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Abstract. We consider an aggregation equation in R
n, n ≥ 2, with fractional

dissipation, namely, ut + ∇ · (u∇K ∗ u) = −ν(−∆)γ/2u , where 0 ≤ γ ≤ 2

and K is a nonnegative decreasing radial kernel with a Lipschitz point at the
origin, e.g. K(x) = e−|x|. We prove that for 0 ≤ γ < 1 the solutions develop
blow-up in finite for a general class of initial data. In contrast we prove that
for 1 < γ ≤ 2 the equation is globally well-posed.

1. Introduction and main results

We consider the following aggregation equation in Rn with fractional dissipation:

ut + ∇ · (u∇K ∗ u) = −ν(−∆)γ/2u, (1.1)

where K is a nonnegative radial decreasing kernel with a Lipschitz point at the
origin, e.g. K(x) = e−|x|. As usual, ∗ denotes spatial convolution. Here ν ≥ 0 and
0 ≤ γ < 1 are parameters controlling the strength of the dissipative term. For any
(reasonable) function f on Rn, the fractional Laplacian (−∆)γ/2 is defined via the
Fourier transform:

̂(−∆)γ/2u(ξ) = |ξ|γ û(ξ).

Aggregation equations of the form (1.1), with more general kernels (and other
modifications) arise in many problems in biology, chemistry and population dy-
namics. In particular, these type of equations have applications in modeling the
swarming phenomenon in biology. We use the term swarm here to describe the
collective behavior of an aggregation of similar biological individuals cruising in the
same direction. An overview of the modeling aspects of swarming can be found
in [15], [32] and [36]. Some Lagrangian type models in which each individual is
regarded as a discrete point are studied in [1], [11], [13], [14], [26], [30], [41], [44]
and [45]. In the Eulerian setting, in which the individuals are approximated by a
continuum population density field, several earlier models are constructed in [16],
[26], [31], [44], [17], [32] and [35]. As it has already been pointed out by several
authors (see [43] and [39]) the challenge with these continuum models has been ob-
taining biologically realistic swarm solutions with sharp boundaries (often referred
to as clumping, see [40] and [39]), relatively constant internal population densities
and long life times.

In one space dimension, some analytic studies have been conducted by Mogilner
and Edelstein-Keshet [31], where they considered an integro-differential population
model of the form (based on traditional population models, see [32], [35] and [18]):

∂f

∂t
=

∂

∂x

(

D(f)
∂f

∂x

)

− ∂

∂x
(V (f)f) + B(f), (1.2)
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where D(f) is the density-dependent diffusion coefficient, B(f) is the growth-rate
of the population and V (f) is the advection velocity which takes the form

V (f) = aef + Aa(Ka ∗ f) − Arf(Kr ∗ f),

with constants ae, Aa and Ar representing density-dependent motion, attraction
and repulsion respectively. Here the kernels Ka and Kr are called attraction and
repulsion kernels (they belong to the so called social interaction kernels). Based on
perturbation analysis and numerical studies, they identified the conditions when
aggregation occurs and also the stability of travelling swarm profiles. As noted in
[31], the clumping behavior does not seem to be supported in the one-dimensional
model (1.2) under realistic assumptions on the social interaction kernels. We refer
the reader to [31], [16], [46], [38], [19], [20], [21], [22], [23], [33] and [34] and the refer-
ences therein for more extensive background and reviews on these one-dimensional
models.

As a multi-dimensional generalization of the model (1.2), Topaz and Bertozzi [43]
constructed a kinematic two-dimensional swarming model which takes the form

ut + ∇ · (u (G ∗ u)) = 0, (1.3)

where the (vector-valued) kernel G is called the social interactional kernel which
is spatially decaying. By applying the Hodge decomposition theorem [29], one can
write

G = G(I) + G(P ) := ∇⊥N + ∇P,

where N and P are scalar functions. In the language of [43], the kernel G(I)

introduces incompressible motion which leads to pattern formation (e.g. vortex
patterns), while the potential kernel G(P ) models repulsion or attraction between
biological organisms which in turn leads to either dispersion or aggregation. In
a related paper, Topaz, Bertozzi and Lewis [42] modified the classical model of
Kawasaki [23] and derived a model similar to [31], which takes the form

ut + ∇ · (uK ∗ ∇u − ru2∇u) = 0, (1.4)

where the kernel K has fast decay in space. We remark that the clumping can be
observed in these two-dimensional models (1.3) and (1.4) which were also found
numerically in Levine, Rappel and Cohen [26]. We refer the reader to [24] and [3]
and references therein for more details about aggregation models in this context.
Aggregation equations have also been applied to image processing (see for example
[2] and [37] for more details).

