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1 Definitions and an example

Definition 1. A star product [3, 4] on a manifold M is an R[[λ]]-bilinear associative
multiplication ∗ on C∞(M)[[λ]] for which:

1. 1 is a unit

2. u ∗ v can be expanded in the form

u ∗ v = u · v +
∑

r≥1

λrCr(u, v)

Condition 1 requires that every Cr satisfy Cr(u, 1) = Cr(1, u) = 0 for r ≥ 1. ∗
is called differential if the Cr(u, v) are differential operators. Under this condition,
Condition 1 then implies that locally constant functions are in the centre of the
deformed algebra (C∞(M)[[λ]], ∗)

Clearly
u ∗ v − v ∗ u = λ

(
C1(u, v) − C1(v, u)

)
+ O(λ2),

and we put
{u, v}∗ := C1(u, v) − C1(v, u).

This bracket { , }∗ is a Lie bracket on C∞(M) and a derivation in each argument.
In other words, { , }∗ is a Poisson bracket.

Question 1. For each Poisson bracket { , } on M , does there exist a star product ∗
on C∞(M)[[λ]] such that { , }∗ = { , }?

Theorem 1 (Kontsevich, 1997, [39]). For any Poisson bracket { , } on M , there
exists a star product ∗ satisfying { , }∗ = { , }.

We call such a star product a deformation quantisation of the given Poisson
bracket. When the Poisson bracket comes from a symplectic structure, then some
quite strong results are known about the existence and uniqueness of star prod-
ucts. The existence problem was solved in the early 1980’s (deWilde and Lecomte,
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[17]) using Čech theoretic methods, and more geometrically by Omori, Maeda and
Yoshioka [48] and Fedosov [20].

The difference between the symplectic case and the non-symplectic case can be
seen from the centre of the deformed algebra (C∞(M)[[λ]], ∗) which we shall write
as Z(M, ∗). We have seen that when ∗ is differential Z(M, ∗) contains all locally
constant functions. If

u = u0 + u1λ + u2λ
2 + · · · ∈ Z(M, ∗)

then u ∗ v − v ∗ u = 0 for each v ∈ C∞(M). If we write this out order by order then
at first order in λ, we have

{u0, v} = −Xv(u0) = 0 for all v ∈ C∞(M),

so u0 is central in the Poisson algebra. In the symplectic case the Xv span each
tangent space which means u0 is locally constant, that is u0 ∈ H0(M). In the
Poisson case the central functions only need to be constant on each symplectic leaf
so Z(M, ∗) can be very much larger.

If ∗ is a differential star product, then H0(M) ⊂ Z(M, ∗) and hence 1
λ
(u − u0) ∈

Z(M, ∗). We can apply this argument recursively to see that u1, u2, · · · ∈ H0(M)
when ∗ is differential. Therefore, we have

Z(M, ∗) = H0(M)[[λ]]

for differential star products on symplectic manifolds.
From now on we restrict attention to differential star products on symplectic

manifolds.

Example 1. Take Euclidean space R
2m with a symplectic form Ω = 1

2

∑
i,j Ωijdxi∧dxj

(Ωij are constants). Let Λij denote the inverse matrix of Ωij . Then the Poisson
bracket corresponding to Ω has the form

{u, v} =
∑

i,j

Λij ∂u

∂xi

∂v

∂xj

and a star product ∗M can be defined by

u ∗M v := uv +

∞∑

r=1

1

r!

(
λ

2

)r

Λi1j1 · · ·Λirjr
∂ru

∂xi1 · · ·∂xir

∂ru

∂xj1 · · ·∂xjr
.

This is the Moyal star product.

