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Abstract We develop an explicit theory of congruence subgroups, their
cusps, and Manin symbols for arbitrary number fields. While our motiva-
tion is in the application to the theory of modular symbols over imaginary
quadratic fields, we give a general treatment which makes no special assump-
tions on the number field.

1 Introduction

Let K be a number field with ring of integers R. When K = Q or K is
an imaginary quadratic field, spaces of cusp forms for GL(2,K) have been
computed using methods based on modular symbols. These methods are well
known for K = Q: see the books of the first author [6] and Stein [11] for
detailed accounts. In the case of imaginary quadratic fields with small class
number, modular symbol methods have been developed by the first author
and his students: see [4], [2] and [8], following earlier work of Manin, Mennicke
and others. While modular symbols as such are not sufficient for explicit
computation of more general automorphic forms (see the introduction to [7]
for a discussion of this point), some of the algebraic background concerning
congruence subgroups and the projective line over finite residue rings, whose
elements are often called Manin symbols or M-symbols in this context, is
relevant in more situations than computations with modular symbols over
the rationals or imaginary quadratic fields.
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In this paper we give a systematic treatment of the algebraic theory of
congruence subgroups and Manin symbols over arbitrary number fields. For
the most part, we only need assume that R is a Dedekind domain, and do
not make use of any special properties enjoyed by the ring of integers of
a number field; however we do give some counting formulas which rely on
finiteness of the class group and of residue rings. This framework has already
been useful in explicit computation of cusp forms over imaginary quadratic
fields, which can be done using either the homology or the cohomology of
Bianchi groups acting on hyperbolic 3-space, and we expect that our results
will have wider application, though we will not discuss such applications
(including the function field case) further here.

In a sequel to this paper, we will show how, in the case of imaginary
quadratic fields, these ideas may be used in the explicit computation of au-
tomorphic forms over imaginary quadratic fields, giving connections to the
adelic language in which such forms are normally defined, showing in partic-
ular how Hecke and Atkin-Lehner operators may be computed explicitly. See
the contribution by A. Mohamed in this volume for related material about
modular and Manin symbols over imaginary quadratic fields, including for-
mulas for the action of Hecke operators on Manin symbols in the case of
Euclidean imaginary quadratic fields, and also the work of Şengün ([9] and
the survey article in this volume).

The main results of the paper are: criteria for cusp equivalence under the
congruence subgroups Γ0(n) (Theorem 6) and Γ1(n) (Theorem 9), and the
number of cusps for Γ0(n) (Theorem 7). The cusp equivalence criteria are
given in a form suitable for implementation, and algorithms based on the
results of this paper, including tests for cusp equivalence and enumeration of
Manin symbols over arbitrary number fields, have been implemented by the
second author in the Sage open-source mathematical software system [12].

After setting basic notation, we define in Section 2 a special class of 2× 2
matrices over a number field K called (a, b)-matrices, which are used through-
out the paper. They are used to generalise the definition of Manin symbols
(also called M-symbols) to K in Section 3. In Section 4 we study cusps and
cusp equivalence with respect to the standard congruence subgroups, giving
criteria for equivalence and a result giving the number of cusps for congru-
ence subgroups; the proofs here also use (a, b)-matrices. These results, which
depend critically on the class group of K, generalise classical results over Q.

Notation and basic definitions

We denote by R a Dedekind Domain with field of fractions K. Let Mat2(K)
and Mat2(R) be the algebras of 2 × 2 matrices with entries in K and R
respectively, and GL(2,K) and Γ = GL(2, R) their multiplicative groups.
Let R∗ be the set of nonzero elements of R, and R× the unit group.
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Nonzero ideals of R will be denoted a, b, . . . , n and prime ideals by p, q.
The norm of an ideal is N(a) = #(R/a), which we assume throughout to be
finite. We have N(ab) = N(a)N(b) for all a, b, and #(R/a)× = ϕ(a), where

ϕ(a) = N(a)
∏
p|a

(
1−N(p)−1

)
.

Associated to each nonzero integral ideal n of R, we have the standard
congruence subgroups of level n of GL(2, R), denoted Γ0(n), Γ1(n) and Γ (n).
We will mainly be concerned with Γ0(n) and Γ1(n) here:

Γ0(n) =

{(
a b
c d

)
∈ Γ | c ∈ n

}
;

Γ1(n) =

{(
a b
c d

)
∈ Γ | c, d− 1 ∈ n

}
.

Note that as we are using Γ = GL(2, R) as our base group, not SL(2, R), we
define Γ0(n) and Γ0(n) accordingly. We have [Γ : Γ0(n)] = ψ(n), where

ψ(n) = N(n)
∏
p|n

(
1 +N(p)−1

)
,

and [Γ0(n) : Γ1(n)] = ϕ(n). Both ϕ and ψ are multiplicative in the sense
that ϕ(mn) = ϕ(m)ϕ(n) when m, n are coprime, and similarly for ψ. This
multiplicativity, and the index formulas, are proved exactly as for K = Q.

We will use several standard facts about finitely generated modules over
the Dedekind Domain R: a suitable reference for these, including many rele-
vant algorithms, is the first chapter of Cohen’s book [3]. Specifically we will
be concerned with R-lattices, which we define to be projective (locally free)
R-submodules of K ⊕K of rank 2. Elements of R-lattices (and indeed all
elements of K ⊕K) are row vectors, with matrices acting on the right.

The group Γ may be characterized through its action on R-lattices, as the
set of all matrices γ ∈ GL(2,K) satisfying (R⊕R)γ = R⊕R. There is a
similar characterization of Γ0(n), whose proof is immediate.

Proposition 1.