From the mathematical point of view the aggregation equations have been stud-
ied extensively (see e.g. [3], [5], [6], [7], [8], [24] and [43]). In one space dimension
with C1 initial data, Bodnar and Velázquez [6] proved global well-posedness for
some classes of interaction potentials and finite-time blow-up for others. Burger
and Di Francesco [7] and also Burger, Capasso and Morale [8] studied the well-
posedness of the model with an additional smoothing term. In connection with
the problem we study here, Laurent [24] has developed the existence theory for a
general class of equations containing the nondissipative version of (1.1) (i.e. ν = 0)
and studied the connections between the regularity of the potential K and the
global existence of the solution. More recently, Bertozzi and Laurent [3] have ob-
tained finite-time blow-up of solutions for (1.1) without dissipation (ν = 0). The
goal of this paper is to extend this result to the dissipative equation for the range
0 ≤ γ < 1. Additionally, we show that if the dissipation is sufficiently strong, i. e.,
1 < γ ≤ 2, the solutions don’t develop any singularities.
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Aggregation equations with a dissipation term have been considered by several
authors (see [24] and references therein for more details). For example, Topaz,
Bertozzi and Lewis [42] have considered the equation

ut = −∇ · [u(u ∗ ∇G)] + ∇ · (u2∇u) (1.5)

in cell-based models for the case in which we have a long range social attrac-
tion and short range dispersal. We remark that (1.5) contains the same type of
aggregation term considered here and a local, nonlinear, diffusion term.

We have chosen a diffusion term that contains different features, namely it is
linear (which will translate into a milder diffusion process) and nonlocal. We believe
the nonlocality should be an interesting feature for many applications. It is the
interest in this features, linearity and nonlocality that leads directly into the use
of the Laplacian for the dissipative term. We introduce fractional powers of the
Laplacian to have a scale of strength for the dissipative terms against which we
can study well-posedness. Given the natural scales of the equation (1.1) we have
3 different ranges to the parameter γ. Namely 0 ≤ γ < 1, γ = 1 and 1 < γ ≤ 2,
known as the supercritical, critical and subcritical regimes. We motivate the choice
of the three regimes as follows. Since the kernel ∇K scales as x

|x| near the origin,

heuristically our equation (1.1) which is not scale invariant can be approximated
by the homogeneous version

ut + ∇ ·
(

u
x

|x| ∗ u

)

= −ν(−∆)
γ
2 u. (1.6)

Equation 1.6 has a scaling symmetry in the sense that if u is a solution, then for
any λ > 0,

uλ(t, x) = λn+γ−1u(λγt, λx)

is also a solution with initial data uλ(0, x) = λn+γ−1u0(λx). Here n is the space
dimension where we are considering the problem. For positive initial data, it follows
from Lemma 2.1 that the L1

x norm of the solutions of equation (1.1) is preserved
for all time. The critical threshold of γ is then determined by the relation

‖uλ‖L∞

t L1
x

= ‖u‖L∞

t L1
x
.

Solving this equations yields, γ = 1 which is then referred to as the critical case.
For γ > 1, the a priori control of the L1

x norm then allows us to prove the global
wellposedness of the solution (with L1

x initial data, see Theorem 1.3 below) and
hence the name subcritical. In the supercritical case γ < 1, we prove the blow
up of solutions in finite time (see Theorem 1.2 below). We refer the reader to
[10],[9] and [27] where this type of dissipation has been used in the context of the
surface quasi-geostrophic equation and other one dimensional models, for a more
detailed explanation of the 3 regimes. A detailed study of the well-posedness issues,
regularity of solutions will be contained in a forthcoming paper [28].

We state our results starting with an extension of the local existence theorem
and continuation result proved by Bertozzi and Laurent [3] in the case ν = 0. It is
an analogy of the Beale-Kato-Majda result for 3D Euler [4]. In this case we have
the following

Theorem 1.1 (Local existence and continuation [3]). Let ν ≥ 0 and 0 ≤ γ ≤ 2.
Given initial data u0 ∈ Hs(Rn), n ≥ 2, for positive integer s ≥ 2, there exists
a unique solution u of (1.1) with life span [0, T ∗) such that either T ∗ = +∞ or
limt→T∗ sup0≤τ≤t ‖u(τ, ·)‖Lq

x
= +∞. The result holds for all q ≥ 2 for n > 2 and

q > 2 for n = 2.
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Proof. We refer the reader to [3] for the prove of the inviscid case ν = 0. We
sketch here the main modification needed to prove the general result. Notice that
the changes needed are very similar to the ones used to prove local existence and
continuation for Euler and Navier-Stokes. We refer the reader to [28] for a detailed
explanation of the necessary modifications introduced by the presence of viscosity.
As in the case of Euler and Navier-Stokes, the main difference appears at the level
of energy estimates. The presence of the viscosity term produces a regularizing
effect and consequently a gain of derivatives. More precisely we have the following
energy estimates for the approximate solutions uǫ

d

dt

1

2
‖uǫ‖2

H2 + ν‖uǫ‖2

Hs+
γ
2
≤ cs‖uǫ‖Hs−1‖uǫ‖2

Hs (1.7)

which provides control of a higher norm, ‖u‖
Hs+

γ
2
, than in the inviscid case (see

Proposition 1 in [3] for the inviscid energy estimate). From these estimates, Theo-
rem 1.1 follows easily.