2 Symmetry

Symmetries should be defined as an automorphisms of (C∞(M)[[λ]], ∗). We call
σ : C∞(M)[[λ]] → C∞(M)[[λ]] a symmetry if
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1. σ is R[[λ]]-linear;

2. σ(1) = 1 and

σ(u ∗ v) = σ(u) ∗ σ(v) ∀u, v ∈ C∞(M)[[λ]]. (1)

We expand
σ(u) = σ0 + λσ1(u) + · · ·

for u ∈ C∞(M) (σi : C∞(M) → C∞(M)) and compare the terms of order 0 in λ in
Condition 2. σ0 must be an automorphism of C∞(M) and therefore there exists a
diffeomorphism τ : M → M with σ0(u) = u ◦ τ−1. Looking at terms of order 1 in
λ, τ preserves the Poisson bracket, and hence τ is a symplectomorphism (but this
τ does not preserve Cr for r ≥ 2 in general).

We can compare the star product ∗ and its pull-back by τ . In preparation we
make the following definition:

Definition 2. Let ∗1 and ∗2 be two star products on M with the same Poisson
bracket on C∞(M). We say ∗1 and ∗2 are equivalent if there exists T : C∞(M)[[λ]] →
C∞(M)[[λ]] satisfying the following condition:

1. T (1) = 1.

2. T can be written in the form

T = I + λ1T1 + λ2
1T2 + · · ·

with linear maps Tr : C∞(M) → C∞(M).

3. T satisfies

T (u ∗1 v) = T (u) ∗2 T (v), ∀u, v ∈ C∞(M)[[λ]].

Condition 1 is equivalent to the condition that Tr(1) = 0 for all r ≥ 1. T is called
an equivalence between ∗1 and ∗2.

Remark 1. If ∗1, ∗2 are differential and T is an equivalence between ∗1 and ∗2, then
each Tr is necessarily a differential operator.

If the automorphism σ : C∞(M)[[λ]] → C∞(M)[[λ]] has σ0(u) = u ◦ τ−1 then it
is easy to see that T (u) = σ(u ◦ τ) defines an equivalence between ∗ and the star
product τ ·∗ given by u (τ ·∗) v = ((u ◦ τ) ∗ (v ◦ τ)) ◦ τ−1. Thus

σ(u) = T (u ◦ τ−1)

and so symmetries are deformations of symplectomorphisms.
If we start with a given symplectomorphism τ and a deformation quantisation

∗ of the Poisson bracket, we can ask if σ0(u) = u ◦ τ−1 can be deformed into a
symmetry. This is clearly possible if and only if ∗ and τ ·∗ are equivalent.

Equivalence of star products has been studied by many people [5, 6, 37, 45, 58],
and we have a definitive result given by
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Theorem 2 (Deligne [15]). If (M, ω) is a symplectic manifold there is a bijection

{star products ∗ on M with { , }∗ = { , }}/equivalence −→
[ω]

λ
+ H2(M)[[λ]].

The series of cohomology classes c(∗) corresponding to the equivalence class of a
given star product ∗ is called the Deligne characteristic class of ∗ and is represented
by Fedosov’s central curvature for Fedosov star products [21], see Section 5 below.
See [30] for a Čech theory definition of the class. c is functorial for symplectomor-
phisms, so σ a symmetry of ∗ means that c(∗) is fixed by τ . This thus becomes a
necessary condition on a symplectomorphism for it to be deformable to a symmetry.

3 Infinitesimal symmetries

Let Der(M, ∗) denote the space of all R[[λ]]-linear derivations of (C∞(M)[[λ]], ∗), i.e.,
R[[λ]]-linear maps D : C∞(M)[[λ]] → C∞(M)[[λ]] satisfying

D(u ∗ v) = D(u) ∗ v + u ∗ D(v).

Example 2.
ad∗u (v) := u ∗ v − v ∗ u

is a derivation of (C∞(M)[[λ]], ∗) which begins with λXu. We set a(u) := 1
λ
ad∗u and

call it an almost inner derivation. It is a deformation of the adjoint representation
of the Poisson bracket.

We are assuming M is a symplectic manifold and ∗ is a differential star product.
Then the map u 7→ a(u) has kernel the centre of (C∞(M)[[λ]], ∗) and so we get an
exact sequence

0 −→ H0(M)[[λ]] −→ C∞(M)[[λ]]
a

−→ Der(M, ∗) −→ ?