Γ0(n) = {γ ∈ Γ | (n⊕R)γ = (n⊕R)}
= {γ ∈ GL(2,K) | (R⊕R)γ = R⊕R and (n⊕R)γ = (n⊕R)}.

In the above we could also replace n⊕R by R⊕n−1. Thus Γ0(n) is the right
stabilizer of the pair of lattices (L,L′) where L = R⊕R and L′ = R ⊕ n−1.
A pair of lattices (L,L′) satisfying L′ ⊇ L and L′/L ∼= R/n (as R-modules) is
called a modular point for Γ0(n); these will be studied in detail in the sequel
to this paper.
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To characterize Γ1(n) in the same way, we need to rigidify the lattice
pair (L,L′) by fixing an R-module generator of the cyclic quotient L′/L,
which is isomorphic to R/n. Let n ∈ n−1 generate n−1/R, so that n−1 =
R + Rn, and let β = (0, n) ∈ L′. Then L′ = L + Rβ, and Γ1(n) is the
subgroup of Γ fixing β (mod L), since

Γ1(n) = {γ ∈ GL(2,K) | (R⊕R)γ = R⊕R and βγ = β (mod R⊕R)};

this follows from nx ∈ R ⇐⇒ x ∈ n, for x ∈ R. This characterization
of Γ1(n) is independent of the choice of β such that L′ = L + Rβ. When
R = Z and n = NZ, one usually takes n = 1

N .

For a, b ∈ K we denote by 〈a〉 and 〈a, b〉 the (fractional) ideals aR and
aR + bR. For an ideal or fractional ideal a we denote its class in the class
group Cl(K) by [a]. Among the elementary properties of Dedekind Domains
we will use are the following.

• For any ideal a and any nonzero a ∈ a there exists b ∈ a with a = 〈a, b〉;
• Every ideal class contains an ideal coprime to any given ideal.

2 (a, b)-matrices

In our discussion of M-symbols and cusp equivalence later in this paper,
and of Hecke and other operators in the sequel, certain matrices in Mat2(R)
will play an important role. Over Q, or more generally when K has class
number 1, these matrices are not visible, as their role is played by elements
of Γ = GL(2, R) itself in discussions of cusp equivalence, while in Hecke
theory their role is played by matrices in Hermite Normal Form. They will
be used in the following section to define M-symbols; in the discussion of
cusps and cusp equivalence in the final section, their use stems from the fact
that every cusp has the form M(∞) for one of these matrices M .

We will define these special matrices below, after some preliminary re-
marks. They are associated with any pair of ideals a, b which are in inverse
ideal classes, i.e. with [b] = [a]−1 in Cl(K), so that ab is principal.

The following two results are well known from the structure theory of
finitely generated projective R-modules [3, Lemma 1.2.20].

Proposition 2. Let a, b be ideals of R. Then a⊕ b ∼= ab⊕R as R-modules.

Corollary 1. Let a, b be ideals in inverse classes. Then a⊕ b ∼= R⊕R.

We will need a very explicit and constructive form of this corollary. Observe
that any R-module isomorphism R⊕R → a ⊕ b is necessarily given by a
matrix M ∈ Mat2(R) such that

(R⊕R)M = a⊕ b.
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We define an (a, b)-matrix to be a matrix M ∈ GL2(R) satisfying this con-
dition, and denote the set of all (a, b)-matrices by Xa,b. Note that (a, b)-
matrices are only defined when ab is principal. We will now see how to to
construct them.

Theorem 1. Let a, b be ideals in inverse classes. Write a = 〈a1, a2〉, let g be
a generator of the principal ideal ab, and write g = a1b2−a2b1 with b1, b2 ∈ b.

Then M =

(
a1 b1
a2 b2

)
is an (a, b)-matrix.

Proof. Since each row of M lies in a⊕b, clearly (R⊕R)M ⊆ a⊕b. Conversely,
if (a3, b3) ∈ a⊕ b then (a3, b3) = (x, y)M where

(x, y) = (a3, b3)M−1 = g−1(a3b2 − a2b3, a1b3 − a3b1) ∈ R⊕R

since all aibj ∈ ab = 〈g〉. ut

From the above proof we see that (a, b)-matrices exist whose first column
is an arbitrary pair of generators of a. In particular, the lower left entry may
be chosen to be any nonzero element of a. For an integral ideal n, we say that
an (a, b)-matrix has level n if its lower left entry lies in an.

In the case a = b = R, an (a, b)-matrix is simply an element of Γ and
(a, b)-matrices of level n are precisely elements of Γ0(n). The preceding con-
struction generalizes the familiar construction of a unimodular matrix with
any prescribed first column of coprime elements.

Let

∆(a, b) =

{(
x y
z w

)
| x,w ∈ R, y ∈ a−1b, z ∈ ab−1, xw − yz ∈ R×

}
.

Note that ∆(a, b) = Γ when a = b, and more generally that

b | a =⇒ ∆(a, b) ∩ Γ = Γ0(ab−1).

Just as Γ is the stabilizer of the lattice R⊕R, we have the following general-
ization, whose proof is straightforward. In some texts (for example [13]) the
group ∆(a, b) is denoted GL(a⊕ b); our notation is chosen in order to allow
subscripts for certain subgroups to be defined shortly.

