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Abstract

We consider an aggregation equation in Rd, d ≥ 2 with fractional
dissipation: ut + ∇ · (u∇K ∗ u) = −νΛγu, where ν ≥ 0, 0 < γ ≤ 2
and K(x) = e−|x|. In the supercritical case, 0 < γ < 1, we obtain new
local wellposedness results and smoothing properties of solutions. In
the critical case, γ = 1, we prove the global wellposedness for initial
data having a small L1

x norm. In the subcritical case, γ > 1, we
prove global wellposedness and smoothing of solutions with general
L1
x initial data.
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1 Introduction and main results

We consider the following aggregation equation in Rd with fractional dissi-
pation:

ut +∇ · (u∇K ∗ u) = −νΛγu, (1.1)
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where K(x) = e−|x|. Throughout this paper we will consider this specific
choice of the kernel K for convenience of presentation, although much of our
analysis can be easily extended to similar kernels K that are nonnegative,
decreasing, radial and have a Lipschitz point at the origin. In addition, the
kernel K has to satisfy the definition of acceptable potential introduced by
Laurent [21]. Here ν ≥ 0 and 0 < γ ≤ 2 are parameters controlling the
strength of the dissipation term. For any function f on Rd, the fractional
Laplacian Λγ is defined via the Fourier transform:

Λ̂γf(ξ) = |ξ|γ f̂(ξ).

Aggregation equations of the form (1.1), with more general kernels (and
other modifications) arise in many problems in biology, chemistry and popu-
lation dynamics (see [11], [29], [33], [12], [23], [28], [37], [13] and [32]). Several
earlier models similar to (1.1) have been constructed. In one space dimen-
sion, Mogilner and Edelstein-Keshet [28] considered an integro-differential
population model of the form (based on traditional population models, see
[29], [32] and [14]):

∂f

∂t
=

∂

∂x

(
D(f)

∂f

∂x

)
− ∂

∂x
(V (f)f) +B(f), (1.2)

where D(f) is the density-dependent diffusion coefficient, B(f) is the growth-
rate of the population and V (f) is the advection velocity which takes the
form

V (f) = aef + Aa(Ka ∗ f)− Arf(Kr ∗ f),

with the constants ae, Aa and Ar representing density-dependent motion,
attraction and repulsion respectively. Here the kernels Ka and Kr are called
attraction and repulsion kernels (they belong to the so called social interac-
tion kernels). Based on perturbation analysis and numerical studies, they
identified conditions when aggregation occurs and also the stability of trav-
eling swarm profiles. Other types of one-dimensional models and related
reviews can be found in [28], [12], [38], [34], [15], [16], [17], [18], [20], [30] and
[31] and the references therein. Topaz and Bertozzi [36] considered a multi-
dimensional generalization of the model (1.2). They constructed a kinematic
two-dimensional swarming model which takes the form

ut +∇ · (u (G ∗ u)) = 0, (1.3)

where the (vector-valued) kernel G is called the social interaction kernel,
which is spatially decaying. By applying the Hodge decomposition theorem
[26], one can write

G = G(I) +G(P ) := ∇⊥N +∇P,
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where N and P are scalar functions. In the language of [36], the kernel G(I)

introduces incompressible motion which leads to pattern formation (e.g. vor-
tex patterns), while the potential kernel G(P ) models repulsion or attraction
between biological organisms which in turn leads to either dispersion or ag-
gregation. In a related paper, Topaz, Bertozzi and Lewis [35] modified the
classical model of Kawasaki [20] and derived a model similar to [28], which
takes the form

ut +∇ · (uK ∗ ∇u− νu2∇u) = 0, (1.4)

where the kernel K has fast decay in space. ¿From the mathematical point
of view aggregation equations have been studied extensively (see e.g. [2],
[3], [4], [5], [6], [21], [25] and [36]). In one dimension, in the inviscid case
(i.e. ν = 0) and for general choices of the kernel K, equation (1.1) has been
considered by Bodnar and Velázquez [4]. There by an ODE argument the
authors proved the local well-posedness of (1.1) without the diffusion term
for C1 initial data. For a generic class of choices of the kernel K and initial
data, they proved by comparing with a Burgers-like dynamics, the finite time
blowup of the L∞x -norm of the solution. Burger and Di Francesco [5] studied
a class of one-dimensional aggregation equations of the form

∂tu = ∂x (u∂x(a(u)−K ∗ u+ V )) , in (0,∞)× R,

where V : R → R is a given external potential and the nonlinear diffusion
term a(ρ) is assumed to be either 0 or a strictly increasing function of ρ. In
the case of no diffusion (a ≡ 0) they proved the existence of stationary solu-
tions and investigated the weak convergence of solutions toward the steady
state. In the case of sufficiently small diffusion (a(ρ) = ερ2) they proved the
existence of stationary solutions with small support. Burger, Capasso and
Morale [6] studied the well-posedness of an equation similar to (1.1) but with
a different diffusion term:

∂tu+∇ · (u∇K ∗ u) = div(u∇u), in (0, T )× Rd.

For initial data u0 ∈ L1
x(Rd) ∩ L∞x (Rd) with u2

0 ∈ H1
x(Rd), they proved the

existence of a weak solution by using the standard Schauder’s method. More-
over the uniqueness of entropy solutions was also proved there. In connection
with the problem we study here, Laurent [21] has studied in detail the case
of (1.1) without the diffusion term (i.e. ν = 0 ) and proved several local
and global existence results for a class of kernels K with different regularity.
More recently Bertozzi and Laurent [2] have obtained finite-time blowup of
solutions for the case of (1.1) without diffusion (i.e. ν = 0) in Rd(d ≥ 2)
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assuming compactly supported radial initial data with highly localized sup-
port. Li and Rodrigo [25] studied the case of (1.1) with ν > 0 and proved
finite time blowup in the case 0 < γ < 1 and global wellposedness in the case
γ > 1. Also, Bertozzi and Brandman [1] have recently constructed L1

x ∩ L∞x
weak solutions to (1.1) in Rd (d ≥ 2) with no dissipation (ν = 0) by following
Yudovich’s work on incompressible Euler equations [39]. We refer the inter-
ested reader to [34], [15], [16], [17], [18], [20], [30] and [31] and the references
therein for some further rigorous studies.

Aggregation equations and other equations similar to (1.1) with fractional
diffusion have been studied in the literature (see [7], [10], [9] and [24]). While
the case γ = 2 corresponds to the usual diffusion, the regime 0 < γ < 2
corresponds to the so-called anomalous diffusion which in probabilistic terms
has a connection with stochastic equations driven by Lévy α-stable flights
1 . As was mentioned in [7], an important technical difficulty lies in the
fact that non-Gaussian Lévy α-stable (0 < α < 2) semigroups have densities
which decay only at an algebraic rate |x|−d−α as |x| → ∞ while the Gaussian
kernel α = 2 decays exponentially fast. In equation (1.1), the strength of
the dissipation term is controlled by two parameters ν and γ. For any fixed
ν > 0, given the natural scales of the equation (1.1) we have 3 different ranges
to the parameter γ. Namely 0 ≤ γ < 1, γ = 1 and 1 < γ ≤ 2, known as the
supercritical, critical and subcritical regimes. The choice of the three regimes
can be motivated as follows. Since the kernel ∇K = − x

|x|e
−|x| scales as x

|x|
near the origin, heuristically our equation (1.1) which is not scale invariant
can be approximated by the homogeneous version

ut +∇ ·
(
u
x

|x|
∗ u
)

= −νΛγu. (1.5)

Equation 1.5 has a scaling symmetry in the sense that if u is a solution, then
for any λ > 0,

uλ(t, x) = λd+γ−1u(λγt, λx)

is also a solution with initial data uλ(0, x) = λd+γ−1u0(λx). Here d is the
space dimension where we are considering the problem. For positive initial
data, it can be shown that the L1

x norm of the solutions of equation (1.1) is
preserved for all time. The critical threshold of γ is then determined by the
relation

‖uλ‖L∞t L1
x

= ‖u‖L∞t L1
x
.

1We choose the letter α to be consistent with the standard notation. One should regard
γ = α here
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Solving this equations yields, γ = 1 which is then referred to as the critical
case. For γ > 1, the a priori control of the L1

x norm then allows us to prove
the global well posedness of the solution (with L1

x initial data, see Theorem
1.5 below) and hence the name subcritical. In the supercritical case γ < 1,
the existence of a class of finite time blowing up solutions is constructed in
our previous [25].

We now state our main results. The first theorem gives the existence and
smoothing of solutions to (1.1) in the critical and supercritical cases. Note
that In the inviscid case (i.e. ν = 0) the result is an improvement of [2] where
the local wellposedness is proved for Hs

x (s ≥ 2) initial data with s being an
integer. By obtaining more refined estimates, we have

Theorem 1.1 (LWP and smoothing - critical and supercritical ). Let ν ≥ 0
and 0 < γ ≤ 1. Assume the initial data u0 ∈ Hs

x with s ≥ 1, s ∈ R.
Then there exists a positive time T = T (‖u0‖H1

x
) and a unique solution u ∈

C([0, T );Hs
x)∩C1([0, T );Hs−1

x ). Furthermore if ν > 0, then due to smoothing
effect we have u ∈ C((0, T );Hs′

x ) for any s′ ≥ s.

Corollary 1.2 (Blowup or continuation of solutions). Let u0 ∈ Hs
x(Rd),

s ≥ 1. Assume u ∈ C([0, T ), Hs
x) is the maximal-lifespan solution obtained

in Theorem 1.1. Then either T = +∞ in which case we have a global solution
or T <∞ and we have

lim
t→T

∫ t

0

‖u(s)‖Lqx(Rd)ds = +∞,

where q can be any number satisfying:

2 ≤ q ≤ 2d
d−2s

, if d ≥ 3 and s < d
2

2 ≤ q <∞, if d ≥ 3 and s = d
2

2 ≤ q ≤ ∞, if d ≥ 3 and s > d
2

2 < q <∞, if d = 2 and s = 1

2 < q ≤ ∞, if d = 2 and s > 1.