�

In the inviscid case ν = 0, Bertozzi and Laurent [3] proved the existence of
finite-time blow up for a class of compactly supported smooth initial data. It is
conceivable that when there is some amount of weak diffusion term, the blow up
phenomenon should still persist. Indeed we show that, in the case of supercritical
dissipation 0 ≤ γ < 1, there exist finite-time singularities of equation (1.1) for a
suitable class of initial conditions (subset of Hs, s ≥ 2). Postponing the definition
of this class of initial data (denoted below by Aδ,C,w, see (2.19) (2.20)) and the tech-
nical definition of admissible weight (see 2.6) we state our result in the supercritical
case

Theorem 1.2 (Blow up for the supercritical case). Let w be an admissible weight
function and let ν ≥ 0 and 0 ≤ γ < 1. There exists constants δ = δ(n) > 0,
C = C(n,w, ν, γ) > 0 such that if u0 ∈ Hs∩Aδ,C,w, s ≥ 2, then there exists a finite
time T ∗ and a unique local solution u ∈ C([0, T ∗);Hs)∩C1([0, T ∗);Hs−1) for (1.1)
that blows at time T . Furthermore, we have, for every q ≥ 2 (q > 2 for n = 2),
sup0≤τ≤t ‖u(·, τ)‖Lq → ∞, as t ↑ T ∗.

In contrast with the above Theorem, when the dissipation power is bigger, that is,
in the subcritical regime, the solutions don’t develop a singularity. More precisely,
we have the following result.

Theorem 1.3 (Global wellposedness for positive initial data in the subcritical
case). Let ν > 0 and 1 < γ ≤ 2. Assume the initial data u0 ∈ L1

x(Rn) and
u0 ≥ 0 for a.e. x. Then there exists a unique global solution u ∈ C([0,∞), L1

x) ∩
C((0,∞),W 1,1

x ) of equation (1.1).

2. Proof of Theorem 1.2

We will argue by contradiction. Under the the assumption that there is global
existence for all initial data in Hs, s ≥ 2 we will prove contradicting estimates for
the energy of the system. As in the context of gradient flows and following Bertozzi
and Laurent [3] (see also Topaz, Bertozzi and Lewis [42]), it is convenient to define
the (free) energy as

E(t) =

∫

u(x, t)(K ∗ u)(x, t)dx. (2.1)

We will restrict our attention to positive initial data, and since the kernel K is
positive, E is also positive. We recall the following lemma
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Lemma 2.1 (Persistence of positivity and L1 norm [24]). Let ν ≥ 0 and 0 ≤ γ ≤ 2.
Assume u0 ≥ 0 for a.e. x. Let u be the solutions as described in Theorem 1.1. Then
for each t ∈ [0, T ∗), the solution u is nonnegative and ‖u(t)‖L1

x
= ‖u0‖L1

x
.

By using Hölder’s inequality, together with Young’s inequality and Lemma 2.1,
it is easy to see that the energy has an a priori bound E(t) ≤ ‖u‖2

L1 . The main
estimate that we will obtain is a growth estimate for the energy, more precisely we
will prove

E′(t) > c(‖u0‖L1) > 0, for t up to some time T . (2.2)

We will arrive at a contradiction by showing that at time T (from (2.2)) the energy
E(T ) exceeds the a priori bound.

In order to obtain (2.2) we notice that an elementary calculation yields (using
the fact that K is radial)

E′(t) = 2

∫

Rn

u|∇K ∗ u|2dx − 2ν

∫

Rn

(−∆)γ/2u(K ∗ u)dx. (2.3)

We will explicitely describe a set of initial conditions for which the first term
dominates the second, that is the nonlinear term controls the difussion.

The bulk of estimate (2.2) is obtaining a lower bound for the first integral coming
from the nonlinear term. Dealing with the second integral, involving the diffusion
term is elementary. We have

∣

∣

∣
2ν

∫

Rn

(−∆)γ/2u(K ∗ u)dx
∣

∣

∣
≤ 2ν

∣

∣

∣

∫

u‖(−∆)γ/2K‖L∞‖u‖L1dx
∣

∣

∣
≤

≤ 2ν‖(−∆)γ/2K‖L∞‖uo‖L1 ≤ CK‖uo‖L1 (2.4)

where

2ν‖(−∆)γ/2K‖L∞ ≤ 2ν ‖ |ξ|γK(ξ)‖L1 =: CK (2.5)

Remark 2.2. We notice that CK , given by ‖ |ξ|γK(ξ)‖L1 , is only finite for 0 ≤ γ < 1.
This is precisely where the arguement for the existence of singularities breaks down
for γ = 1. Notice that if we take K to be exactly e−|x|, its Fourier transform is
given by the Poisson Kernel, which up to a constant multiple equals

((2π)−2 + (ξ)2)−
n+1

2

making the function (γ = 1)

|ξ|1K(ξ)((2π)−2 + (ξ)2)−
n+1

2

not integrable in Rn.

We return now to the estimate for the first term in (2.3). Since we are only con-
sidering potentials K that are nonnegative, decreasing, radial and with a Lipschitz
point at the origin, we can rewrite the gradient of K as

∇K(x) = a
x

|x| + S(x), (2.6)

where a 6= 0 is a constant, S ∈ L∞(Rn) is continuous at x = 0 with S(0) = 0.
In order for the nonlinearity to generate a singularity it is clear we need ∇K ∗ u

sufficiently large. Since for positive functions the L1 norm is preserved, the main
problem is the cancellation arising in x

|x| ∗ u if u is essentially constant over a large

ball centered at the origin. It is clear from this observation, and the work of Bertozzi
and Laurent [3] on the inviscid equation that we need to consider solutions that are
highly concentrated near the origin.
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We will now estimate several integrals arising in the evolution of E involving
x
|x| ∗ u and ∇K ∗ u, for functions highly concentrated around the origin. The right

definition of highly concentrate is made precise in Lemma 2.5
Define N(x) = x

|x| . We have the following lemma which gives a lower bound of

the contribution due to the homogeneous kernel N (a multiple of the homogeneous
part of ∇K (see (2.6)).