Proposition 3. Let a and b be two ideals (not necessarily in inverse ideal
classes). Then for γ ∈ GL(2,K),

(a⊕ b)γ = a⊕ b ⇐⇒ γ ∈ ∆(a, b),

and more generally,

(a⊕ b)γ = (a⊕ b)γ′ ⇐⇒ γ′γ−1 ∈ ∆(a, b).
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We will need the following subgroups of ∆(a, b):

∆0(a, b) =

{(
x y
0 w

)
| x,w ∈ R, y ∈ a−1b, xw ∈ R×

}
;

∆1(a, b) =

{(
1 y
0 w

)
∈ ∆(a, b)

}
;

∆1,1(a, b) =

{(
1 y
0 1

)
∈ ∆(a, b)

}
=

{(
1 y
0 1

)
| y ∈ a−1b

}
;

these satisfy ∆1,1(a, b) ⊆ ∆1(a, b) ⊆ ∆0(a, b) ⊆ ∆(a, b).
For each pair of ideals a, b in inverse classes, the set Xa,b is clearly closed

under multiplication by elements of Γ on the left and by elements of ∆(a, b)
on the right. Moreover, a simple calculation establishes that the resulting
group actions are transitive, giving us the following description.

Theorem 2. Let M0 ∈ Xa,b. Then

Xa,b = ΓM0 = M0∆(a, b).

The orbit of M0 under ∆1(a, b) is the set of (a, b)-matrices with the same
first column as M0, while its orbit under ∆1,1(a, b) is the set of those with
same first column and same determinant.

If a and b are both principal, one choice for a representative (a, b)-matrix
is a diagonal matrix.

A more general version of Proposition 3 is the following, whose proof is
again straightforward.

Proposition 4. M is an (a, b)-matrix of level n if and only if

(R⊕R)M = a⊕ b and (n⊕R)M = an⊕ b.

We next consider the set of (a, b)-matrices under the action of Γ0(n) on
the left. The following is a generalization of [6, Lemma 2.2.1], which is the
special case when a = b = R = Z. When a = b = R we obtain a criterion
(see Proposition 6 below) for two elements of Γ to lie in the same right coset
of Γ0(n), which is used in computations with modular symbols. We will also
use this rather technical result in the definition of Manin symbols in the
next section (using the equivalence of statements (1)–(3)), and in the study
of Γ0(n)-equivalence of cusps in the final section (using the equivalence of
statements (1) and (4)).

Theorem 3. Let a, b be ideals in inverse classes, and let M =

(
a1 b1
a2 b2

)
and M ′ =

(
a′1 b

′
1

a′2 b
′
2

)
be two (a, b)-matrices. Then the following statements

(1)–(3) are equivalent:
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1. M ′ = γM for some γ ∈ Γ0(n).
2. a′2b2 ≡ a2b′2 (mod abn).
3. There exists u ∈ R coprime to n such that

(a) ua2 ≡ a′2 (mod an), and
(b) ub2 ≡ b′2 (mod bn).

Each of the preceding statements also implies

4. There exist u ∈ R coprime to n and v ∈ R× and a divisor d of n such that
the following hold:

(a) 〈a2〉+ an = 〈a′2〉+ an = ad;
(b) ua2 ≡ a′2 (mod an);
(c) va1 ≡ ua′1 (mod ad).

Conversely, if (4) holds, then there exists γ ∈ Γ0(n) such that γM =

M ′
(

1 w
0 1

)
with w ∈ a−1b, so that γM is another (a, b)-matrix with the same

first column and determinant as M ′.

Proof. Let g = detM , so ab = 〈g〉 and detM ′ = vg with v ∈ R×, and let

γ = M ′M−1, so det γ = v and γ ∈ Γ by Theorem 2. Write γ =

(
w x
y u

)
. Then

y = g−1(a′2b2 − a2b′2),

so γ ∈ Γ0(n) ⇐⇒ y ∈ n ⇐⇒ (2) holds, showing that (1) and (2) are
equivalent.

Now assume (1) and (2). The diagonal entries of γ are w = g−1(a′1b2−b′1a2)
and u = g−1(a1b

′
2 − b1a

′
2), so uw ≡ v (mod n) and hence u is invertible

modulo n. The bottom row of M ′ = γM now gives

(a′2, b
′
2) = (ya1 + ua2, yb1 + ub2)

and hence (3) holds. This also show that (1) implies (4b). Moreover, a′2 =
ya1+ua2 ∈ an+〈a2〉 implies an+〈a′2〉 ⊆ an+〈a2〉, so by symmetry an+〈a2〉 =
an + 〈a′2〉 = ad for some d | n, giving (4a). Finally, (4c) follows from

va1 − ua′1 = (uw− xy)a1 − u(wa1 + xa2) = −x(a1y+ ua2) ∈ an+ 〈a2〉 = ad.

Now assume (3). Then ua2b
′
2 ≡ a′2b

′
2 ≡ ua′2b2 (mod abn), so ua2b

′
2/g ≡

ua′2b2/g (mod n). Since u is coprime to n we may divide by u on both sides
and then multiply by g again to give (2).

Finally, assume (4). We first show that ub2 ≡ b′2 (mod bd):

(ub2 − b′2)gv = ub2(a′1b
′
2 − a′2b′1)− vb′2(a1b2 − a2b1)

= b2b
′
2(ua′1 − va1) + va2b1b

′
2 − ua′2b′1b2 ∈ dab2,
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since ua′1 − va1 ∈ ad and a2, a
′
2 ∈ 〈a2〉 + an = ad. Dividing by gv gives

ub2 − b′2 ∈ bd as required.
If we had ub2 − b′2 ∈ bn then the hypotheses of (3) would be satisfied and

we could conclude. However, since

bd = a−1bad = a−1b(〈a′2〉+ an) = a−1b 〈a′2〉+ bn,

there exists w ∈ a−1b such that ub2 − (wa′2 + b′2) ∈ bn. Setting M ′′ =

M ′
(

1 w
0 1

)
=

(
a′1 b

′′
1

a′2 b
′′
2

)
with b′′2 = wa′2 + b′2, we have ub2 − b′′2 ∈ bn, so (3)

holds with M ′′ in place of M ′, as required. ut

3 Manin symbols

We continue to work with pairs of ideals a, b of R in inverse ideal classes.
We have seen that the first column of an (a, b)-matrix can be any pair of

elements which generate a. We next characterize which pairs (a, b) ∈ a ⊕ b
occur as a row of an (a, b)-matrix; equivalently, which elements of a⊕ b form
part of an R-basis for this free module.