Corollary 1.3 (L1
x conservation and positivity). Let u0 ∈ Hs

x, s ≥ 1. As-
sume u ∈ C([0, T ), Hs

x) is the corresponding maximal-lifespan solution. If
u0 ≥ 0 a.e., then u(t) ≥ 0 a.e. for any 0 ≤ t < T . If u0 ∈ L1

x, then
u ∈ C([0, T ), L1

x). If in addition u0 ≥ 0, then ‖u(t)‖L1
x

= ‖u0‖L1
x

for any
0 ≤ t < T .

For the critical case γ = 1, we have global wellposedness if ‖u0‖L1
x

is
small.
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Theorem 1.4 (GWP in the critical case when ‖u0‖L1
x

is small). Let ν > 0
and γ = 1. Assume u0 ≥ 0 and u0 ∈ L1

x ∩ H1
x. There exists a constant

C > 0, depending only on d, such that if ‖u0‖L1
x
< ν

C
then the local solution

in Theorem 1.1 is global.

The last theorem establishes higher regularity of solutions in the subcrit-
ical case.

Theorem 1.5 (Higher regularity in the subcritical case). Let ν > 0 and
1 < γ ≤ 2. Assume the initial data u0 ∈ L1

x and u0 ≥ 0. Then there
exists a unique global solution u ∈ C([0,∞), L1

x) to (1.1). Also u(t) ≥ 0 and
‖u(t)‖L1

x
= ‖u0‖L1

x
for any t ≥ 0. Furthermore due to the smoothing effect

introduced by the viscosity term, u has higher regularity at any t > 0, i.e.
u ∈ C((0,∞),W k,1

x ) for any k ≥ 1.

Outline of the paper. This paper is organized as follows. In Section 2 we
collect some basic estimates and preparatory lemmas. Section 3 is devoted to
the proof of local wellposedness and smoothing in Sobolev spaces (Theorem
1.1). The proofs of Corollary 1.2 and Corollary 1.3 are in Section 4. Section
5 is devoted to the proof of the critical case Theorem 1.4. Finally, the higher
regularity in the subcritical case (Theorem 1.5) is proved in Section 6.

2 Preliminaries

Throughout the paper we denote by Lpx = Lpx(Rd) (1 ≤ p ≤ ∞) the usual
Lebesgue space on Rd. For s > 0, s being an integer and 1 ≤ p ≤ ∞,
W s,p
x = W s,p

x (Rd) denotes the usual Sobolev space

W s,p
x =

{
f ∈ S ′(Rd) : ‖f‖W s,p =

∑
0≤j≤s

‖∂jxf‖Lpx(Rd) <∞
}
.

When p = 2, we denote Hm
x = Hm

x (Rd) = W 2,p
x (Rd) and ‖ · ‖Hm

x
as its norm.

We will also use the Sobolev space of fractional power Hs
x(Rd) for fraction s,

which is defined via the Fourier transform:

‖f‖Hs = ‖(1 + |ξ|)sf̂(ξ)‖L2
ξ
.

For any s ≥ 0, the space CW ([0, T );Hs
x(Rd)) consists of functions which are

continuous in the weak topology of Hs
x, i.e. u ∈ CW ([0, T );Hs

x(Rd)) if and
only if for any φ ∈ Hs

x(Rd), the scalar product (φ, u(t))s is a continuous
function of t on [0, T ), where

(φ, u)s =

∫
Rd
φ̂(ξ)û(ξ)(1 + |ξ|)2sdξ.
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Finally, for any two quantities X and Y , we use X . Y or Y & X
whenever X ≤ CY for some constant C > 0 (that may depend on the
dimension). A constant C with subscripts implies the dependence on these
parameters. We use X ∼ Y if both X . Y and Y . X holds.

2.1 Basic harmonic analysis

Let ϕ(ξ) be a radial bump function supported in the ball {ξ ∈ Rd : |ξ| ≤ 11
10
}

and equal to 1 on the ball {ξ ∈ Rd : |ξ| ≤ 1}. For each number N ∈ Z, we
define the Fourier multipliers

P̂≤Nf(ξ) := ϕ(2−Nξ)f̂(ξ)

P̂>Nf(ξ) := (1− ϕ(2−Nξ))f̂(ξ)

P̂Nf(ξ) := ψ(2−Nξ)f̂(ξ) := (ϕ(2−Nξ)− ϕ(2−N+1ξ))f̂(ξ)

and similarly P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N .

Lemma 2.1 (Bernstein estimates). For 1 ≤ p ≤ q ≤ ∞,∥∥|∇|±sPNf∥∥Lpx(Rd)
∼ 2±sN‖PNf‖Lpx(Rd),

‖P≤Nf‖Lqx(Rd) . 2( d
p
− d
q

)N‖P≤Nf‖Lpx(Rd),

‖PNf‖Lqx(Rd) . 2( d
p
− d
q

)N‖PNf‖Lpx(Rd).

Lemma 2.2 (Commutator estimate). For any f, g ∈ S(Rd), consider the
commutator

[PkD, f ]g = PkD(fg)− fPkDg.

We have for any 1 ≤ p ≤ ∞,

‖[PkD, f ]g‖Lpx . ‖Df‖L∞x ‖g‖Lpx .

Proof. We have

|(PkD(fg))(x)− f(x)(PkDg)(x)| =

=

∣∣∣∣∫
Rd

2(d+1)k(Dψ̂)(2k(x− y))g(y)(f(x)− f(y))dy

∣∣∣∣ ≤
≤‖Df‖L∞x

∫
R2

2dk2k|x− y||(Dψ̂)(2k(x− y))||g(y)|dy
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Define ψ1(x) = |x|(Dψ̂)(x), by Minkowski’s inequality we have

‖[PkD, f ]g‖Lpx . ‖Df‖L∞x ‖ψ1‖L1
x
‖g‖Lpx . ‖Df‖L∞x ‖g‖Lpx .

Lemma 2.3. Let s ≥ 0. Then∑
k>0

22ks

∣∣∣∣∫
Rd
PkD(fu)Pkudx

∣∣∣∣ .
. ‖u‖L2

x
(‖P>−10u‖2

Ḣs
x

+ ‖P>−10f‖2

Ḣ
s+1+ d

2
x

) + ‖Df‖L∞x ‖P>−10u‖2
Ḣs
x
. (2.1)

Proof. By frequency localization, we have

LHS of (2.1) .
∑
k>0

22ks

∣∣∣∣∫
Rd
PkD(fu≤k−6)Pkudx

∣∣∣∣+
+
∑
k>0

22ks

∣∣∣∣∫
Rd
PkD(fu≥k+6)Pkudx

∣∣∣∣+
+
∑
k>0

22ks

∣∣∣∣∫
Rd
PkD(fu[k−5,k+5])Pku[k−5,k+5]dx

∣∣∣∣ =

=: (A) + (B) + (C).

Estimate of (A). By frequency localization and Bernstein’s inequalities,
we have

(A) =
∑
k>0

22ks

∣∣∣∣∫
Rd
PkD(f[k−3,k+3]u≤k−6)Pkudx

∣∣∣∣ =

=
∑
k>0

22ks

∣∣∣∣∫
Rd
f[k−3,k+3]u≤k−6P

2
kDudx

∣∣∣∣ .
.
∑
k>0

22ks‖f[k−3,k+3]‖L∞x ‖P
2
kDu‖L2

x
‖u‖L2

x
.

. ‖u‖L2
x

∑
k>0

22ks‖Df[k−3,k+3]‖L∞x ‖Pku‖L2
x

.

. ‖u‖L2
x

(∑
k>0

22ks‖Pku‖2
L2
x

+
∑
k>0

22ks · 2kd‖Df[k−3,k+3]‖2
L2
x

)
.

. ‖u‖L2
x

(
‖P>−10u‖2

Ḣs
x

+ ‖P>−10f‖2

Ḣ
s+1+ d

2
x

)
.

This will be sufficient to prove the estimate.
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Estimate of (B). By frequency localization, we have

(B) .
∑
k>0

∑
j≥k+6, j′≥k+3
|j−j′|≤2

22ks

∣∣∣∣∫
Rd
PkD(fj′uj)Pkudx

∣∣∣∣ .
.
∑
k>0

∑
j≥k+6, j′≥k+3
|j−j′|≤2

22ks

∣∣∣∣∫
Rd
fj′ujP

2
kDudx

∣∣∣∣ .
.
∑
k>0

∑
j≥k+6, j′≥k+3
|j−j′|≤2

22ks‖fj′‖L∞x ‖uj‖L2
x
‖Duk‖L2

x
.

. ‖u‖L2
x

∑
k>0

∑
j≥k+6, j′≥k+3
|j−j′|≤2

22ks‖Dfj′‖L∞x ‖uj‖L2
x

.

. ‖u‖L2
x

∑
j≥6, j′≥3
|j−j′|≤2

(
22j′s‖Dfj′‖2

L∞x
+ 22js‖uj‖2

L2
x

)
.

. ‖u‖L2
x

(∑
j′≥6

22j′(s+ d
2

)‖Dfj′‖2
L2
x

+
∑
j≥6

22js‖uj‖2
L2
x

)
.

. ‖u‖L2
x

(
‖P>−10f‖2

Ḣ
s+ d

2 +1
x

+ ‖P>−10u‖2
Ḣs
x

)
.