Lemma 2.3 (Lower bound for the homogenous kernel). There exists a constant
C1 = C1(n) > 0 such that for any nonnegative radial function g ∈ L1

rad(R
n) we

have
∫

g(x)|(N ∗ g)(x)|dx ≥ C1‖g‖2
L1 .

Proof. It is clear that we can assume that ‖g‖L1 = 1. By the Cauchy-Schwartz
inequality we have

∫

g(x)|(N ∗ g)(x)|dx

≥
∫

g(x)〈(N ∗ g)(x),
x

|x| 〉dx

=

∫ ∫

g(x)g(y)
(x − y) · x
|x − y| · |x|dxdy, (2.7)

By symmetrizing in the integral in x and y and using the fact that g is nonnegative,
we obtain

RHS of (2.7) =2

∫ ∫

g(x)g(y)
x − y

|x − y| ·
(

x

|x| −
y

|y|

)

dxdy

=

∫ ∫

|y|≤|x|

g(x)g(y)
x − y

|x − y| ·
(

x

|x| −
y

|y|

)

dxdy

=

∫ ∫

|y|≤|x|

g(x)g(y)
(|x| + |y|) · (1 − x·y

|x||y| )

|x − y| dxdy

≥C2

∫ ∫

|y|≤|x|
x·y≤0

g(x)g(y)dxdy

≥C2

2

∫ ∫

x·y≤0

g(x)g(y)dxdy (2.8)

where C2 is a constant depending only on n. In the last inequality we sym-
metrized again in the variables x, y. To bound this last integral, we now use the
fact that g is a radial function. Denoting by dσ as the surface measure on Sn−1,
with a simple scaling argument we obtain

RHS of (2.8) =
C2

2

∫ ∞

0

∫ ∞

0

g(ρ1)g(ρ2)

∫

|x|=ρ1, |y|=ρ2

x·y≤0

dσ(x)dσ(y)dρ1dρ2

≥C2

2

(
∫ ∞

0

g(ρ)ρn−1dρ

)2 ∫

|x|=1, |y|=1
x·y≤0

dσ(x)dσ(y)

≥C1‖g‖2
L1

x
, (2.9)

where C1 is a positive constant depending only on n. �

Remark 2.4. The proof of Lemma 2.3 is the only place in our blow-up argument
where we need the radial assumption of the solution u. It is possible to remove the
radial assumption although we shall not do it here.
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In the next lemma we establish a similar conclusion for the whole kernel ∇K.
Because of the presence of the inhomogeneous part, we need to consider functions
having mass localized near the origin so that the contribution due to S(x) (see
(2.6)) is small and the whole integral is still bounded below by a large constant.

Lemma 2.5 (Lower bound for the kernel ∇K for mass localized functions). There
exists a constant δ = δ(n,K) > 0 such that the following holds true:
For any nonnegative radial function f on Rn with the property

∫

|x|≥δ

f(x)dx ≤ δ‖f‖L1 , (2.10)

we have
∫

Rn

f |∇K ∗ f |2dx ≥ (aC1)
2

2
‖f‖3

L1 ,

where C1 is the same constant as in Lemma 2.3 and a is defined in the decomposition
(2.6).

Proof. Without loss of generality we will assume that ‖f‖L1 = 1. Recall the de-
composition (2.6), since S(x) is continuous at x = 0 with S(0) = 0, we know that
for any ǫ1 > 0, there exists δ1 = δ1(K, ǫ1), such that

|S(x)| ≤ ǫ1, ∀ |x| ≤ δ1.

On the other hand since S is assumed to be bounded, we have

|S(x)| ≤ D1, ∀ |x| ≥ 0, (2.11)

where D1 is another constant depending only on K. Take ǫ1 = aC1

100 and let δ > 0
be sufficiently small such that

δ < min

{

aC1

100D1
,
δ1(ǫ1,K)

4

}

. (2.12)

Fix this δ and assume that f satisfies the localization property (2.10). For |x| ≤ δ,
by splitting the integral and using the fact that ‖f‖L1 = 1, we have

|(S ∗ f)(x)| ≤
∫

|x|≤2δ

|f(x − y)||S(y)|dy +

∫

|y|>2δ

|f(x − y)||S(y)|dy

≤ ǫ1 + D1

∫

|y|>δ

|f(y)|dy

≤ ǫ1 + δD1, (2.13)

where the last inequality follows from the localization assumption (2.10). For any
|x| ≥ 0, we have by Young’s inequality and (2.11),

|(S ∗ f)(x)| ≤ D1. (2.14)

In view of our choice of ǫ1, δ (see (2.12)) and the pointwise bounds on (S ∗ f)(x)
(2.13) (2.14), we have