Proposition 5. Let a, b be ideals in inverse classes. A pair (a, b) ∈ a ⊕ b
occurs as a row of an (a, b)-matrix if and only if

aa−1 + bb−1 = R;

that is, if and only if the integral ideals aa−1 and bb−1 are coprime.

Proof. The stated condition is equivalent to ab + ba = ab, and hence to

g ∈ ab + ba, where g is generator of ab. If

(
a1 b1
a2 b2

)
is an (a, b)-matrix with

determinant g, then g = a1b2 − b1a2 ∈ a1b + b1a, so (a1, b1) satisfies the
condition; similarly so does (a2, b2). Conversely, if g ∈ ab + ba, write g =

ab2 − ba2 with a2 ∈ a and b2 ∈ b, and then

(
a b
a2 b2

)
is an (a, b)-matrix. ut

Proposition 6. Let γi =

(
ai bi
ci di

)
∈ Γ for i = 1, 2. Then

Γ0(n)γ1 = Γ0(n)γ2 ⇐⇒ c1d2 ≡ c2d1 (mod n).

Proof. This follows from (1) ⇐⇒ (2) in Theorem 3, taking a = b = R and
Mi = γi. ut

The set of coprime pairs (c, d) ∈ R⊕R modulo the equivalence relation

(c1, d1) ∼ (c2, d2) ⇐⇒ c1d2 ≡ c2d1 (mod n)
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is simply P1(R/n). Its elements have been called M-symbols or (c : d)-symbols
of level n, and have been extensively used in explicit computations with mod-
ular symbols: see [6] or [11], for example, for the case K = Q, and [4] for when
K is imaginary quadratic of class number one.

We now define, more generally, M-symbols of level n and type (a, b). In our
applications we will always be free to choose ideals representing each ideal
class, which simplifies the definition: thus we now restrict to the situation
where ab and n are coprime. Assuming this, an M-symbol of level n and
type (a, b) is defined to be an equivalence class of pairs (a, b) ∈ a⊕b satisfying
aa−1 + bb−1 = R, modulo the equivalence relation

(a, b) ∼ (a′, b′) ⇐⇒ ab′ ≡ a′b (mod n)

⇐⇒


there exists u ∈ R coprime to n such that

ua ≡ a′ (mod n)

ub ≡ b′ (mod n).

Thus M-symbols of type (R,R) are just elements of P1(R/n); these will be
called principal M-symbols.

In the more general situation where we do not assume that ab and n are
coprime, the correct equivalence relation would be as follows.

(a, b) ∼ (a′, b′) ⇐⇒ ab′ ≡ a′b (mod abn)

⇐⇒


there exists u ∈ R coprime to n such that

ua ≡ a′ (mod an)

ub ≡ b′ (mod bn).

The set of M-symbols of level n and type (a, b) is in bijection with the orbit
space Γ0(n)\Xa,b, by Proposition 5 and Theorem 3. Since Γ acts transitively
on Xa,b by Theorem 2, and [Γ : Γ0(n)] = ψ(n), we deduce the following.

Proposition 7. For every pair of ideals a, b in inverse classes, the number
of M-symbols of level n and type (a, b) is ψ(n).

Below we will use M-symbols to count the number of Γ0(n)-orbits on cusps.
For this it will be useful to able to normalize them in certain ways. The next
result generalizes [2, Lemmas 24 and 25] for principal M-symbols and the
special case for K = Q in [6].

Proposition 8. Let a, b be ideals in inverse classes which are both coprime
to n. Given (a, b) ∈ a⊕b such that aa−1 + bb−1 +n = R, there exist (a′, b′) ∈
a⊕ b such that a′ ≡ a (mod n), b′ ≡ b (mod n) and a′a−1 + b′b−1 = R.

In other words, in the definition of M-symbols of type (a, b) and level n there
is no harm in relaxing the condition that aa−1 + bb−1 = R to the weaker
condition that aa−1 + bb−1 is coprime to n.
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Proof. We follow the proof of [2, Lemma 25].
Assume that b 6= 0 (otherwise interchange the roles of a and b). We will

take b′ = b and a′ = a+ c where c ∈ an is chosen appropriately.
Let q be the product of the (finite) set of prime ideals which divide bb−1 but

not aa−1. Choose r coprime to bb−1 in the inverse class to anq, so anqr = 〈c〉
with c ∈ an. It remains to show that bb−1 and a′a−1 are coprime. Let p be a
prime dividing bb−1; we show that ap - a′.

If p | aa−1 then p - q (by construction of q), p - n (by hypothesis), and p - r
(by construction of r), so p - ca−1 = nqr. Hence ap - c, but ap | a so ap - a′.

If p - aa−1 then p | q and hence p | ca−1 = nqr, so ap | c. But ap - a, so
again ap - a′. ut

4 Cusps and cusp equivalence

Some of the material in this section appeared in [4, Lemma 2.2.7] for the
case of trivial class group, and in the theses of Bygott [2, §1.5] and Lingham
[8, §1.4–1.5] for the general case. The results for Γ1(n) are from the second
author’s thesis [1]. Also, for K totally real (which makes no difference in
our context) some of this material may be found in the literature on Hilbert
Modular Forms and related matters: see [13], for example.

By a cusp of GL2(K) (or simply, a cusp of K) we mean an element of
P1(K), identified as usual with K ∪ {∞}.