This will suffice.
Estimate of (C). Note first that (C) can be rewritten as

(C) .
∑
k>0

22ks

∣∣∣∣∫
Rd

[PkD, f ]u[k−5,k+5]Pku[k−5,k+5]dx

∣∣∣∣+
+
∑
k>0

22ks

∣∣∣∣∫
Rd
fDPku[k−5,k+5]Pku[k−5,k+5]dx

∣∣∣∣ .
By Lemma 2.2 and Bernstein’s inequalities, we have

(C) .
∑
k>0

22ks‖Df‖L∞x ‖u[k−5,k+5]‖2
L2
x
+

+
∑
k>0

22ks

∣∣∣∣∫
Rd

(Df)|Pku[k−5,k+5]|2dx
∣∣∣∣ .

. ‖Df‖L∞x ‖P>−10u‖2
Ḣs
x
.

This finishes the proof of the lemma.
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We need the following lemma which will be particularly useful in estimat-
ing the Hs

x norm of the product fg when the function g has better regularity
than f . Note also that the lemma is only effective in the regime s ≤ d

2
since

Hs
x(Rd) is an algebra when s > d

2
.

Lemma 2.4. Let s ≥ 0. Then for any f , g ∈ S(Rd), we have

‖fg‖Hs
x

. ‖f‖Hs
x
‖g‖L∞x + ‖f‖L2

x
‖P≥0g‖

Ḣ
s+ d

2
x

. (2.2)

Proof. The inequality is trivial for s = 0. Assume then s > 0. It suffices
to consider the high frequency part of the Hs

x norm since the low frequency
part is already controlled by the L2

x norm which in turn is controlled by the
RHS of (2.2). To this end we compute

‖P&0(fg)‖2
Ḣs
x

.
∑
k>0

22ks‖Pk(fg)‖2
L2
x
.

By frequency localization, we have

Pk(fg) = Pk(f<k−3g[k−2,k+2]) + Pk(f[k−2,k+5]g≤k+9)+

+ Pk(f≥k+6g≥k+3).

By the triangle inequality, we then have

‖P&0(fg)‖2
Ḣs
x

.
∑
k>0

22ks‖Pk(f<k−3g[k−2,k+2])‖2
L2
x
+

+
∑
k>0

22ks‖Pk(f[k−2,k+5]g≤k+9)‖2
L2
x
+

+
∑
k>0

22ks‖Pk(f≥k+6g≥k+3)‖2
L2
x

=

=: (A) + (B) + (C).

We estimate each terms separately.
Estimate of (A). By Bernstein’s inequality, we have

(A) .
∑
k>0

22ks2kd‖f<k−3g[k−2,k+2]‖2
L1
x

.

.
∑
k>0

22ks2kd‖f‖2
L2
x
‖g[k−2,k+2]‖2

L2
x

.

. ‖f‖2
L2
x
‖P&0g‖2

Ḣ
s+ d

2
x

.

This will suffice.
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Estimate of (B). This is rather straightforward. We have

(B) .
∑
k>0

22ks‖f[k−2,k+5]‖2
L2
x
‖g‖2

L∞x
.

. ‖f‖2
Hs
x
‖g‖2

L∞x
.

This is again sufficient.
Estimate of (C). By frequency localization, we have

(C) .
∑
k>0

∑
j≥k+6, j′≥k+3
|j−j′|≤2

22ks‖fjgj′‖2
L2
x

.
∑

j≥6, j′≥3
|j−j′|≤2

22js‖fj‖2
L2
x
‖g‖2

L∞x

. ‖f‖2
Hs
x
‖g‖2

L∞x
,

where in the second inequality we have interchanged the sum over j and k
and used the simple inequality

∑
k<j 22ks . 22js for s > 0. This ends the

estimate of (C) and the proof of the lemma is finished.

The following positivity lemma is elementary. For the sake of complete-
ness we state the simplest version that we shall need.

Lemma 2.5 (Positivity lemma). Let 0 ≤ γ ≤ 2, T > 0. Denote ΩT =
(0, T ] × Rd. Let u ∈ C1,2

t,x (ΩT ) ∩ C0
t,x(Ω̄T ) ∩ Lpt,x(ΩT ) for some 1 ≤ p < ∞.

Assume g : Rd → R, g ∈ C(Rd), f : ΩT → Rd and f ∈ C0,1
t,x (ΩT ) are given

functions and the following conditions hold.

1. u satisfies the following inequality pointwise:{
∂tu+∇ · (fu) ≥ −νΛγu, (t, x) ∈ ΩT ,

u(0, x) = g(x), x ∈ R2.

Here ν ≥ 0 is the viscosity coefficient.

2. u together with its derivatives are bounded: there exists a constant M1 >
0 such that

sup
ΩT

(|∂tu|+ |Du|+ |D2u|) + sup
Ω̄T

|u| ≤M1 <∞.

3. g ≥ 0 and there exists a constant M2 > 0 such that

sup
ΩT

|div(f)| < M2 <∞.
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Under all the above assumptions, we have u ≥ 0 in Ω̄T .

Proof. This proof is rather standard. We will argue by contradiction. Con-
sider v(t, x) = u(t, x)e−2M2t and assume that there exists a constant δ > 0
such that

inf
(t,x)∈ΩT

v(t, x) = −δ < 0.

Such a constant δ exists since by our assumption v is bounded. It is not
difficult to see that the infimum must be attained at some (t∗, x∗) ∈ Ω̄T .
If it were not true, then there exist (tn, xn) becoming unbounded such that
v(tn, xn) → −δ as n → ∞ which is a contradiction with the assumption
that u ∈ Lp(ΩT ) and u has bounded derivatives in (t, x). It is evident that
0 < t∗ ≤ T . But then we compute

(∂tv)(t∗, x∗) = −2M2v(t∗, x∗) + (∂tu)(t∗, x∗)e−2M2t∗

≥ (−2M2 − div(f))v(t∗, x∗)− ν(Λγv)(t∗, x∗).

Since v attains its infimum at (t∗, x∗), we have, for γ < 2,

− (Λγv)(t∗, x∗)

=Cγ,d P.V.

∫
Rd

v(t∗, y)− v(t∗, x∗)

|y − x∗|d+γ
dy ≥ 0, (2.3)

where Cγ,d is a positive constant. The integral representation (2.3) is valid
since we are assuming u is bounded and has bounded derivatives up to second
order. For γ = 2, notice that 4v(t∗, x∗) > 0 at a minimum. We now obtain

(∂tv)(t∗, x∗) ≥M2δ > 0.

But this is obviously a contradiction with the fact that v attains its infimum
at (t∗, x∗). The lemma is proved.

Finally we will need the following fix-point lemma.

Lemma 2.6 (Two-normed fixed point lemma). Assume that Z is a Banach
space endowed with the norm ‖ · ‖X and the seminorm ‖ · ‖Y . Define the
norm ‖ · ‖Z by

‖ · ‖Z = max{‖ · ‖X , ‖ · ‖Y }.

Let B : Z × Z → Z be a bilinear map such that for any x1, x2 ∈ Z, we have

‖B(x1, x2)‖Z ≤ C(‖x1‖Z‖x2‖X + ‖x1‖X‖x2‖Z),
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and

‖B(x1, x2)‖X ≤ C‖x1‖X‖x2‖X .

Then for any y ∈ Z such that

8C‖y‖X < 1,

the equation x = y +B(x, x) has a solution in Z with ‖x‖Z ≤ 2‖y‖Z. More-
over the solution is unique in the ball {z : ‖z‖X ≤ 2

C
}.

Proof. See for example [25].

3 Proof of Theorem 1.1

3.1 Uniqueness of solutions in C([0, T ), H1
x)

We begin with the proof of uniqueness. Let T > 0 and assume u1, u2 ∈
C([0, T ), H1

x) are two solutions to (1.1) with the same initial data u0 ∈ H1
x.

Let w = u1 − u2. Then w solves the equation

∂tw +∇ · (w∇K ∗ u1) +∇ · (u2∇K ∗ w) = −νΛγw. (3.1)

We first show that ∂tw ∈ C([0, T ), L2
x). Indeed let 0 ≤ t1 < t2 < T be

arbitrary. We then compute

‖(∂tw)(t1)− (∂tw)(t2)‖L2
x
≤

≤ ‖∇·((w(t1)−w(t2))∇K ∗u1(t1))‖L2
x
+‖∇·(w(t2)∇K ∗(u1(t1)−u1(t2)))‖L2

x

+‖∇·((u2(t1)−u2(t2))∇K∗w(t1))‖L2
x
+‖∇·(u2(t2)∇K∗(w(t1)−w(t2)))‖L2

x

+ν‖(Λγw)(t1)− (Λγw)(t2)‖L2
x

.

. ‖w(t1)− w(t2)‖H1
x

(
‖u1(t1)‖H1

x
+ ‖u2(t1)‖H1

x
+ ν
)

+‖u1(t1)− u1(t2)‖H1
x
‖w(t2)‖H1

x
+ ‖u2(t1)− u2(t2)‖H1

x
‖w(t1)‖H1

x
→ 0,

as we take t2 → t1 with t1 being fixed. Here we have used the uniform
boundedness of the H1

x norm of u1, u2 on the compact time interval [0, 2t1].
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Since t1 is arbitrary, we have showed ∂tw ∈ C([0, T ), L2
x). Next, using again

(3.1), we obtain

d

dt
‖w(t)‖2

L2
x

.
∫

Rd
|∆K ∗ u1||w(t, x)|2dx+

∫
Rd
|∇ · u2||∇K ∗ w||w(t, x)|dx

+

∫
Rd
|u2(t, x)||∆K ∗ w||w(t, x)|dx .

. (‖∆K ∗ u1‖L∞x + ‖u2‖H1
x
)‖w(t)‖2

L2
x
+

+ ‖u2(t)‖Lpx‖∆K ∗ w‖
L

2p
p−2
x

‖w(t)‖L2
x
. (3.2)

Here we choose the number p such that 2 < p < ∞ if d = 2 and p = 2 if
d ≥ 3 ( 2p

p−2
= ∞ if p = 2). By Youngs’s inequality and Sobolev embedding

we have

‖u2(t)‖Lpx‖∆K ∗ w‖
L

2p
p−2
x

.