∫

Rn

f |(S ∗ f)(x)|dx ≤
∫

|x|≤δ

|f(x)|dx(ǫ1 + δD1) +

∫

|x|≥δ

|f(x)|dxD1

≤ ǫ1 + 2δD1

≤ aC1

10
. (2.15)
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Now by the Cauchy-Schwartz inequality and Lemma 2.3, we have

(
∫

Rn

f |∇K ∗ f |2dx

)
1
2

=

(
∫

Rn

f |∇K ∗ f |2dx

)
1
2 (

∫

Rn

fdx
)

1
2

≥
∫

Rn

f |∇K ∗ f |dx

≥aC1 −
∫

Rn

f |S ∗ f |dx

≥aC1√
2

,

where the last inequality follows from the bound (2.15). The lemma is proved. �

We remark that both Lemma 2.3 and Lemma 2.5 deal with time independent
estimates but require high concentration of mass near the origin. It is crucial for
our proof that we show that if u0 is concentrated near the origin, then the solution
u(·, t) remains concentrated near the origin for at least some short time t. In
the inviscid case ν = 0, Bertozzi and Laurent [3] showed that if one starts with
compactly supported data then it remains being compactly supported during the
time of existence. The situation changes dramatically in the dissipative case ν > 0.
In the case we considered here, even if the initial data is compactly supported, the
solution at any t > 0 will have nonzero support on the whole space due to the

infinite speed of propagation of the fractional heat semigroup e−t(−∆)γ/2

. It is for
this reason that we need to prove the non-evacuation of mass for a short time. As
we shall see later, the mass localization will follow from a weighted estimate for u.
To this end, we need the following definition

Definition 2.6 (Admissible weight functions). A function w ∈ C∞(Rn) is said to
be an admissible weight function if w is a nonnegative radial function such that
w(0) = 0 and w(x) = 1 for all |x| ≥ 1.

An admissible weight function can be regarded as a smoothed out version of the
spatial cut-off function χ{|x|≥1}. Let w be an admissible weight function and let
δ > 0 be the same constant as in Lemma 2.5. We define

I(t) =

∫

Rn

u(t, x)w(
x

δ
)dx.

Intuitively speaking, the integral I(t) quantifies the mass of u outside of a small
ball of size δ near the origin. The growth of I(t) provides an upper bound of the
mass of u away from the origin. Let w1(x) = w(x) − 1. Clearly by definition
w1 ∈ C∞

c (Rn). By integration by parts, Young’s inequality and Lemma 2.1, We
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compute

d

dt
I(t) = −

∫

Rn

∇ · (u∇K ∗ u)w(
x

δ
)dx − ν

∫

Rn

(−∆)γ/2u(x)w(
x

δ
)dx

=

∫

Rn

u∇K ∗ u · 1

δ
(∇w1)(

x

δ
)dx − ν

∫

Rn

u(x)
1

δγ

(

(−∆)
γ
2 w1

)

(
x

δ
)dx

≤ 1

δ
‖∇w1‖L∞

x

∫

Rn

|u∇K ∗ u|dx − ν‖u‖L1
x

1

δγ
‖(−∆)

γ
2 w1‖L∞

x

≤ 1

δ
‖∇w1‖L∞

x
‖∇K‖L∞

x
‖u0‖2

L1
x
− ‖u0‖L1

x
· ν

δγ
‖|ξ|γŵ1(ξ)‖L1

ξ

≤ C3 · (‖u0‖2
L1 + 1), (2.16)

where C3 = C3(n, ν, γ, w, δ) is a constant.
Now if we choose

T =
δ‖u0‖L1

2C3 · (‖u0‖2
L1 + 1)

,

then we have

sup
0≤t≤T

I(t) ≤ I(0) +
δ

2
‖u0‖L1 , (2.17)

where

I(0) =

∫

Rn

u0(x)w(
x

δ
)dx.

Since w(x/δ) = 1 for |x| ≥ δ, (2.17) implies the bound,

sup
0≤t≤T

∫

|x|≥δ

u(t, x)dx ≤
∫

Rn

u0(x)w(
x

δ
)dx +

δ

2
‖u0‖L1 .

Now if we choose u0 such that
∫

Rn

u0(x)w(
x

δ
)dx ≤ δ

2
‖u0‖L1 ,

Then clearly

sup
0≤t≤T

∫

|x|≥δ

u(t, x)dx ≤ δ‖u0‖L1 . (2.18)

This is the mass localization property we need.
Based on the results above we will specify the set of initial conditions for which

one can easily obtain blow-up. Let δ > 0, C > 0 be two constants. We define
A = Aδ,C,w ⊂ L1

rad(R
n) to be the class of nonnegative radial functions u satisfying

the following properties:

(1) The mass of u is comparable to its energy:

|K(0)|‖u‖2
L1 <

∫

Rn

u(K ∗ u)dx + 1. (2.19)

(2) u is localized near the origin:
∫

Rn

u(x)w(
x

δ
)dx <

δ

2
‖u‖L1 . (2.20)

(3) The mass of u is sufficiently large: ‖u‖L1 > C.