Over Q, or a field K with trivial class group, we may represent cusps in
the form a/b where a, b ∈ R are coprime, and we allow b = 0 for the cusp ∞;
this representation is unique up to multiplication of a and b by a unit of R.

We may then regard the column vector

(
a
b

)
as the first column of a matrix

in Γ , and study the action of Γ and its subgroups on the set P1(K) via its
action by left multiplication on Γ itself. In the general case we replace this
action by left multiplication on (a, b)-matrices.

Cusps may be always represented1 in the form a/b with a, b ∈ R not
both zero, but this representation is far from unique. We do not attempt to
normalize the representation of cusps, but instead we allow arbitrary repre-
sentatives. To each representation α = a/b, we may associate the ideal 〈a, b〉
and its class [〈a, b〉]. Given two representatives a/b and a′/b′ for the same
cusp α ∈ P1(K), the ideals 〈a, b〉 and 〈a′, b′〉 need not be equal but they have
the same class:

Proposition 9. If a/b = a′/b′ ∈ P1(K) then [〈a, b〉] = [〈a′, b′〉]. Moreover,
given any ideal a in the class [〈a, b〉], there is a representative a′/b′ of the
cusp a/b whose ideal is 〈a′, b′〉 = a.

1 We avoid the common notation (a : b) in order to avoid confusion with M-symbols.
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Proof. From a/b = a′/b′ we have ab′ = a′b. If b = 0 then b′ = 0 and vice versa,
and in this case both ideal classes are trivial. Otherwise we have b′ 〈a, b〉 =
〈a′, b′〉 b so that [〈a, b〉] = [〈a′, b′〉].

If [a] = [〈a, b〉] then there exist nonzero c, d ∈ R with da = c 〈a, b〉, so
a = 〈a′, b′〉 with a′ = ca/d, b′ = cb/d ∈ a ⊆ R, and a/b = a′/b′ ∈ P1(K). ut

Hence we have a well-defined class [α] ∈ Cl(K) for each cusp α ∈ P1(K),
and for every ideal a ∈ [α], there is a representative α = a/b with 〈a, b〉 = a.
If two representatives a/b, a′/b′ have the same ideal a = 〈a, b〉 = 〈a′, b′〉
then there is a unit u ∈ R× with a′ = ua, b′ = ub; for we may define
u = a′/a = b′/b (omitting one of these if a = a′ = 0 or b = b′ = 0), and then
ua = a so u ∈ R×.

We now consider the actions of Γ , Γ0(n) and Γ1(n) on the set of cusps (by

linear fractional transformations), and on the set of representatives

(
a
b

)
∈

R2 \ {0} (by left multiplication). The natural map π : R2 \ {0} → P1(K)

sending

(
a
b

)
7→ a/b is clearly Γ -equivariant.

Cusp equivalence under Γ

Theorem 4. The ideal 〈a, b〉 associated to

(
a
b

)
is Γ -invariant. Conversely,

if 〈a, b〉 = 〈a′, b′〉 then there exists γ ∈ Γ such that γ

(
a
b

)
=

(
a′

b′

)
.

Proof. If

(
a′

b′

)
= γ

(
a
b

)
with γ ∈ Γ , then a′, b′ ∈ 〈a, b〉, so 〈a′, b′〉 ⊆ 〈a, b〉,

and the situation is symmetric so 〈a′, b′〉 = 〈a, b〉.
For the second part, let a = 〈a, b〉 = 〈a′, b′〉, let b be an ideal in the

inverse class to a, and let g be a generator of ab. Let M1 and M2 be (a, b)-

matrices with determinant g and first columns

(
a
b

)
and

(
a′

b′

)
respectively.

Then γ = M2M
−1
1 ∈ Γ and from γM1 = M2 we have γ

(
a
b

)
=

(
a′

b′

)
. ut

The following result is classical and was certainly known in the 19th cen-
tury to Hurwitz, Humbert, Bianchi and others. It also appears in the liter-
ature on Bianchi and Hilbert modular forms (see Proposition 1.1 in van der
Geer [13]).

Theorem 5. The association α 7→ [α] defines a bijection Γ\P1(K)→ Cl(K).

Proof. The map α = a/b 7→ [〈a, b〉] induces a well-defined map Γ\P1(K) →
Cl(K) by Proposition 9, which is obviously surjective. It is injective since
if a/b and a′/b′ have the same class then by Proposition 9 we may assume
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they have the same ideal, and then Theorem 4 says that they are in the same
Γ -orbit. ut

When the class group is trivial one normally chooses representatives for
cusps “in lowest terms”, i.e., as a/b with 〈a, b〉 = 〈1〉 = R. In any case, we
can always choose representatives whose ideal is coprime to any given ideal,
such as the level.

For α = a/b ∈ P1(K), we define the denominator ideal of α, denoted d(α),
to be the ideal 〈b〉 / 〈a, b〉. The denominator ideal is independent of the rep-
resentation α = a/b. For α 6= 0,∞ we may write the principal fractional
ideal αR uniquely as αR = ab−1 with a, b coprime integral ideals, and then
d(α) = b. In this notation we have [a] = [b] = [〈a, b〉]−1. b 〈a, b〉 = 〈b〉. If
α 6= ∞, then d(α) = {b ∈ R | bα ∈ R} = R ∩ α−1R, so d(α) is the set of all
denominators of representatives of α.

Cusp equivalence under Γ0(n)

Fix a nonzero ideal n. We now describe the orbits of P1(K) under Γ0(n).
To each cusp α, we assign the ideal dn(α) = d(α) + n, a divisor of n. We

will see in Theorem 6 below that this is well-defined and Γ0(n)-invariant.
Thus, two necessary conditions for cusps α, α′ to be Γ0(n)-equivalent are
that [α] = [α′] and dn(α) = dn(α′). It remains to see how to distinguish cusps
in the same class and with same value of dn(α), and to count them.