.‖u2(t)‖H1
x
‖∆K‖

L
p
p−1
x

‖w(t)‖L2
x

.

.‖u2(t)‖H1
x
‖w(t)‖L2

x
.

Plugging this estimate back into (3.2), we obtain

d

dt
‖w(t)‖2

L2
x

. (‖u1(t)‖H1
x

+ ‖u2(t)‖H1
x
)‖w(t)‖2

L2
x
. (3.3)

Let δ > 0 be a small number and define

M = max
0≤t≤T−δ

(‖u1(t)‖H1
x

+ ‖u2(t)‖H1
x
).

Clearly M is finite since u1, u2 ∈ C([0, T − δ], H1
x). By (3.3), using the fact

that ∂tw ∈ C([0, T ), L2
x) and a Gronwall argument, we conclude that there

exists T ′ = T ′(M) > 0 sufficiently small such that

max
0≤t≤T ′

‖w(t)‖L2
x
≤ 1

2
max

0≤t≤T ′
‖w(t)‖L2

x
.

This shows that w(t) ≡ 0 on [0, T ′]. A finite iteration of the argument shows
that w(t) ≡ 0 on [0, T − δ]. Since δ is arbitrary, we conclude w(t) ≡ 0 on the
whole time interval [0, T ). The uniqueness is proved.

Remark 3.1. Uniqueness of solutions can be proved in larger functional spaces.
For example uniqueness can be shown in the space C([0, T ), L2

x)∩CW ([0, T ), H1
x).

To see this, let u1, u2 ∈ C([0, T ), L2
x) ∩ CW ([0, T ), H1

x) be two solutions cor-
responding to the same initial data u0 ∈ H1

x. Let δ > 0 be sufficiently
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small but arbitrary. Since u1, u2 are both weakly continuous on [0, T − δ],
Banach-Steinhaus theorem implies that

max
0≤t≤T−δ

(‖u1(t)‖H1
x

+ ‖u2(t)‖H1
x
) ≤M, (3.4)

where M > 0 is a finite number. Let w = u1 − u2. By (3.1), we have

1

2

d

dt
‖w(t)‖2

L2
x

=
1

2

∫
Rd

(∆K ∗ u1)|w(t, x)|2dx

−
∫

Rd
∇ · (u2∇K ∗ w)w(t, x)dx− ν‖w(t)‖2

Ḣ
γ
2
x

. (3.5)

It is not difficult to show, by using the weak continuity of u1 and u2, that
the RHS of (3.5) defines a continuous function of t (For example, by the fact
that u1, u2 ∈ C([0, T − δ], L2

x), (3.4) and interpolation, one can show u1,
u2 ∈ C([0, T − δ), Hr

x) for any r < 1. In particular ‖w(t)‖
Ḣ
γ
2
x

is a continuous

function of t for 0 ≤ γ < 2). This shows that d
dt

(
‖w(t)‖2

L2
x

)
∈ C([0, T −

δ]). Having established this and (3.4), the rest of the argument now follows
exactly the same lines as in the preceding proof, completing the argument
for uniqueness.

3.2 Basic a priori estimates

Throughout this subsection we assume that u is a smooth solution and derive
some basic a priori estimates.

Step 1: L2
x estimate. This is rather straightforward. We have

1

2

d

dt
‖u(t)‖2

L2
x

= −
∫

Rd
∇ · (u∇K ∗ u)dx− ν

∫
Rd

Λγuudx .

.
∫

Rd
(∆K ∗ u)|u|2dx .

. ‖∆K ∗ u‖L∞x ‖u(t)‖2
L2
x

. (3.6)

. ‖u(t)‖H1
x
‖u(t)‖2

L2
x
. (3.7)

This finishes the L2
x estimate.

Step 2: Ḣs
x estimate, s ≥ 1. Since the low frequency part of Ḣs

x norm is
controlled by its L2

x norm, it suffices for us to consider the Y s (semi)norm of
u which is defined as

‖u‖2
Y s =

∑
k>0

22ks‖Pku‖2
L2
x
.
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We shall obtain the a priori estimate of the Y s norm of u. Applying the
projectors Pk to both sides of (1.1), multiplying by Pku and integrating, we
obtain

1

2

d

dt
‖Pku(t)‖2

L2
x

+ ν‖PkΛ
γ
2 u(t)‖2

L2
x

= −
∫

Rd
Pk∇ · (u∇K ∗ u)Pkudx.

Summing over k > 0 with the weight 22ks, we get

1

2

d

dt
‖u(t)‖2

Y s + ν
∑
k>0

22ks‖PkΛ
γ
2 u(t)‖2

L2
x

.

.
∑
k>0

22ks

∣∣∣∣∫
Rd
Pk∇ · (u∇K ∗ u)Pkudx

∣∣∣∣ .
.‖u(t)‖L2

x

(
‖P>−10u(t)‖2

Ḣs
x

+ ‖P>−10(DK ∗ u)‖2

Ḣ
s+1+ d

2
x

)
+

+ ‖D2K ∗ u‖L∞x ‖P>−10u(t)‖2
Ḣs
x
,

where the last inequality follows from Lemma 2.3. Now since

‖P>−10(DK ∗ u)‖
Ḣ
s+1+ d

2
x

.

.‖P>−10|∇|1−
d
2u‖Ḣs

x
.

.‖P>−10u‖Ḣs
x
,

we obtain

1

2

d

dt
‖u(t)‖2

Y s + ν
∑
k>0

22ks‖PkΛ
γ
2 u(t)‖2

L2
x

.

.
(
‖u(t)‖L2

x
+ ‖D2K ∗ u(t)‖L∞x

)
‖P>−10u(t)‖2

Ḣs
x

. (3.8)

.‖u(t)‖H1
x
‖P>−10u(t)‖2

Ḣs
x
. (3.9)

Step 3: Conclusion of the estimates. Adding together (3.7), (3.9) and
taking s = 1, we get

1

2

d

dt
Z(t) . Z(t)

3
2 ,

where

Z(t) = ‖u(t)‖2
L2
x

+ ‖u(t)‖2
Y 1 ,

and we have used the fact that

‖u(t)‖2
Ḣ1
x

.
∑
k∈Z

22k‖Pku(t)‖2
L2
x

. ‖u(t)‖2
L2
x

+ ‖u(t)‖2
Y 1 .
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Now it is easy to see that there exists a constant c = c(d) > 0 such that if

T ≤ c

‖u0‖H1
x

, (3.10)

then we have

sup
0≤t≤T

Z(t) ≤ 2‖u0‖2
H1
x
,

which also implies

sup
0≤t≤T

‖u(t)‖H1
x
≤ C‖u0‖H1

x
.

This gives the needed H1
x control on the time interval [0, T ]. Plugging this

estimate back into (3.9), we get

1

2

d

dt
‖u(t)‖2

Y s . ‖u0‖H1
x

(
‖u(t)‖2

Y s + ‖u(t)‖2
L2
x

)
. ‖u0‖H1

x
‖u(t)‖2

Y s + ‖u0‖3
H1
x
.

A simple Gronwall argument yields

sup
0≤t≤T

‖u(t)‖2
Y s ≤ eC1T‖u0‖2

Y s + C2T,

where C1 = C1(‖u0‖H1
x
) and C2 = C2(‖u0‖H1

x
) are positive constants. Using

this estimate and integrating in time in (3.9), we also get, for some constant
C3 = C3(ν, ‖u0‖Hs

x
) > 0, that

ν

∫ T

0

‖u(t)‖2

H
s+

γ
2

x

dt ≤ C3(ν, ‖u0‖Hs
x
).

for T as in (3.10).
To summarize, we have obtained the following a priori estimates. There

exist constants c = c(d) > 0, D1 = D1(‖u0‖Hs
x
) > 0, D2 = D2(‖u0‖H1

x
) > 0

and D3 = D3(‖u0‖H1
x
) > 0, such that for all T with

T ≤ c

‖u0‖H1
x

,

we have

sup
0≤t≤T

‖u(t)‖2
Hs
x

+ ν

∫ T

0

‖u(t)‖2

H
s+

γ
2

x

dt ≤ D1, (3.11)

and

sup
0≤t≤T

‖u(t)‖2
Y s ≤ eD2T‖u0‖2

Y s +D3T. (3.12)
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Remark 3.2. Here for the control of the Y s (semi)norm, the second estimate
(3.12) is more precise than the mere boundedness in (3.11). We shall need
(3.12) later to show the strong continuity of u in the Hs

x norm at t = 0 (see
(3.17) below).

3.3 Contraction arguments.

We assume the initial data u0 ∈ Hs
x for some s ≥ 1. Denote u1(t, x) := u0

and let un+1, n ≥ 1 solves{
∂tun+1 +∇ · (un+1∇K ∗ un) = −νΛγun+1

un+1(0) = u0.
(3.13)

We shall show that un forms a Cauchy sequence and has a limit. The proof
is divided into several steps.

Step 1: Properties of un and uniform estimates. By an induction on n,
it is not difficult to show that un ∈ C([0,∞), Hs

x) for all n ≥ 1. Furthermore
if ν > 0, then due to smoothing we have un ∈ C((0,∞), Hs′

x ) for any s′ ≥ s.
By using the a priori estimates derived earlier (cf. (3.11), (3.12)), we have
that there exists a constant c = c(d) > 0 sufficiently small such that if

0 < T <
c

‖u0‖H1
x

,

then for any n ≥ 2,

sup
0≤t≤T

‖un(t)‖2
Hs
x

+ ν

∫ T

0

‖un(t)‖2

H
s+

γ
2

x

dt ≤ D1, (3.14)

and for all t ≤ T ,

‖un(t)‖2
Y s ≤ eD2t‖u0‖2

Y s +D3t. (3.15)

Here D1 = D1(‖u0‖Hs
x
), D2 = D2(‖u0‖H1

x
) and D3 = D3(‖u0‖H1

x
) are positive

constants.