We denote the image of a by Inn(M, ∗), the space of almost inner derivations.
Then Inn(M, ∗) ⊂ Der(M, ∗) and the sequence

0 −→ H0(M)[[λ]] −→ C∞(M)[[λ]]
a

−→ Inn(M, ∗) −→ 0

is exact.

Lemma 1. If H1(M) = 0, then

Inn(M, ∗) = Der (M, ∗).

Proof Let D ∈ Der (M, ∗). D can be written in the form

D(u) = D0(u) + λD1(u) + · · · .
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Since D0 is a derivation of C∞(M) and of { , },

LD0
ω = d(i(D0)ω) = 0.

Thus H1(M) = 0 implies i(D0)ω = du0.
Consider D − a(u0), which is a derivation of order λ.

D − a(u0) = λa(u1) + O(λ2).

By iterating, we get

D = a(u0) + λa(u1) + · · · = a(u0 + λu1 + · · · ).

For general M , take an open set U such that H1(U) = 0. Then D|U is a derivation
of C∞(U)[[λ]] and so by the Lemma there is u ∈ C∞(U)[[λ]] with D|U = a(u). u is
determined up to elements of H0(M)[[λ]] and so du is determined globally.

Different choices of open sets give 1-forms du which agree on overlaps, so the
1-forms piece together to give a global 1-form αD which is closed. Der (M, ∗) is thus
linearly bijective with Z1(M)[[λ]].

Let c(D) := [αD], then we have a sequence of maps

0 → H0(M)[[λ]] → C∞(M)[[λ]]
a
→ Der (M, ∗)

c
→ H1(M)[[λ]] → 0 (2)

Claim: (2) is an exact sequence of vector spaces.

To see this, take [α] ∈ H1(M)[[λ]], then α is locally exact, α|U = du with u
determined up to constants, and so a(u) is independent of the choice of u, so there
is a globally defined derivation D with D|U = a(u). It follows that c(D) = [α]
showing surjectivity of c. That Kerc = Ima follows by similar arguments.

In fact all the terms in this sequence have Lie algebra structures. On Der(M, ∗)
we take the commutator

[D1, D2] = D1 ◦ D2 − D2 ◦ D1.

Then
[

1

λ
ad∗ u,

1

λ
ad∗ v

]
=

1

λ2
ad∗(u ∗ v − v ∗ u) =

1

λ
ad∗

(
1

λ
(u ∗ v − v ∗ u)

)
.

Taking the bracket [u, v]∗ = 1
λ
(u ∗ v − v ∗ u) on C∞(M)[[λ]] makes a : C∞(M)[[λ]] →

C∞(M)[[λ]] into a homomorphism of Lie algebras. If U is a coordinate neighbourhood
with ui ∈ C∞(U)[[λ]] such that Di|U = a(ui), we have

[D1, D2]|U = a([u1, u2]).

ui is determined modulo central elements so [u1, u2]∗ is determined globally, and
hence [u1, u2]∗ = b(D1, D2)|U for some b(D1, D2) ∈ C∞(M)[[λ]]. Thus we get, as in
[7],

[D1, D2] = a(b(D1, D2))

and therefore we can the take zero bracket on H1(M)[[λ]]. This shows
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Theorem 3. The exact sequence of vector spaces (2) is an exact sequence of Lie
algebras with the brackets defined above.

If G is a Lie group of quantum symmetries,

σ : G −→ Aut(C∞(M)[[λ]], ∗)

then the leading term of σ gives a classical action τ of G on M and differentiation
gives a homomorphism

dσ : g −→ Aut(Der (M, ∗))

with dσ0(ξ) = ξ̃, the fundamental vector fields of the classical action on M , so

dσ(ξ) = ξ̃ + O(λ).