The following condition for cusps in the same class to be Γ0(n)-equivalent
is a generalization of [6, Lemma 2.2.3]; most of the work has already been
done in Theorem 3.

Theorem 6. Let α, α′ be two cusps in the same ideal class. Choose represen-
tatives α = a1/a2 and α′ = a′1/a

′
2 with the same ideal a = 〈a1, a2〉 = 〈a′1, a′2〉.

Then the following are equivalent:

1. There exists γ ∈ Γ0(n) such that γ(α) = α′;
2. There exist u ∈ R coprime to n and v ∈ R× and a divisor d of n such that

a. dn(α) = dn(α′) = d.
b. a′2 ≡ ua2 (mod na).
c. ua′1 ≡ va1 (mod da).

In case a and n are coprime we can replace the moduli in conditions 2(b),
2(c) by n and d respectively.

Proof. The existence of γ ∈ Γ0(n) with γ(α) = α′ is equivalent to the ex-

istence of γ ∈ Γ0(n) with γ

(
a1
a2

)
=

(
a′1
a′2

)
, since we are free to multiply γ

by a unit times the identity matrix. Hence if γ(α) = α′ with γ ∈ Γ0(n), we
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may assume that γ

(
a1
a2

)
=

(
a′1
a′2

)
. Let M be an (a, b)-matrix with first col-

umn

(
a1
a2

)
, and M ′ = γM , which is an (a, b)-matrix with first column

(
a′1
a′2

)
.

Now (2) follows from Theorem 3.
For the converse, assume that (2) holds. Again, using Theorem 3 we see

that there exist (a, b)-matrices M and M ′ = γM with γ ∈ Γ0(n) and first

columns

(
a1
a2

)
and

(
a′1
a′2

)
, so γ

(
a1
a2

)
=

(
a′1
a′2

)
as required.

For the last part, when a + n = 〈1〉 we have first dn(α) = 〈a2〉 /a + n =
〈a2〉+ n; then a′2 − ua2 ∈ n ⇐⇒ a′2 − ua2 ∈ an since certainly a′2 − ua2 ∈ a,
and similarly ua′1 − va1 ∈ ad ⇐⇒ ua′1 − va1 ∈ d. ut

We also give the following criterion, generalizing [6, Prop. 2.2.3(3)]. This
is more convenient when it comes to testing two cusps for Γ0(n)-equivalence.

Corollary 2. Let α, α′ be cusps with [α] = [α′], let a be an ideal in the
class [α] which is coprime to n, and let b be an ideal in the inverse class.
Write the two cusps as α = a1/a2 and α′ = a′1/a

′
2 with 〈a1, a2〉 = 〈a′1, a′2〉 = a.

Form (a, b)-matrices M =

(
a1 b1
a2 b2

)
and M ′ =

(
a′1 b

′
1

a′2 b
′
2

)
. Then α and α′ are

Γ0(n)-equivalent if and only if dn(α) = dn(α′) and there exists v ∈ R× such
that

a′2b2 ≡ va2b′2 (mod abd2)

where d = dn(α).

Proof. If γ ∈ Γ0(n) satisfies γ(α) = α′ then (after multiplying γ by
a unit if necessary), γM = M ′′ where M ′′ has the same first column

as M ′. Thus M ′′ =

(
a′1 b

′′
1

a′2 b
′′
2

)
= M ′

(
1 w
0 v

)
where w ∈ a−1b and v =

det γ detM detM ′−1 ∈ R×. Now Theorem 3 implies that a′2b2 − a2b′′2 ∈ abn,
so a′2b2 − va2b′2 ∈ a−1b 〈a2a′2〉 + abn. The latter ideal can be seen to equal
abd2, where d = dn(α) = dn(α′), these being equal by the Proposition.

Conversely, suppose that d = dn(α) = dn(α′) and the congruence a′2b2 ≡
va2b

′
2 (mod abd2) holds. Noting again that abd2 = a−1b 〈a2a′2〉 + abn, this

implies the existence of w ∈ a−1b such that a′2b2 − a2b′′2 ∈ abn where b′′2 =

wa′2 + vb′2. Then γ = M ′′M−1 = M ′
(

1 w
0 v

)
M−1 ∈ Γ0(n) so γM = M ′′ and

hence γ(α) = α′. ut

Finally we will find a formula for the number of Γ0(n)-equivalence classes.
In the case n = R we have seen that the number is the class number of R.

There are two different approaches to this enumeration, which we call the
“vertical” and “horizontal” approaches. First of all, from general principles
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of group actions, each Γ -orbit of cusps splits into a finite union of Γ0(n)-sub-
orbits, in bijection with the set of double cosets Γ0(n)\Γ/Γα, where α is any
cusp in the orbit and Γα ≤ Γ is its stabilizer.

The vertical approach, which is more direct, is to first consider the coset
space Γ/Γα, which is in bijection with the cusps in the orbit Γα, and then
consider how Γ0(n) acts on this. We call this approach “vertical” since in
the case α = ∞ we are essentially looking at the action of Γ0(n) on column
vectors, the first columns of elements of Γ . In general this approach would
require considering one cusp α in each class, which would be complicated
since the stabilizer Γα is not so simple in general as when α =∞.