For any δ > 0, C > 0 and any admissible weight w, it is not too difficult to see
that the class Aδ,C,w is nonempty. Indeed one can take any f ∈ L1

rad(R
n) such that

‖f‖L1 > C, then define fλ(·) = λ−nf(λ−1·). For all sufficiently small λ > 0, one
can check directly that u = fλ satisfies (2.19) and (2.20) due to the assumption
that K(0) = ‖K‖L∞ and w(0) = 0.

We are now ready to complete the proof of the main theorem.
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Proof of Theorem 1.2. Take δ to be the same constant as in Lemma 2.5 and choose
a constant C sufficiently large such that

C > max{4C3 + CK

(aC1)2
, 1}, (2.21)

where C3 was defined in (2.16) and CK is given in (2.5) in the estimate for the
difussion term.

Take u0 ∈ Hs ∩ Aδ,C,w and recall that

E(t) =

∫

Rn

u(t, x)(K ∗ u)(t, x)dx.

Then obviously

E(t) ≤ ‖u0‖2
L1‖K‖L∞ = ‖u0‖2

L1K(0).

On the other hand we have

d

dt
E(t) = 2

∫

Rn

u|∇K ∗ u|2dx − 2ν

∫

Rn

(−∆)γ/2u(K ∗ u)dx.

Let

T =
δ‖u0‖L1

2C3 · (‖u0‖2
L1 + 1)

,

then by the mass localization property (2.18) and Lemma 2.5, together with the
estimate (2.4) for the diffusion term we have

d

dt
E(t) ≥ (aC1)

2‖u0‖3
L1 − CK‖u0‖2

L1 .

By our choice of u0 and the choice of the constant C (see (2.21)), it is not difficult
to check that

(aC1)
2‖u0‖3

L1 − CK‖u0‖2
L1 >

1

T
=

2C3 · (‖u0‖2
L1 + 1)

δ‖u0‖L1

.

This gives us

E(T ) ≥ E(u0) + 1.

But this is impossible since we have

E(T ) ≤ ‖u0‖2
L1‖K‖L∞ = ‖u0‖2

L1K(0) < E(u0) + 1,

where the last inequality is due to the fact that u0 ∈ Aδ,C,w. The theorem is
proved. �

3. global well-posedness and smoothing for the subcritical case

1 < γ ≤ 2

In this section we consider the aggregation equation in the subcritical regime
1 < γ ≤ 2. We first prove local well-posedness in L1

x(Rn). We shall do this by
constructing mild solutions. This is

Theorem 3.1 (Local well-posedness in L1
x for the subcritical case). Let ν > 0

and 1 < γ ≤ 2. Assume the initial data u0 ∈ L1
x(Rn). Then there exists a time

T = T (‖u0‖L1
x
, ν, γ, ‖∇K‖L∞

x
) > 0 and a unique mild solution of (1.1) in the

space C([0, T ), L1
x(Rn)). In fact the uniqueness of mild solutions holds in a slightly

stronger sense: for any T ′ > 0, there exists at most one solution in the space
C([0, T ′), L1

x(Rn)) with initial data u0 ∈ L1
x.
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Remark 3.2. As we shall see in the proof of Theorem 3.1, the time of existence of
the constructed mild solution has an upper bound of the form

T <

(

γ − 1

γ

)

γ
γ−1

· ν 1
γ−1 ·

(

‖∇K‖L∞

x
‖u0‖L1

x

)− γ
γ−1 ,

provided of course ‖u0‖L1
x
6= 0.

We shall prove Theorem 3.1 by the classical fixed point theorem for general
Banach spaces. We state it as the following lemma.

Lemma 3.3 ([25]). Let X be a Banach space endowed with norm ‖ · ‖X and let
B : X × X → X be a bilinear map such that for any x1, x2 ∈ X, we have

‖B(x1, x2)‖X ≤ C‖x1‖X‖x2‖X .

Then for any y ∈ X such that

4C‖y‖X < 1,

the equation

x = y + B(x, x)

has a solution in X with ‖x‖X ≤ 2‖y‖X . Moreover the solution is unique in the
Ball B̄(0, 2

C ).

Proof. The proof can be found in [25]. We reproduce here for the sake of com-
pleteness and also for the comparison with the two-normed version Lemma 3.5 (see
below). Define x0 = y and xn = y+B(xn−1, xn−1). By induction it is easy to show
that ‖xn‖X ≤ 2‖y‖X ; Moreover,

‖xn+1 − xn‖X ≤ ‖B(xn, xn − xn−1)‖X + ‖B(xn − xn−1, xn−1)‖X

≤ 4C‖y‖X‖xn − xn−1‖X .

Since 4C‖y‖X < 1, this shows that (xn) is a Cauchy sequence and hence has a limit
x. The uniqueness of x in the Ball B̄(0, 2

C ) is obvious. �

As we shall see below, we only need the existence part of Lemma 3.3. The
uniqueness of the constructed mild solution will be proved independently. We now

write S(t) = e−ν(−∆)
γ
2 t. Our equation (1.1) in the mild formulation can be written

as

u(t) = S(t) ∗ u0 −
∫ t

0

∇S(τ) ∗ (u∇K ∗ u) (t − τ)dτ

= S(t) ∗ u0 + B(u, u)(t), (3.1)

where for any two functions f, g, we define the Bilinear form B(f, g)(t) as

B(f, g)(t) = −
∫ t

0

∇S(τ) ∗ (f∇K ∗ g) (t − τ)dτ. (3.2)

We shall consider our equation (3.1) in the Banach space XT = C([0, T ), L1
x). The

following simple lemma gives the boundedness of the bilinear operator (3.2) on
XT × XT .