Step 2: Strong contraction in C([0, T ′), L2
x) for some T ′ ≤ T . This step

is necessary since we want to pass to the limit in the approximation scheme
(3.13). Now let wn+1 = un+1 − un. By (3.13), a direct calculation gives

∂twn+1 +∇ · (wn+1∇K ∗ un) +∇ · (un∇K ∗ wn) = −νΛγwn+1.
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We then have

d

dt
‖wn+1(t)‖2

L2
x

= −
∫

Rd
∇ · (wn+1∇K ∗ un)wn+1dx

−
∫

Rd
∇ · (un∇K ∗ wn)wn+1dx− ν

∫
Rd
wn+1Λγwn+1dx .

. ‖∆K ∗ un‖L∞x ‖wn+1(t)‖2
L2
x

+ ‖∇un‖L2
x
‖∇K ∗ wn‖L∞x ‖wn+1‖L2

x

+ ‖un‖Lpx‖∆K ∗ wn‖
L

2p
p−2
x

‖wn+1‖L2
x
.

Here we choose the number p such that 2 < p < ∞ if d = 2 and p = 2
if d ≥ 3 ( 2p

p−2
= ∞ if p = 2). With this choice of p, we have by Sobolev

embedding that

‖un‖Lpx‖∆K ∗ wn‖
L

2p
p−2
x

.‖un‖H1
x
‖wn‖L2

x
.

Then we obtain

d

dt
‖wn+1(t)‖2

L2
x

. ‖un‖H1
x
‖wn+1(t)‖2

L2
x

+ ‖un‖H1
x
‖wn(t)‖L2

x
‖wn+1(t)‖L2

x

. ‖un(t)‖H1
x
‖wn+1(t)‖2

L2
x

+ ‖un(t)‖H1
x
‖wn(t)‖2

L2
x
,

where the last step follows from Cauchy-Schwartz. By using the uniform
estimate (3.14) and a Gronwall argument, we conclude that for some T ′ ≤ T
sufficiently small but depending only on ‖u0‖H1

x
, it holds that

sup
0≤t≤T ′

‖wn+1(t)‖L2
x
≤ δ sup

0≤t≤T ′
‖wn(t)‖2

L2
x
, ∀n ≥ 2.

Here 0 < δ < 1 is a constant independent of n. This estimate shows that
un is a Cauchy sequence in C([0, T ′), L2

x). Therefore there exists a limit
u ∈ C([0, T ′), L2

x) such that un → u in C([0, T ′), L2
x) as n tends to infinity.

Step 3: properties of the limiting function u. By using the interpolation
inequality

‖f‖Hs′
x

. ‖f‖
s−s′
s

L2
x
‖f‖

s′
s
Hs
x
,

which holds for any 0 ≤ s′ ≤ s, and using (3.14), we conclude that un → u
also in C([0, T ′), Hs′

x ) for any s′ < s as n→∞. Therefore u ∈ C([0, T ′), Hs′
x )

for any s′ < s. It is clear that u ∈ CW ([0, T ′), Hs
x). We still have to show

u ∈ C([0, T ′), Hs
x). By the weak continuity of u we only have to show that
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‖u(t)‖Hs
x

is a continuous function of t. First we show the right continuity at
t = 0, i.e.

lim
t→0
‖u(t)‖Hs

x
= ‖u0‖Hs

x
. (3.16)

By the weak continuity we have lim inft→0 ‖u(t)‖Hs
x
≥ ‖u0‖Hs

x
. By using the

uniform estimate (3.15), we obtain

lim sup
t→0

‖u(t)‖Hs
x
≤ ‖u0‖Hs

x
. (3.17)

Therefore (3.16) is established. It remains for us to verify the strong conti-
nuity of u at any other 0 < t0 < T ′. To this end we discuss two cases. The
first case is the inviscid case ν = 0. We take u(t0) as initial data and denote
by ut0(t) the corresponding solution. By repeating previous constructions
we have ut0 ∈ C([0, T ′′), L2

x) ∩ CW ([0, T ′′), Hs
x) for some T ′′ > 0. One can

then show the strong continuity at t = 0 for the function ut0(t). By Remark
3.1, ut0(·) must coincide with u(t0 + ·) and therefore strong continuity at
t = t0 is proved. 2 The second case is the viscous case ν > 0. By (3.14)

we have u ∈ L2
tH

s+ γ
2

x ((0, T ′) × Rd). Therefore for any δ > 0 there exists t′0
with t0 − δ < t′0 < t0 such that u(t′0) ∈ H

s+ γ
2

x (Rd). Now we take u(t′0) as
initial data and obtain a solution in C([0, T ′′), Hs′

x ) for any s′ < s+ γ
2
. Here

the time of existence only depends on ‖u(t′0)‖H1
x

and therefore has a uniform
lower bound independent of t0 or δ. By uniqueness of solutions and the inter-
polation inequality, we obtain that u is strongly continuous at t = t0 in the

H
s+ γ

4
x norm. Since t0 is arbitrary, we obtain u ∈ C((0, T ′), H

s+ γ
4

x ). Since each
time u is picking up γ

4
regularity, an iteration of the argument then allows us

to conclude that u ∈ C((0, T ′), Hs′
x ) for any s′ ≥ s. This concludes the third

step.

Step 4: We show that ∂tu ∈ C([0, T ′), Hs−1
x ). Let 0 ≤ t1 < t2 < T ′. We

then compute
‖(∂tu)(t2)− (∂tu)(t1)‖Hs−1

x
.

. ‖∇ · ((u(t2)− u(t1))∇K ∗ u(t2))‖Hs−1
x

+

+‖∇ · (u(t1)∇K ∗ (u(t2)− u(t1)))‖Hs−1
x

+ ν‖(Λγu)(t2)− (Λγu)(t1)‖Hs−1
x

.

. ‖(u(t2)− u(t1))∇K ∗ u(t2)‖Hs
x

+ ‖u(t1)∇K ∗ (u(t2)− u(t1))‖Hs
x

+ν‖u(t2)− u(t1)‖Hs
x
.

2In the inviscid case, one can easily check that the left continuity can be proved in the
same manner as the proof of the right continuity.
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By Lemma 2.4, we have

‖(u(t2)− u(t1))∇K ∗ u(t2)‖Hs
x

.

.‖u(t2)− u(t1)‖Hs
x
‖∇K ∗ u(t2)‖L∞x +

+ ‖u(t2)− u(t1)‖L2
x
‖P≥0(∇K ∗ u(t2))‖

H
s+ d

2
x

.

.‖u(t2)− u(t1)‖Hs
x

(
‖u(t1)‖Hs

x
+ ‖u(t2)‖Hs

x

)
.

Similarly

‖u(t1)∇K ∗ (u(t2)− u(t1))‖Hs
x

.

.‖u(t1)‖Hs
x
‖u(t2)− u(t1)‖Hs

x
.

Therefore we have ‖(∂tu)(t2) − (∂tu)(t1)‖Hs−1
x
→ 0 as t2 → t1. Since t1 is

arbitrary we obtain ∂tu ∈ C([0, T ′), Hs−1
x ) and this finishes the fourth step.

4 Proof of Corollary 1.2 and Corollary 1.3

Proof of Corollary 1.2. Let u0 ∈ Hs
x(Rd) for some s ≥ 1 and let u be the

corresponding solution constructed by Theorem 1.1. Clearly by Theorem 1.1
we can continue the solution as long as we have a priori control of the Hs

x

norm of u. By (3.6), we have

‖u(t)‖L2
x
≤ ‖u0‖L2

x
exp

(∫ t

0

‖∆K ∗ u(s)‖L∞x ds
)
. (4.1)

This shows that L2
x norm can be controlled as long as we can bound the

quantity
∫ t

0
‖∆K ∗ u(s)‖L∞x ds. On the other hand, by (3.8), we have

d

dt
‖u(t)‖2

Y s .
(
‖u(t)‖L2

x
+ ‖D2K ∗ u(t)‖L∞x

)
‖P>−10u(t)‖2

Ḣs
x

.

.
(
‖u(t)‖L2

x
+ ‖D2K ∗ u(t)‖L∞x

)
(‖u(t)‖2

Y s + ‖u(t)‖2
L2
x
).

This inequality together (4.1) and a Gronwall argument show that we have
a priori control of ‖u(t)‖Y s as long as we can bound the quantity

∫ t
0
‖D2K ∗

u(s)‖L∞x ds. Since ‖u(t)‖Hs
x

. ‖u(t)‖L2
x

+ ‖u(t)‖Y s , we conclude that if u is
the maximal-lifespan solution with lifespan [0, T ), then either T = +∞ in
which case we have a global solution or T <∞ and

lim
t→T

∫ t

0

‖D2K ∗ u(s)‖L∞x ds = +∞.

To finish the proof of the corollary, it remains for us to show that ‖D2K ∗
u‖L∞x is controlled by its Lqx norm. Notice that a priori we only know u ∈
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C([0, T ), Hs
x) and therefore by Sobolev embedding u ∈ C([0, T ), Lqx) where

2 ≤ q ≤ 2d
d−2s

if s < d
2
, 2 ≤ q < ∞ if s = d

2
and 2 ≤ q ≤ ∞ if s > d

2
.

Noting that D2K ∈ Lpx(R2) for any p < 2, the final result is then an easy
consequence of Young’s inequality. We omit the details.

4.1 Proof of Corollary 1.3

Let u0 ∈ Hs
x ∩ L1

x for some s ≥ 1 and let u ∈ C([0, T ), Hs
x) be the corre-

sponding maximal-lifespan solution. We first show that u ∈ C([0, T ), L1
x).