4 ∗-Hamiltonian actions

Consider the diagram

0 → H0(M)[[λ]] → C∞(M)[[λ]]
a
→ Der (M, ∗)

c
→ H1(M)[[λ]] → 0. (3)

↑ dσ

g

Question 2. Does there exist a homomorphism µ of Lie algebras µ : g → C∞(M)[[λ]]
such that the diagram (3) commutes? That is, dσ = a ◦ µ. If there is we call it a
quantum moment map and say the action is ∗-Hamiltonian.

When dσ(g) ⊂ Inn(M, ∗) then a linear map µ exists satisfying this condition and
we call the action almost ∗-Hamiltonian. Such a linear map µ will be guaranteed
to exist if H1(M)[[λ]] = 0 or g = [g, g] and the latter condition is equivalent to
H1(g) = 0.

If H2(g) = 0 and the action is almost ∗-Hamiltonian, then we can modify µ to
make it a homomorphism. This gives the Theorem

Theorem 4 (Ping Xu [59]). If H1(M) = 0 or H1(g) = 0, then any group G of
symmetries is almost ∗-Hamiltonian.

If H2(g) = 0, the ast-Hamiltonian can be chosen to be a homomorphism.
If H1(g) = 0, then the homomorphism is unique.

When µ is a quantum moment map

µ = µ0 + λµ1 + · · ·

then µ0 is a classical Hamiltonian for τ .
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5 Connections and Fedosov star products

Let (M, ω) be a symplectic manifold. A connection ∇ on M is called symplectic if

∇ω = 0, T∇ = 0.

The space of connections is an affine space whose underlying vector space is isomor-
phic to Γ(S3T ∗M).

Lichnerowicz [41] used connections to try to transfer the Moyal star product to
general manifolds, only this is spoilt by curvature, so this method is effective only in
the flat case. Fedosov showed how to find higher order terms to fix the associativity
in the non-flat case. This was published first in Russian and then much later in
[20]. The idea is to embed the tangent bundle in a larger bundle and modify the
symplectic connection to be flat in this larger bundle.

W: The formal Weyl bundle, a completion of S•T ∗M [[λ]].
Wx consists of formal functions on TxM , and the latter has a constant symplectic

form ωx, so we can put Moyal product on W fibrewise (which is denoted a ◦ b,
a, b ∈ ΓW).

Denote the connection in W induced by ∇ by ∂.

∂ : ΓW −→ Γ(W ⊗ Λ1).

So we can extend this ∂ to W ⊗ Λ∗ so as to satisfy

∂ ◦ ∂ = [R̄, a]0.

Here, using the summation convention,

R̄ =
1

4
ωrlR

l
ijky

rykdxidxj

where yj ∂
∂xj is a point in TxM .

Look for D with D = ∂ + higher order terms such that D is still a derivation of
W and D ◦ D = 0 holds.

Then D can be taken in the form

D(a) := ∂a − δa − [r, a]0

(
δa := dxk ∧

∂a

∂yk

)

with r a W-valued 1-form. Then D ◦ D(a) = [R̄ + δr − ∂r + 1
2
[r, r]0, a]0 so R̄ +

δr − ∂r + 1
2
[r, r]0 should be in the centre to give D ◦ D = 0. This means it must

be constant in y, so is a series of 2-forms on M . Therefore, taking a series of closed
2-forms Ω = Ω0 + λΩ1 + · · · we try to solve

R̄ + δr − ∂r +
1

2
[r, r]0 = Ω
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for r.
We can define δ̄ so

(δδ̄ + δ̄δ)a = a − a00 (apq ∈ Sp ⊗∧q).

Then applying δ̄ we try to solve r = δ̄(Ω − R̄ + ∂r − 1
2
{r, r]) recursively. This can

be done in a unique way with the above choices.
D is a derivation of ΓW so

ΓDW = {a ∈ ΓW; Da = 0}

is a subalgebra of ΓW.

Theorem 5 (Fedosov [21]). Let (M, ω) be a symplectic manifold. a 7→ a0 is
a linear isomorphism ΓDW → C∞(M)[[λ]]. Let Q be the reverse mapping of this
isomorphism. Then u ∗ v = Q−1(Q(u) ◦Q(v)) defines a star product ∗ = ∗∇,Ω on M
with Deligne class [ω

λ
] + [Ω].