Lemma 3.4 (Boundedness of the bilinear operator). The bilinear operator (3.2)
is continuous on XT × XT , more precisely, we have

‖B(f, g)‖XT
≤ γ

γ − 1
ν− 1

γ T 1− 1
γ ‖∇K‖L∞

x
‖f‖XT

‖g‖XT
.
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Proof. By Minkowski’s inequality, Young’s equality we have

‖B(f, g)‖XT
≤

∥

∥

∥

∥

∫ t

0

(ντ)−
1
γ ‖f∇K ∗ g‖XT

dτ

∥

∥

∥

∥

L∞

t

≤ (ν)−
1
γ

∫ T

0

(τ)−
1
γ dτ‖f‖XT

‖g‖XT
‖∇K‖L∞

x

≤ (ν)−
1
γ

γ

γ − 1
T 1− 1

γ ‖∇K‖L∞

x
‖f‖XT

‖g‖XT
.

The lemma is proved. �

We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We choose T > 0 such that

4 · γ

γ − 1
· ν− 1

γ T 1− 1
γ ‖∇K‖L∞

x
‖u0‖L1

x
< 1.

Then by the inequality ‖S(t) ∗ u0‖XT
≤ ‖u0‖L1

x
, the strong continuity of the semi-

group S(t) in L1
x, the boundedness of the bilinear operator Lemma 3.4 and the fixed

point Lemma 3.3, we conclude that there exists a solution of the equation (3.1) in
the space XT . It only remains for us to prove the uniqueness part of Theorem 3.1.
Let T ′ > 0 be arbitrary and u1, u2 be two solutions of (3.1) with the same initial
data u0. Denote

M = max
{

‖u1‖XT ′
, ‖u2‖XT ′

}

.

Let T ′′ be sufficiently small such that

γ

γ − 1
· ν− 1

γ (T ′′)1−
1
γ ‖∇K‖L∞

x
M <

1

10
.

Then since u1 and u2 has the same initial data u0, we have by Lemma 3.4

‖u1 − u2‖XT ′′
≤ ‖B(u1, u1 − u2)‖XT ′′

+ ‖B(u1 − u2, u2)‖XT ′′

≤ 1

2
‖u1 − u2‖XT ′′

.

This implies that u1 ≡ u2 on [0, T ′′). A finite iteration of the argument then gives
u1 ≡ u2 on the whole time interval [0, T ′). The Theorem is proved. �

We now show that our constructed mild solution has additional regularity. This is
achieved by another contraction argument in the subspace of XT . We first formulate
a two-normed version of the fixed point Lemma 3.3.

Lemma 3.5 (Two-normed fixed point lemma). Assume that Z is a Banach space
endowed with the norms ‖ · ‖Z , ‖ · ‖X and seminorm ‖ · ‖Y such that

‖ · ‖Z = max{‖ · ‖X , ‖ · ‖Y }.
Let B : Z × Z → Z be a bilinear map such that for any x1, x2 ∈ Z, we have

‖B(x1, x2)‖Z ≤ C(‖x1‖Z‖x2‖X + ‖x1‖X‖x2‖Z),

and

‖B(x1, x2)‖X ≤ C‖x1‖X‖x2‖X .

Then for any y ∈ Z such that

8C‖y‖X < 1,

the equation x = y + B(x, x) has a solution in Z with ‖x‖Z ≤ 2‖y‖Z . Moreover by
Lemma 3.3 the solution is unique in the ball {z : ‖z‖X ≤ 2

C }.
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Proof. Again we construct the solution x by iteration. Define x0 = y and xn =
y + B(xn−1, xn−1) for n ≥ 1. Then since

‖xn‖Z ≤ ‖y‖Z + 2‖xn−1‖Z‖xn−1‖X

≤ ‖y‖Z + 4C‖y‖X‖xn−1‖Z ,

it is easy to prove by induction that ‖xn‖Z ≤ 2‖y‖Z . To show (xn) is Cauchy in Z
we calculate

‖xn+1 − xn‖Z ≤ ‖B(xn, xn − xn−1)‖Z + ‖B(xn − xn−1, xn−1)‖Z

≤ 4C‖y‖Z‖xn − xn−1‖X + 4C‖y‖X‖xn − xn−1‖Z .

From the proof of Lemma 3.3 we know that ‖xn−xn−1‖X ≤ θn for some constant
0 < θ < 1. This together with the fact that 4C‖y‖X < 1 and a few elementary
manipulations implies that ‖xn+1 − xn‖Z ≤ (θ′)n for another constant 0 < θ′ < 1.
This immediately shows that xn is Cauchy in Z and hence converges to a fixed
point x. �

In what follows, it is useful to consider the ‖ · ‖YT
norm of u defined by

‖u‖YT
:= ‖t 1

γ ∇u‖L∞

t L1
x([0,T )×Rn).