By using (1.1), Duhamel’s formula gives us

u(t) = e−νΛγtu0 −
∫ t

0

e−νΛγ(t−s)∇ · (u∇K ∗ u)(s)ds.

We can then estimate

‖u(t)‖L1
x
≤ ‖u0‖L1

x
+

∫ t

0

(
‖∇u(s) · ∇K ∗ u(s)‖L1

x
+ ‖u(s)∆K ∗ u(s)‖L1

x

)
ds

≤ ‖u0‖L1
x

+ const ·
∫ t

0

‖u(s)‖Ḣ1
x
‖u(s)‖L2

x
ds ≤

≤ ‖u0‖L1
x

+ const ·
∫ t

0

‖u(s)‖2
H1
x
ds <∞. (4.2)

This shows that u(t) ∈ L1
x for any 0 ≤ t < T . To show continuity in L1

x, let
0 ≤ t0, t < T . By using again Duhamel’s formula, we have

‖u(t)− u(t0)‖L1
x

.

∣∣∣∣∫ t

t0

‖u(τ)‖2
H1
x
dτ

∣∣∣∣→ 0,

as we take t → t0. Therefore we have proved u ∈ C([0, T ), L1
x). It remains

for us to prove the nonnegativity of u and L1
x conservation if the initial data

u0 is nonnegative. For smooth initial data, we can directly appeal to Lemma
2.5 and get the positivity of the solution. For general initial data, we will
use an approximation argument. To this end, we need the following

Definition 4.1 (Convergence of solutions in L2
x). Let u(n) : I(n)×Rd → R be

a sequence of solutions to (1.1) with maximal lifespan I(n). Let u : I×Rd →
R be another solution with maximal lifespan I. Let K ⊂ I be a compact time
interval. We say that u(n) converges uniformly to u on K if we have K ⊂ I(n)

for all sufficiently large n, and u(n) converges strongly to u in C(K,L2
x) as

n → ∞. We say that u(n) converges locally uniformly to u if u(n) converges
uniformly to u on every compact interval K ⊂ I.
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Remark 4.2. Our choice of the space L2
x here is for convenience only. One

can choose other Banach spaces and define the corresponding notion of local
uniform convergence.

We have the following crucial lemma.

Lemma 4.3. Let u0 ∈ H1
x(Rd) and u be the corresponding maximal-lifespan

solution. Assume u
(n)
0 → u0 in H1

x(Rd) and u(n) : I(n) × Rd → R are the
associated maximal-lifespan solutions. If d ≥ 3, then u(n) converges locally
uniformly to u. If d = 2, then there exists T0 = T0(‖u0‖H1

x
) > 0 such that

u(n) converges uniformly to u on the compact time interval [0, T0].

Assume Lemma 4.3 is true for the moment. We now show how to complete
the proof of the nonnegativity of u if the initial data u0 ∈ H1

x is nonnegative.
We first deal with the case d ≥ 3. Let ψ ∈ C∞0 (Rd), ψ ≥ 0 with ψ not

identically zero. Take εn = 1
n
> 0 and we mollify the initial data as u

(n)
0 =(

1
εdn
ψ( ·

εn
)
)
∗ u0. Let u(n) be the associated maximal-lifespan solution. Then

since u
(n)
0 ∈ ∩∞k=1H

k
x , we have by Lemma 2.5 that u(n)(t) ≥ 0 for any t ∈ I(n),

where I(n) is the maximal lifespan of u(n). By Lemma 4.3, u(n) converges
locally uniformly to u. In particular for any 0 ≤ t < T , we have there exist
u(nk) such that u(nk)(t) → u(t) in L2

x norm as k → ∞. Since u(nk)(t) ≥ 0,
by passing to a further subsequence if necessary, we conclude that u(nk)(t, x)
converges to u(t, x) a.e. x ∈ Rd and hence u(t, x) ≥ 0 a.e. x ∈ Rd. This
finishes the case d ≥ 3. Next we deal with the case d = 2. The argument
is similar but requires some small changes. Again we take ψ ∈ C∞0 (R2),

ψ ≥ 0 and mollify the initial data as u
(n)
0 = (2−2nψ(2−n·)) ∗ u0. Let u(n)

be the associated maximal-lifespan solution. By Lemma 4.3, there exists
T0 = T0(‖u0‖H1

x
) > 0 such that u(n) converges uniformly to u on [0, T0]. By

extracting a subsequence if necessary and passing to the limit, we conclude
again that u(t, x) ≥ 0 a.e. in x ∈ R2 for each t ∈ [0, T0]. An iteration of the
argument then gives us that u(t) ≥ 0 for any t ∈ [0, T ) where [0, T ) is the
maximal lifespan of u. This finishes the proof of the positivity of u.

Finally we show L1
x conservation. Let φ ∈ C∞0 (Rd) be such that φ(x) ≡ 1
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for |x| ≤ 1. Take R > 0 and let 0 ≤ t1 < t2 < T be arbitrary. We have∣∣∣∣ ddt
∫

Rd
u(t, x)φ(

x

R
)dx

∣∣∣∣ =

∣∣∣∣−∫
Rd
∇ · (u∇K ∗ u)φ(

x

R
)dx

−ν
∫

Rd
(Λγu)(t, x)φ(

x

R
)dx

∣∣∣∣
=

∣∣∣∣ 1

R

∫
Rd

(∇K ∗ u)(t, x) · (∇φ)(
x

R
)u(t, x)dx

− ν

Rγ

∫
Rd
u(t, x)(Λγφ)(

x

R
)dx

∣∣∣∣
≤ 1

R
‖∇φ‖L∞x ‖u(t)‖2

L2
x
‖∇K‖L1

x

+
ν

Rγ
‖Λγφ‖L∞x ‖u(t)‖L1

x

≤C1

R
+

ν

Rγ
C2,

for any t1 ≤ t ≤ t2. Here C1, C2 are constants depending on

M = max
t1≤t≤t2

(
‖u(t)‖2

L2
x

+ ‖u(t)‖L1
x

)
.

Clearly by (4.2) M is finite and C1, C2 are also finite. We then have∫
Rd
u(t2, x)φ(

x

R
)dx

≤
∫

Rd
u(t1, x)dx+O

(
1

Rγ
+

1

R

)
.

Taking R → ∞ gives us ‖u(t2)‖L1
x
≤ ‖u(t1)‖L1

x
. By a similar estimate we

obtain ‖u(t1)‖L1
x
≤ ‖u(t2)‖L1

x
. Therefore L1

x conservation is proved. This
finishes the proof of Corollary 1.3. It remains for us to complete the

Proof of Lemma 4.3. We first deal with the case d ≥ 3. Let u0 ∈ H1
x(Rd)

and u be the associated maximal-lifespan solution with lifespan [0, T ). Let v
be another solution and denote h = v− u. Then for h we have the following
equation{

∂th+∇ · ((∇K ∗ h)(u+ h)) +∇ · (h∇K ∗ u) = −νΛγh,

h(0) = h0.
(4.3)

It is not difficult to see that in the case d ≥ 3 Lemma 4.3 is a direct conse-
quence of the following claim regarding (4.3).
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Claim. For any 0 < T ′ < T and any ε > 0, there exists δ = δ(T ′, u, ε) > 0
sufficiently small such that if ‖h0‖H1

x
< δ, then (4.3) has a unique solution

h ∈ C([0, T ′], H1
x) which satisfies

sup
0≤t≤T ′

‖h(t)‖L2
x
< ε.

We now prove the claim. Let 0 < T ′ < T and ε > 0 be given. Let v0 =
u0 +h0 and v be the corresponding maximal-lifespan solution of (1.1). From
the proof of Theorem 1.1 and Corollary 1.2, we can continue the solution as
long as we have a priori control of the quantity∫ t

0

‖D2K ∗ v(τ)‖L∞x dτ.

Since v = u + h and u ∈ C([0, T ′], H1
x), we see that to prove the claim we

only need to control the quantity∫ t

0

‖D2K ∗ h(τ)‖L∞x dτ.

By direct calculation and the fact that d ≥ 3, we have

‖D2K ∗ h‖L∞x (Rd) . ‖h‖L2
x(Rd).

Therefore we only need to control the L2
x norm of h. By (4.3), we have

1

2

d

dt
‖h(t)‖2

L2
x

.
∫

Rd
|∆K ∗ u||h(t, x)|2dx+

∫
Rd
|∆K ∗ h||h(t, x)|2dx+

+

∫
Rd
|∆K ∗ h||u(t, x)||h(t, x)|dx+

∫
Rd
|∇K ∗ h||∇u||h|dx

.
(
‖u(t)‖H1

x
+ ‖h(t)‖L2

x

)
‖h(t)‖2

L2
x

.

. C1 · (M + ‖h(t)‖L2
x
)‖h(t)‖2

L2
x
,

where C1 = C1(d) is a constant and M = max0≤t≤T ′ ‖u(t)‖H1
x
. It is then

easy to see there exists δ = δ(M,C1, ε, T
′) > 0 sufficiently small such that if

‖h0‖H1
x
< δ, then

sup
0≤t≤T ′

‖h(t)‖L2
x
< ε.

This finishes the proof of the case d ≥ 3. It remains for us to prove the
case for d = 2. Let u0 ∈ H1

x(R2) and u be the corresponding maximal-
lifespan solution. By Theorem 1.1 and its proof, it is not difficult to see
that there exists δ0 > 0 and T0 = T0(‖u0‖H1

x
) > 0 such that any v0 with
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‖v0 − u0‖H1
x
< δ0 will have a maximal-lifespan solution with lifespan greater

than T0. Furthermore there exists a constant M = M(‖u0‖H1
x
) > 0 such that

sup
0≤t≤T0

(
‖u(t)‖H1

x
+ ‖v(t)‖H1

x

)
≤M. (4.4)

It is clear that we only need to show that for any ε > 0, there exists 0 < δ < δ0

such that if ‖v0 − u0‖H1
x
< δ, then

max
0≤t≤T0

‖v(t)− u(t)‖L2
x(R2) < ε.