A variation on the vertical approach is possible using (a, b)-matrices. Fix
an ideal class, an ideal a in that class and an ideal b in the inverse class.
Cusps in class [a] all have representations with ideal a, and so are of the form
α = M(∞) where M is an (a, b)-matrix. Now the Γ0(n)-sub-orbits of Γα
are also in bijection with double cosets Γ0(n)\Xa,b/∆0(a, b). The equivalence
may be seen by fixing one M0 ∈ Xa,b and observing that Xa,b = ΓM0 by
Theorem 2, and M0∆0(a, b)M−10 = Γα where α = M0(∞), since ∆0(a, b) =
{M ∈ ∆(a, b) |M(∞) =∞}. Hence from a double coset decomposition

Γ =
⊔
i

Γ0(n)γiΓα

with γi in a set of representatives of Γ0(n)\Γ/Γα, we obtain

Xa,b = ΓM0 =
⊔
i

Γ0(n)γiΓαM0 =
⊔
i

Γ0(n)Mi∆0(a, b) =
⊔
i

Γ0(n)Mi∆1(a, b)

with Mi = γiM0 in a set of representatives of Γ0(n)\Xa,b/∆1(a, b); the last
equality follows from ∆0(a, b) = R×∆1(a, b) and the unit scalars may be
absorbed in Γ0(n). Viewing Xa,b/∆1(a, b) as the set of first columns of (a, b)-
matrices, and considering the left action of Γ0(n) on this set, gives the vertical
approach used in Theorem 6 to determine Γ0(n)-equivalence of cusps.

The horizontal approach proceeds instead as follows. For the principal
class, we may enumerate Γ0(n)\Γ/Γα by first taking the coset space Γ0(n)\Γ ,
which is represented by the set of principal M-symbols (c : d), and then
considering the right action of Γα on this set, for any principal cusp α. In
the case K = Q this is the approach used2 by Shimura in [10, Prop. 1.43(4)],
using α = 0.

In our situation we would need to consider the action of more general
stabilizers Γα on the set of M-symbols, which is not very convenient. However,
the alternative formulation in terms of (a, b)-matrices works instead. We may
enumerate Γ0(n)\Xa,b/∆1(a, b) by considering the action of ∆1(a, b) on the

2 Note that the definition marked (*) on [10, p. 25] is not quite correct as stated: in each
residue class modulo N/d one must take a representative c which is coprime to d, if one
exists, but one cannot restrict to the range 0 < c ≤ N/d.
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set Γ0(n)\Xa,b of M-symbols of type (a, b). This leads to the following result,
which generalizes the classical formula when R = Z. Here, ϕu(m) is defined
by

ϕu(m) = #((R/m)×/R×).

Theorem 7. Each Γ -orbit on P1(K) splits into
∑

d|n ϕu(d + nd−1) disjoint

Γ0(n)-orbits. Hence the total number of Γ0(n)-orbits of cusps is

h
∑
d|n

ϕu(d + nd−1)

where h is the class number of R.

Proof (using vertical approach). For each ideal class we choose an ideal a in
that class and a divisor d of n, and count Γ0(n)-orbits of cusps in the class
represented as α = a1/a2 with 〈a1, a2〉 = a and dn(α) = d. To see that there is
at least one such cusp, let b be an ideal coprime to n in the class inverse to da,
so that dab = 〈a2〉 for some a2 ∈ R. Now a2 ∈ a, so a = 〈a1, a2〉 for some a1 ∈
R, and we take α = a1/a2. Now dn(α) = 〈a2〉 + n = dab + n = d, since ab
is coprime to n. This argument, together with condition (2) of Theorem 6,
shows that every Γ0(n)-orbit of cusps α with this class and this denominator
ideal dn(α) has a representative with this specific denominator a2. It remains
to examine when a1/a2 and a′1/a2 with a = 〈a1, a2〉 = 〈a′1, a2〉 are Γ0(n)-
equivalent; one finds (though we omit the details) that the number of such
cusps, up to Γ0(n)-equivalence, is ϕu(d + nd−1). ut

Proof (using horizontal approach). Let a and b be as in the first proof; again
we show that the number of orbits of cusps in class [a] is

∑
d|n ϕu(d+ nd−1),

independent of the class of a.
The action of ∆1(a, b) on the set of all M-symbols of type (a, b) is given

by

(a : b)

(
1 y
0 w

)
= (a : ya+ wb).

We saw earlier that this number of orbits of cusps in class [a] is the same as
the number of right ∆1(a, b)-orbits under this action.

We first classify M-symbols by the possible values of a. To each (a : b) we
associate the divisor d = 〈a〉 + n = aa−1 + n of n. This is well-defined since
if (a : b) = (a′ : b′) then there exists u ∈ R coprime to n such that a ≡ ua′

(mod n) which implies that 〈a〉+ n = 〈a′〉+ n.
Fix a divisor d of n. Choose d′ coprime to n such that dd′a = 〈a〉 is principal.

Then 〈a〉+ n = d (since ad′ is coprime to n). Now for any M-symbol (a′ : b′)
with 〈a′〉 + n = d = 〈a〉 + n, there exists u coprime to n such that a ≡ ua′

(mod n); then (a′ : b′) = (ua′ : ub′) = (a : b) with b = ub′. This shows that
every M-symbol associated with the fixed divisor d has the form (a : b) with
this fixed value of a and some b ∈ b. Note that for this step we required
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the validity of M-symbols of the form (a : b) where aa−1 and bb−1 are not
necessarily coprime but such that aa−1 + bb−1 is coprime to n.

For fixed a, consider M-symbols of the form (a : b) under M-symbol equiv-
alence and the action of ∆1(a, b) as above. For such a symbol we have

〈b〉+ d + n/d = bb−1 + aa−1 + n/d = 〈1〉 .

Also,
(a : b) = (a : b′) ⇐⇒ b ≡ b′ (mod n/d)

since

(a : b) = (a : b′) ⇐⇒ n | a(b− b′) = dd′a(b− b′)
⇐⇒ n | d(b− b′)
⇐⇒ n/d | b− b′.