This Theorem does not give all star products, but some special representatives
∗∇,Ω of each equivalence class, along with a specific representative of its Deligne
class. Note also that the construction is covariant for symplectomorphisms

τ · ∗∇,Ω = ∗τ ·∇,τ ·Ω.

It follows by differentiating this formula that a vector field X on M will be a deriva-
tion of ∗∇,Ω if LX∇ = 0 (so X is an infinitesimal affine transformation), LXω = 0
and LXΩ = 0. Since ω + λΩ is closed then i(X)(ω + λΩ) is closed. Is it exact?

Theorem 6 (Kravchenko [40], Gutt–Rawnsley [32]). If (M, ω) is a symplectic
manifold then X is an almost inner derivation of ∗∇,Ω if and only if LX∇ = 0 and
there exists µ ∈ C∞(M)[[λ]] with

i(X)(ω + λΩ) = dµ.

In this case X(u) = a(u) = 1
λ
(µ ∗ u − u ∗ µ).

One may ask if there is an analogue of Theorem 6 for more general star products.
For completely general star products, results are not known. There is however a
class of star products which contains all the know explicit constructions and for
which we have a result.

Definition 3. A star product ∗ is said to be natural if the coefficients Cr(u, v) are
differential operators of order at most r in each variable.

Remark 2. We could define a notion of natural to order k if the condition above
holds for Cr for all r ≤ k. Many of our results only require natural to order 2.
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Theorem 7 (Gutt-Rawnsley [32]). If ∗ is natural (to order 2) there is a unique
symplectic connection ∇ such that

C1 =
1

2
{ , } − dE,

C2 = −
1

2
[E, dE] +

1

2
[E, { , }] +

1

8
Λ2(∇2,∇2) + A2

where d denotes the Hochschild coboundary, [ , ] the Gerstenhaber bracket, E is a
differential operator of order at most 2, A2 is skewsymmetric and

Λ2(∇2u,∇2v) = ΛijΛi′j′∇i∇i′u∇j∇j′v.

with Λij the Poisson tensor determined by the symplectic form ω.

This result is due to Lichnerowicz in the case where C1 is skewsymmetric so
E = 0.

If we have a representative Ω of the class of the natural star product ∗ then ∗ is
equivalent to ∗∇,Ω where ∇ is given by the Theorem. In fact one can see that the
equivalence can be determined recursively in the form exp E with E =

∑
r≥1 λrEr

and Er of order ≤ r + 1. This argument can be improved using a method of
Bertelson–Cahen–Gutt to determine the 2-form Ω recursively at the same time and
leads to a complete parametrisation of natural star products.

Theorem 8 (Gutt-Rawnsley [32]). Given a natural star product ∗ there exist
uniquely

• a symplectic connection ∇;

• a formal series of closed 2-forms Ω = Ω0 + λΩ1 + · · · ;

• a formal series of differential operators E =
∑

r≥1 λrEr of the form

Eru =
r+1∑

k=2

E(k)i1...ik
r ∇i1 · · ·∇iku

such that u ∗ v = exp−E ((exp Eu) ∗∇,Ω (exp Ev)).

Denote this star product by ∗ = ∗∇,Ω,E then for any symplectomorphism τ

τ · ∗∇,Ω,E = ∗τ ·∇,τ ·Ω,τ ·E.

We then generalise Theorem 6 from Fedosov star products to natural star prod-
ucts:

Theorem 9 (Gutt–Rawnsley [32]). If (M, ω) is a symplectic manifold then X is
a derivation of a natural star product ∗ = ∗∇,Ω,E if and only if LX∇ = 0, LXω = 0,
LXΩ = 0, and LXE = 0. X is almost inner if and only if there is a formal series
of functions ρ with i(X)(ω + λΩ) = dρ and then X = a(µ) with µ = exp−E ρ.

Finally, the bibliography which follows contains a good overview of the theory
surrounding my lectures. Not all entries were referred to in these notes.
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