To establish this estimate, we again write h = v − u where we have the
following equation for h{

∂th+∇ · ((∇K ∗ h)v) +∇ · (h∇K ∗ u) = −νΛγh,

h(0) = h0.
(4.5)

By (4.5), we then estimate

∂t(‖h(t)‖2
L2
x
) .

∫
R2

|∇K ∗ h||v||∇h|dx+

∫
R2

|∆K ∗ u||h|2dx .

. ‖h(t)‖L2
x

(
‖v(t)‖2

H1
x

+ ‖h(t)‖2
H1
x

+ ‖u(t)‖2
H1
x

)
.

. ‖h(t)‖L2
x

(
‖u(t)‖2

H1
x

+ ‖v(t)‖2
H1
x

)
.

. M2‖h(t)‖L2
x
,

where the last inequality follows from (4.4). It is then clear that if we take
δ = δ(M, ε) > 0 sufficiently small, then we have

max
0≤t≤T0

‖h(t)‖L2
x(R2) < ε.

This finishes the proof of the lemma.

5 Proof of Theorem 1.4

We first prove Theorem 1.4 in the case d ≥ 3. In this case by the continuation
theorem, one only has to control the L2

x norm. For the L2
x norm we have the

following Gronwall-type estimate:

d

dt
‖u(t)‖2

L2
x

+ ν‖u‖2

Ḣ
1
2
x

.
∫

(∆K ∗ u)u2dx

. ‖u‖2
L2
x
‖∆K ∗ u‖L∞x . (5.1)
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Lemma 5.1 (Interpolation Inequalities). We have for any d ≥ 2,

‖∆K ∗ u‖L∞x ≤ C1‖u‖
d−1
d+1

L1
x
‖u‖

2
d+1

Ḣ
1
2
x

,

‖u‖L2
x
≤ C2‖u‖

1
d+1

L1
x
‖u‖

d
d+1

Ḣ
1
2
x

.

Proof. One can prove these inequalities by using Littlewood-Paley calculus
or simply the following Fourier splitting method. We shall prove only the
first inequality. The proof of the second inequality is similar. Recall that our
kernel K(x) = e−|x|, hence the Fourier transform is given by

K̂(ξ) =
Const

((2π)−2 + |ξ|2)
d+1
2

.

We have

‖∆K ∗ u‖L∞x .
∫
|ξ|≤R

|ξ|2

(1 + |ξ|2)
d+1
2

|û(ξ)|dξ +

∫
|ξ|>R

|ξ|2

(1 + |ξ|2)
d+1
2

|û(ξ)|dξ

. ‖u‖L1
x
·R +R

1−d
2 · ‖u‖

Ḣ
1
2
.

Optimizing over R yields the inequality.

By Lemma 5.1, the RHS of equation (5.1) can be estimated above by
Const · ‖u‖L1

x
‖u‖2

Ḣ
1
2
x

, hence we have

d

dt
‖u(t)‖2

L2
x

+ ν‖u‖2

Ḣ
1
2
x

≤ C3 · ‖u0‖L1
x
‖u‖2

Ḣ
1
2
x

,

where C3 is some absolute constant. When ‖u0‖L1
x
≤ ν

C3
, the RHS can be

absorbed into LHS and we have a priori control of L2
x norm and hence the

Global Well-Posedness.
The case d = 2 is slightly more complicated. By the continuation theorem

we have to control the Lp norm for some p > 2. For example we consider the
L4 norm then

d

dt

∫
u4dx+ ν

∫
(Λu)u3 .

∫
(∆K ∗ u)u4dx

. ‖∆K ∗ u‖L∞x ‖u‖
4
L4
x
. (5.2)

We recall the positivity lemma by Ju [19], which improves on work of
Córdoba and Córdoba [8].
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Lemma 5.2. Let 0 ≤ α ≤ 2 and p ≥ 2, then∫
|u|p−2uΛαudx ≥ 2

p

∫
(Λ

α
2 |u|

p
2 )2dx.

Specializing to our case and using Sobolev embedding , we have∫
(Λu)u3 & ‖Λ

1
2u2‖2

L2
x

& ‖u2‖2
L4
x

& ‖u‖4
L8
x
.

Next we intend to bound the term ‖∆K ∗ u‖L∞x slightly differently than
before. Recall K = e−|x|, we can write (recall that we are in dimension 2)

∆K = − 1

|x|
e−|x| + e−|x|.

Therefore we have

‖∆K ∗ u‖L∞x . ‖Λ−1u‖L∞x + ‖u‖L1
x
.

We have the following end-point interpolation inequality:

Lemma 5.3. Let d = 2, then

‖Λ−1u‖L∞x ≤ C1‖u‖
3
7

L1
x
‖u‖

4
7

L8
x
.

Proof. By Bernstein’s inequality, we have

‖Λ−1u‖L∞x .
∑
k<N

2k‖Pku‖L1
x

+
∑
k>N

2−
3
4
k‖Pku‖L8

x

. 2N‖u‖L1
x

+ 2−
3
4
N‖u‖L8

x
,

Optimizing over k ∈ Z yields the desired inequality.

Finally we have the usual interpolation inequality

‖u‖L4
x

. ‖u‖
1
7

L1
x
‖u‖

6
7

L8
x
.

Collecting all the estimates, we can bound the RHS of (5.2) by const ·
‖u0‖L1

x
‖u‖4

L8
x

+ const · ‖u0‖L1
x
· ‖u‖4

L4
x
, and therefore we obtain,

d

dt
‖u‖4

L4
x

+ C5ν‖u‖4
L8
x
≤ C6‖u0‖L1

x
‖u‖4

L8
x

+ C7‖u0‖L1
x
· ‖u‖4

L4
x
.

If ‖u0‖L1
x
≤ C5ν

C6
, then one can again absorb the bad term into the LHS and

hence we have a priori control of L4
x norm. This concludes the proof of the

case d = 2. Theorem 1.4 is proved.
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6 Proof of Theorem 1.5

We begin by recalling the following proposition which can be found in [25].

Proposition 6.1 (Local wellposedness in the subcritical case). Let ν > 0
and 1 < γ ≤ 2. Assume u0 ∈ L1

x(Rd) where u0 is not necessarily nonnegative.
Then there exists T = T (‖u0‖L1

x
, ν, γ) > 0 and a unique solution to (1.1) in

the space C([0, T ), L1
x).

Remark 6.2. The proof of Proposition 6.1 uses the standard fixed point
method. The time of existence obtained in Prop 6.1 has the form

T ≈ (‖u0‖L1
x
)−

γ
γ−1 ,

where the implicit constant depends on (γ, ν).

By Proposition 6.1, for general initial data u0 ∈ L1
x which are not nec-

essarily nonnegative, one can continue the local solution as long as the L1
x

norm of the solution is finite. One can then define maximal-lifespan solutions
to (1.1) in the space C([0, T ), L1

x). For maximal-lifespan solutions, we can
show they have additional regularity. This is the following

Corollary 6.3 (Higher regularity). Let ν > 0 and 1 < γ ≤ 2. Let u0 ∈
L1
x(Rd) and u be the corresponding maximal-lifespan solution with lifespan

[0, T ). Then we have u ∈ C((0, T ),W k,1
x ) for any k ≥ 0, k being an integer.

We shall prove Corollary 6.3 by using another contraction argument in a
suitable subspace of C([0, T ), L1

x). To this end, for each k ≥ 0 with k being
an integer, we introduce the following seminorm

‖u‖Y kτ := sup
0≤t≤τ

‖t
k
τDk

xu(t)‖L1
x(Rd),

and also the norm

‖u‖Zkτ := max
{
‖u‖L∞t L1

x([0,τ ]×Rd), ‖u‖Y kτ
}
.

We now write S(t) = e−νΛγt. Our equation (1.1) in the mild formulation can
then be written as

u(t) = S(t) ∗ u0 −
∫ t

0

∇S(t− s) ∗ (u∇K ∗ u)(s)ds =

= S(t) ∗ u0 +B(u, u)(t),
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where for any two functions f , g, we define the bilinear form B(f, g) as

B(f, g)(t) = −
∫ t

0

∇S(t− s) ∗ (f∇K ∗ g)(s)ds.

We have the following useful bilinear estimate.

Lemma 6.4. Let τ > 0 and k ≥ 1. Then for any f , g ∈ C([0, τ ], L1
x) ∩ Y k

τ ,
we have

‖B(f, g)‖Zkτ ≤ C · τ 1− 1
γ ·
(
‖f‖L∞t L1

x
‖g‖Zkτ + ‖g‖L∞t L1

x
‖f‖Zkτ

)
,

where C is a constant depending only on (ν, k, γ).

Proof. Let 0 ≤ t ≤ τ and m ≥ 0. We compute

‖t
m
γ Dm

x B(f, g)(t)‖L1
x

. ‖t
m
γ

∫ t
2

0

Dm+1
x S(t− s) ∗ (f∇K ∗ g)(s)ds‖L1

x

+ ‖t
m
γ

∫ t

t
2

DxS(t− s) ∗Dm
x (f∇K ∗ g)(s)ds‖L1

x

=: (A) + (B).