Moreover, under the ∆1(a, b)-action, we have

(a : b) 7→ (a : b′) = (a : b)

(
1 y
0 1

)
= (a : ay + b) for all y ∈ a−1b,

so this action identifies (a : b) and (a : b′) whenever b− b′ ∈ 〈a〉 a−1b = dd′b.
Since n/d + dd′b = n/d + d, we may identify (a : b) and (a : b′) whenever
b ≡ b′ (mod d+n/d). So the number of orbits of the smaller group ∆1,1(a, b)
is exactly ϕ(d + n/d). Taking into account the units we find the (possibly)
smaller number ϕu(d + n/d), and this gives the result as stated. ut

Cusp equivalence under Γ1(n)

We can adapt our results about M-symbols and cusp equivalence for the
congruence subgroup Γ0(n) to obtain similar results for Γ1(n). Over Q, this
was done by the first author in [5]; see also [11, Chap. 8]. The proofs are
similar to those for Γ0(n), and can be found in the second author’s thesis [1],
so will be omitted.

We start by studying the left action of Γ1(n) on the set of (a, b)-matrices,
with a result analogous to Theorem 3.

Theorem 8. Let a, b be ideals in inverse classes, and let M =

(
a1 b1
a2 b2

)
and M ′ =

(
a′1 b

′
1

a′2 b
′
2

)
be any two (a, b)-matrices. Then the following statements

are equivalent:

1. M ′ = γM with γ ∈ Γ1(n).
2. The following congruences hold:
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a. a′2b2 ≡ a2b′2 (mod abn),
b. a2 ≡ a′2 (mod n),
c. b2 ≡ b′2 (mod m).

3. There exists u ∈ 1 + n such that:

a. a′2 = ua2 (mod an),
b. b′2 = ub2 (mod bn).

If any of these equivalent statements holds, then there exist v ∈ R×, u ∈ 1+n
and d | n such that:

1. 〈a2〉+ an = 〈a2〉+ an = ad,
2. a′2 ≡ ua2 (mod an),
3. ua′1 ≡ va1 (mod ad).

Conversely, if these conditions hold, there exists γ ∈ Γ1(n) such that

γM = M ′′ = M ′
(

1 w
0 1

)
with w ∈ a−1b.

Proof. Similar to Theorem 3: see [1, p. 34] for details. ut

Now we can adapt the definition of M-symbols for Γ0(n) to obtain a set
of symbols in bijection with the cosets of Γ0(n) in Γ . As before, we assume,
as we may, that ab and n are coprime. Then an M-symbol of level n and type
(a, b) for Γ1(n) is an equivalence class of{

(a, b) ∈ a⊕ b : aa−1 + bb−1 = R
}
/ ∼,

where:

(a, b) ∼ (a′, b′)⇐⇒
{
a ≡ a′ (mod n)
b ≡ b′ (mod n).

We refer to M-symbols of type (R,R) and level n as principal M-symbols of
level n for Γ1(n), and note that principal M-symbols are a direct generaliza-
tion of the M-symbols for Γ1(N) introduced in [5].

If (a, b) and n are not coprime, then the appropriate equivalence relation
to use is more complicated:

(a, b) ∼ (a′, b′)⇐⇒ ab′ ≡ a′b (mod abn) and

{
a ≡ a′ (mod an)
b ≡ b′ (mod bn)

⇐⇒ there exists u ∈ R such that u− 1 ∈ n and{
ua ≡ a′ (mod an)
ub ≡ b′ (mod bn).

It is clear from the definition that we have a bijection between M-symbols
of type (a, b) and level n for Γ1(n) and orbits of (a, b)-matrices under the
action of Γ1(n). We also have an analogue to Proposition 7.
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Proposition 10. For every pair of ideals a, b in inverse classes, the number
of M-symbols of level n and type (a, b) for Γ1(n) is [Γ : Γ1(n)].

Our final result gives a test for Γ1(n)-equivalence of cusps.
Let α, α′ be two cusps in the same ideal class, and choose representatives

α = a1/a2 and α′ = a′1/a
′
2 with the same ideal a = 〈a1, a2〉 = 〈a′1, a′2〉. In our

study of Γ0(n)-orbits of cusps, we used the equivalence between the existence
of an element γ ∈ Γ0(n) with γ(α) = α′ and the existence of γ ∈ Γ0(n)

such that γ

(
a1
a2

)
=

(
a′1
a′2

)
. This equivalence holds because Γ0(n) contains all

matrices of the form wI, where w ∈ R× and I is the 2 × 2 identity matrix.
This is not true for Γ1(n) in general (it holds only if w − 1 ∈ n). Instead, we
have the following, whose proof is straightforward:

Lemma 1. Let α, α′ be two cusps in the same ideal class. Choose represen-
tatives α = a1/a2 and α′ = a′1/a

′
2 with the same ideal a = 〈a1, a2〉 = 〈a′1, a′2〉.

Then the following are equivalent:

1. There exists γ ∈ Γ1(n) such that γα = α′.
2. There exist γ ∈ Γ1(n) and w ∈ R× such that

γ

(
a1
a2

)
=

(
a′1
wa′2

)
.

Theorem 9. Let α, α′ be two cusps in the same ideal class. Choose represen-
tatives α = a1/a2 and α′ = a′1/a

′
2 with the same ideal a = 〈a1, a2〉 = 〈a′1, a′2〉.

Then the following are equivalent:

1. α and α′ are Γ1(n)-equivalent;
2. there exist u ∈ R such that u ∈ 1 + n, v, w ∈ R× and d | n such that:

a. dn(α) = dn(α′) = d,
b. wa′2 ≡ ua2 (mod an),
c. ua′1 ≡ va1 (mod ad).

In case a and n are coprime, we can replace the moduli in conditions 2(b),
2(c) by n and d respectively.

Proof. See [1].
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