̄, t̄), t̄) = h̃(x̄, t̄)

Recall that both ϕ and φ have been proved to be smooth when con-
sidered as operators acting on g

Finally, we look at the equation for h̃, (41). The dependence of h̃ on
k and g come from the terms Tk and k, which have been proven to be
continuous when consider as operators acting on g.

Putting all this results together we conclude the continuity of our map.
This concludes the argument.

7 Appendix A: Auxiliary lemmas

In this appendix we compile some lemmas that we have used throughout
the thesis.

Lemma 1. Let f and g be smooth functions defined on R/Z. Then if
i + j = a we have

‖∂if∂jg‖L2 . ‖f‖Ha‖g‖H1 + ‖f‖H1‖g‖Ha

The following lemma provides a family of interpolation inequalities
that we use throughout the following sections.

Lemma 2. For functions defined in a compact domain in Rd, and for all
l ≤ m ≤ n

‖ψ‖Cm . ‖ψ‖
m−l
n−l

Cn ‖ψ‖
n−m
n−l

Cl

‖ψ‖Hm . ‖ψ‖
m−l
n−l

Hn ‖ψ‖
n−m
n−l

Hl

The proofs of the above two lemmas can be found in any standard text
about interpolation, see for example [Be-Lo].

We make the observation that the above lemma holds in R/Z × [0, 1]
as well.

Corollary 1. Let ψi, i = 1, ..., a be a set of smooth functions on (R/Z)d×
[0, 1] with ‖ψi‖Hl ≤ C uniformly in i. Then given mi, i = 1, ..., a with
l ≤ mi ≤ n satisfying

∑a
i=1(mi − l) = n− l we have

a∏
i=1

‖ψi‖Hmi .
a∑

i=1

‖ψi‖Hn
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Lemma 3. Let Q be an operator given by multiplication by a function that
behaves like log|k| for large k in Fourier space. Then, for f, g functions
on R/Z we have

‖Qn(f · g)‖L2 . ‖g‖L∞‖Qn(f)‖L2 + ‖∂g‖L∞‖f‖L2

Lemma 4. Let f : R×R → R, g : R×R → R and h : R×R → R be
smooth functions satisfying the following tame estimates,

‖∂a
x∂b

t f‖L∞x L∞t . 1 + ‖h‖a+b+s1

‖∂a
x∂b

t g‖L∞x L∞t . 1 + ‖h‖a+b+s2

If also ‖h‖L∞x,t
≤ C0 then there exists some r depending only on s1

and s2 so that we have

‖∂a
x∂b

t [f(x, t)g(x, t)]‖L∞x L∞t . C0(1 + ‖h‖a+b+r)

Lemma 5. Suppose f : R → R is a smooth function satisfying

‖∂k
xf(x)‖L∞ ≤ Ck

where Ck is independent of x. Now, if g : R × R → R satisfies the
tame estimate

‖∂a
x∂b

t g(x, t)‖L∞x L∞t . 1 + ‖h‖a+b+r

for some positive r then the composition f(g(x, t)) satisfies

‖∂a
x∂b

t f(g(x, t))‖L∞x L∞t . C̃0(1 + ‖h‖a+b+s)

provided ‖h‖r ≤ C̃0.

As a Corollary of the previous lemma we can obtain the following
result.

Lemma 6. Assume that g : R×R → R satisfies the tame estimate

‖∂a
x∂b

t g(x, t)‖L∞x L∞t . 1 + ‖h‖a+b+r

Assume also that g is bounded below, precisely

0 < C ≤ ‖g(x, t)‖L∞x L∞t

Then the functions 1
g and 1

g
1
2

are tame with respect to h provided

‖h‖r ≤ C̃0.

Lemma 7. Suppose f(u, v) satisfies

‖∂a
u∂b

vf‖L∞x L∞t ≤ Ca,b

with Ca,b independent of u and v. Then if g1 : R × R → R and
g2 : R×R → R satisfy the estimates

‖∂a
x∂b

t g1(x, t)‖L∞x L∞t . 1 + ‖h‖a+b+s1
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‖∂a
x∂b

t g2(x, t)‖L∞x L∞t . 1 + ‖h‖a+b+s2

we have the estimate

‖∂a
x∂b

t f(g1(x, t), g2(x, t))‖L∞x,t
. (1 + ‖h‖a+b+s1+s2)

provided ‖h‖s1 ≤ C̃0 and ‖h‖s2 ≤ C̃0.

Remark 1. The above lemmas can be easily extended to the case of func-
tions of more that two variables.

Lemma 8. If f(x, y, t) is tame and satisfies f(x, y, t) = 0 when x = y

then
f(x, y, t)

x− y is also tame.

Lemma 9. Given a smooth function P (u, v, t) such that P (u, v, t) = 0
for v in a neighborhood of u + 1

2
we have

∂a
x

∫ x+ 1
2

x

P (x, y, t)dy = −
a−1∑
j=0

da−1−j

dxa−1−j

(∂jP

∂uj
(x, x, t)

)
+

∫ x+ 1
2

x

∂aP

∂xa (x, y, t)dy
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théorème de Nash-Moser” Editions du CNRS (1991).
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