Estimate of (A). We use the inequality

‖τ
m+1
γ Dm+1

x S(τ)‖L1
x
≤ C, for any τ > 0,

where C = C(m, γ, ν) is a constant. This inequality can be easily proved
by scaling and an explicit computation using Fourier transform of S(·). By
Minkowski and Young’s inequality, we then estimate

(A) . t−
1
γ

∫ t
2

0

‖f(s)∇K ∗ g(s)‖L1
x
ds

. t1−
1
γ ‖f‖L∞s L1

x([0,t]×Rd)‖g‖L∞s L1
x([0,t]×Rd). (6.1)

This will suffice.
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Estimate of (B). We have

(B) . t
m
γ

∫ t

t
2

(t− s)−
1
γ ‖Dm

x (f∇K ∗ g)(s)‖L1
x
ds

.
m∑
j=0

t
m
γ

∫ t

t
2

(t− s)−
1
γ ‖Dj

xf(s)‖L1
x
‖Dm−j

x g(s)‖L1
x
ds

.
m∑
j=0

t
m
γ

∫ t

t
2

(t− s)−
1
γ ‖f(s)‖

m−j
m

L1
x
‖Dm

x f(s)‖
j
m

L1
x
‖g(s)‖

j
m

L1
x
‖Dm

x g(s)‖
m−j
m

L1
x
ds

.
m∑
j=0

t
m
γ

∫ t

t
2

(t− s)−
1
γ s−

m
γ

(
‖f(s)‖L1

x
s
m
γ ‖Dm

x g(s)‖L1
x

+ s
m
γ ‖Dm

x f(s)‖L1
x
‖g(s)‖L1

x

)
ds

. t1−
1
γ
(
‖f‖L∞s L1

x([0,t]×Rd)‖g‖Ymt + ‖g‖L∞s L1
x([0,t]×Rd)‖f‖Ymt

)
. (6.2)

This will be sufficient to obtain the result.
Collecting the estimates (6.1), (6.2), we obtain

‖t
m
γ Dm

x B(f, g)(t)‖L1
x

. t1−
1
γ
(
‖f‖L∞s L1

x([0,t]×Rd)‖g‖L∞s L1
x([0,t]×Rd)

+‖f‖L∞s L1
x([0,t]×Rd)‖g‖Ymt + ‖g‖L∞s L1

x([0,t]×Rd)‖f‖Ymt
)
.

Taking m = 0 and m = k then immediately yields

‖B(f, g)‖Zkτ ≤ C · τ 1− 1
γ
(
‖f‖L∞t L1

x
‖g‖Zkτ + ‖g‖L∞t L1

x
‖f‖Zkτ

)
,

where C is a constant depending only on (ν, k, γ). The lemma is proved.

We now complete the

Proof of Corollary 6.3. Let u0 ∈ L1
x and u be the corresponding maximal-

lifespan solution with lifespan [0, T ). Let T ′ < T be arbitrary but fixed.
Let

M = max
0≤t≤T ′

‖u(t)‖L1
x
.

Fix k ≥ 1. Then by Lemma 2.6 and Lemma 6.4, we have there exists T0 > 0
with a lower bound determined by M , k, ν and γ of the form

C ·M−1+ 1
γ ,

such that u ∈ Zk
T0

. By dividing the time interval [0, T ′] into N = [3T ′/T0]
overlapping subintervals, it is not difficult to show that

sup
0≤t≤T ′

‖t
k
γDk

xu(t)‖L1
x
<∞,
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and furthermore u ∈ C((0, T ′),W k,1
x ). We omit the standard details. Since

T ′ is arbitrary, we obtain u ∈ C((0, T ),W k,1
x ) for any k ≥ 1. The corollary is

proved.

We shall need the following definition

Definition 6.5 (Convergence of solutions in L1
x). Let 1 < γ ≤ 2. Let

u(n) : I(n)×Rd → R be a sequence of solutions to (1.1) with maximal lifespan
I(n). Let u : I × Rd → R be another solution with maximal lifespan I. Let
K ⊂ I be a compact time interval. We say that u(n) converges uniformly to
u on K if we have K ⊂ I(n) for all sufficiently large n, and u(n) converges
strongly to u in C(K,L1

x) as n → ∞. We say that u(n) converges locally
uniformly to u if u(n) converges uniformly to u on every compact interval
K ⊂ I.

Remark 6.6. The definition here is almost the same as Definition 4.1. The
only difference is that we choose the space L1

x instead of L2
x. As will become

clear later, for the subcritical case 1 < γ ≤ 2, our choice of the function
space L1

x is quite natural.

The next lemma states that solutions to (1.1) are stable with respect to
L1
x perturbations. One can compare it with the L2

x version Lemma 4.3. Note
that in Lemma 4.3, slightly higher regularity (H1

x) is assumed on the initial
data, whereas here we do not need this assumption. This is not surprising
since we are in the subcritical regime.

Lemma 6.7. Let u0 ∈ L1
x and u be the corresponding maximal-lifespan so-

lution. Assume u
(n)
0 → u0 in L1

x and u(n) : I(n) × Rd → R are the associated
maximal-lifespan solutions. Then for any d ≥ 2, u(n) converges locally uni-
formly to u.

Proof. The proof here is different than the proof of Lemma 4.3 where a
simple energy method was used. Here we shall use the mild formulation. Let
u0 ∈ L1

x and u be the corresponding maximal-lifespan solution with lifespan
[0, T ). Let v be another solution with initial data v0 ∈ L1

x. Let h = v − u.
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Then for h we have the equation

h(t) = e−νΛγth0 −
∫ t

0

e−νΛγ(t−s)∇ · (h∇K ∗ (u+ h))(s)ds

−
∫ t

0

e−νΛγ(t−s)∇ · (u∇K ∗ h)(s)ds

= e−νΛγth0 −
∫ t

0

∇e−νΛγ(t−s) · (h∇K ∗ (u+ h))(s)ds

−
∫ t

0

∇e−νΛγ(t−s) · (u∇K ∗ h)(s)ds, (6.3)

where h0 = v0−u0 and the last equality follows from the fact that e−νΛγ(t−s)

is a convolution kernel. It is not difficult to see that Lemma 6.7 is a direct
consequence of the following claim regarding (6.3).

Claim. For any 0 < T ′ < T and any ε > 0, there exists δ = δ(T ′, u, ε) > 0
sufficiently small such that if ‖h0‖L1

x
< δ, then (6.3) has a unique solution

h ∈ C([0, T ′], L1
x) which satisfies

sup
0≤t≤T ′

‖h(t)‖L1
x
< ε. (6.4)

We now prove the claim. Let 0 < T ′ < T and ε > 0 be given. By
Proposition 6.1, there exists δ0 > 0, T0 > 0 such that if ‖h0‖L1

x
< δ0, then

there exists a unique solution to (1.1) in C([0, T0], L1
x) for initial data v0 =

h0 + u0 ∈ L1
x. It remains to show that the local solution can be extended up

to time t = T ′ and h satisfies the bound (6.4). Let

M = max
0≤t≤T ′

‖u(t)‖L1
x
.

By using (6.3), we then estimate

‖h(t)‖L1
x

. ‖h0‖L1
x

+

∫ t

0

(t− s)−
1
γ ‖h(s)∇K ∗ (u+ h)(s)‖L1

x
ds

+

∫ t

0

(t− s)−
1
γ ‖u(s)∇K ∗ h(s)‖L1

x
ds

. ‖h0‖L1
x

+

∫ t

0

(t− s)−
1
γ (M + ‖h(s)‖L1

x
)‖h(s)‖L1

x
ds.

By a standard continuity argument, it is clear that if we take ‖h0‖L1
x
< δ

with δ = δ(M,γ, ν, ε, T ′) > 0 sufficiently small, then we have h is defined up
to time t = T ′ and furthermore,

max
0≤t≤T ′

‖h(t)‖L1
x
< ε.

The lemma is proved.
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As a useful corollary, we can establish nonnegativity and L1
x conservation

of solutions if the initial data u0 ∈ L1
x and is nonnegative.

Corollary 6.8 (Positivity, L1
x conservation and GWP). Let ν > 0, 1 < γ ≤ 2

and u0 ∈ L1
x with u0 ≥ 0. Let u be the corresponding maximal-lifespan

solution with lifespan [0, T ). Then for any 0 ≤ t < T we have u(t) ≥ 0 for
a.e. x ∈ Rd and ‖u(t)‖L1

x
= ‖u0‖L1

x
. Consequently by Proposition 6.1, u is a

global solution, i.e. T = +∞.

Proof. Let u0 ∈ L1
x with u0 ≥ 0. Let u be the corresponding maximal-

lifespan solution with lifespan [0, T ). Take ψ ∈ C∞0 (Rd) with ψ ≥ 0. For any
ε > 0, define mollifiers ψε(x) = ε−dψ(ε−1x) and we mollify the initial data as

u
(ε)
0 = ψε∗u0. Then clearly u

(ε)
0 → u0 in L1

x as ε→ 0. By Lemma 6.7, we have
the associated solutions u(ε) : [0, T ε)×Rd → R with lifespan [0, T ε) converges
locally uniformly to u as ε → 0. In particular, for any 0 ≤ t < T , it follows
that T ε > t if ε is sufficiently small. Now note that u

(ε)
0 ∈ ∩∞k=1W

k,1
x (Rd). By

Proposition 6.1 and Corollary 6.3, we have u(ε) ∈ C([0, T ε), W k,1
x ) for any

k ≥ 1. 3 By Sobolev embedding and Lemma 2.5, we obtain that u(ε)(τ) ≥ 0
for any 0 ≤ τ < T ε. Since T (ε) > t if ε is sufficiently small, we obtain
u(ε)(t) ≥ 0. By extracting a subsequence if necessary, we conclude u(t) ≥ 0
for a.e. x ∈ Rd. Since t is arbitrary, we have proved the nonnegativity of u
at any fixed time t. Finally the L1

x conservation can be proved in a similar
manner as the proof of Corollary 1.3. We omit the details. Corollary 6.8 is
now proved.

Proof of Theorem 1.5. This is now a direct consequence of Proposition 6.1,
Corollary 6.3 and Corollary 6.8.
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