We first prove that the ‖ · ‖YT
norm of the bilinear operator (3.2) is bounded.

Lemma 3.6 (‖ · ‖YT
norm boundedness of the bilinear operator). The bilinear

operator (3.2) is bounded in the following sense:

‖B(f, g)‖YT
≤ (‖f‖YT

‖g‖XT
+ ‖f‖XT

‖g‖YT
) · ‖∇K‖L∞

x
· C1ν

− 1
γ · T

γ−1

γ ,

where C1 = C1(γ) is a positive constant depending only on γ.

Proof. We have

‖B(f, g)‖YT
= ‖t 1

γ ∇B(f, g)‖L∞

t L1
x([0,T )×Rn)

≤ ν− 1
γ

∥

∥

∥

∥

t
1
γ

∫ t

0

(t − τ)−
1
γ ‖(∇f · ∇K ∗ g)(τ)‖L1

x
dτ

∥

∥

∥

∥

L∞

t ([0,T ))

+ ν− 1
γ

∥

∥

∥

∥

t
1
γ

∫ t

0

(t − τ)−
1
γ ‖(f∇K ∗ ∇g)(τ)‖L1

x
dτ

∥

∥

∥

∥

L∞

t ([0,T ))

≤ (‖f‖YT
‖g‖XT

+ ‖f‖XT
‖g‖YT

) · ‖∇K‖L∞

x
· ν− 1

γ

∥

∥

∥

∥

t
1
γ

∫ t

0

(t − τ)−
1
γ τ− 1

γ dτ

∥

∥

∥

∥

L∞

t ([0,T ))

≤ (‖f‖YT
‖g‖XT

+ ‖f‖XT
‖g‖YT

) · ‖∇K‖L∞

x
· C1ν

− 1
γ T

γ−1

γ ,

where C1 is an constant depending only on γ. The lemma is proved. �

We can now upgrade the regularity of our constructed mild solution. We define
ZT ⊂ C([0, T ), L1

x) as a Banach space with the norm

‖u‖ZT
= max{‖u‖XT

, ‖u‖YT
}

= max{‖u‖L∞

t L1
x([0,T )×Rn), ‖t

1
γ ∇u‖L∞

t L1
x([0,T )×Rn)}.

Theorem 3.7 (Local well-posedness in ZT for the subcritical case). Let ν > 0
and 1 < γ ≤ 2. Assume the initial data u0 ∈ L1

x(Rn). Then there exists a time
T = T (‖u0‖L1

x
, ν, γ, ‖∇K‖L∞

x
) > 0 and a unique mild solution of (1.1) in the space

ZT . By Theorem 3.1 the uniqueness of the mild solutions holds in a larger space:
for any T ′ > 0, there exists at most one solution in the space C([0, T ′), L1

x(Rn))
with initial data u0 ∈ L1

x.
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Remark 3.8. As we will see in the proof below, the time of existence of the con-
structed mild solution has an upper bound of the form

T < C2 · ν
1

γ−1 ·
(

‖∇K‖L∞

x
‖u0‖L1

x

)− γ
γ−1 ,

where C2 = C2(γ) is a positive constant depending only on γ.

Proof of Theorem 3.7. We only need to prove the existence. The uniqueness part
is already in Theorem 3.1. Choose T > 0 such that

8C1 · ν− 1
γ T 1− 1

γ ‖∇K‖L∞

x
‖u0‖L1

x
< 1,

where C1 is the same constant as in Lemma 3.6. By the inequality ‖∇S(t)∗u0‖L1
x
≤

t−
1
γ ‖u0‖L1

x
, the boundedness of the bilinear operator Lemma 3.6 and the two-

normed fixed point Lemma 3.5, we conclude that there exists a solution of the
equation (3.1) in the space ZT . �

By a standard bootstrap argument, we can obtain the following corollary.

Corollary 3.9 (Maximal time of existence of solutions). Let ν > 0 and 1 < γ ≤ 2.
Assume the initial data u0 ∈ L1

x(Rn). Then there exists a maximal time of existence
T ∗ ∈ (0,∞] and a unique solution u ∈ C([0, T ∗), L1

x) ∩ C((0, T ∗),W 1,1
x ). Moreover

if T ∗ < ∞, then necessarily limt→T∗ ‖u(·, t)‖L1
x

= ∞.

Proof. This is a standard argument which follows from Theorem 3.7. �

By Corollary 3.9, to obtain a global solution, it suffices for us to control the
L1

x(Rn). Concerning positive initial data, the following result was originally proved
by Laurent [24] for the inviscid case ν = 0 and with different assumptions on the
initial data. By using time splitting approximation, it is straightforward to obtain
the same result for the dissipative case ν > 0. By another approximation argument,
we obtain the following

Lemma 3.10 (Persistence of positivity and L1 norm [24]). Let ν ≥ 0 and 1 < γ ≤
2. Assume u0 ∈ L1

x and u0 ≥ 0 for a.e. x. Then for each t ∈ [0, T ∗), the solution
u is nonnegative and ‖u(t)‖L1

x
= ‖u0‖L1

x
.

We are now ready to complete

Proof of Theorem 1.3. It follows directly from Corollary 3.9 and Lemma 3.10. �
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