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Abstract. The Langlands Programme, formulated by Robert Lang-
lands in the 1960s and since much developed and refined, is a web
of interrelated theory and conjectures concerning many objects in
number theory, their interconnections, and connections to other
fields. At the heart of the Langlands Programme is the concept of
an L-function.

The most famous L-function is the Riemann zeta-function, and
as well as being ubiquitous in number theory itself, L-functions
have applications in mathematical physics and cryptography. Two
of the seven Clay Mathematics Million Dollar Millennium Prob-
lems, the Riemann Hypothesis and the Birch and Swinnerton-Dyer
Conjecture, deal with their properties. Many different mathemat-
ical objects are connected in various ways to L-functions, but the
study of those objects is highly specialized, and most mathemati-
cians have only a vague idea of the objects outside their specialty
and how everything is related. Helping mathematicians to un-
derstand these connections was the motivation for the L-functions
and Modular Forms Database (LMFDB) project. Its mission is to
chart the landscape of L-functions and modular forms in a system-
atic, comprehensive and concrete fashion. This involves develop-
ing their theory, creating and improving algorithms for computing
and classifying them, and hence discovering new properties of these
functions, and testing fundamental conjectures.

In the lecture I gave a very brief introduction to L-functions
for non-experts, and explained and demonstrated how the large
collection of data in the LMFDB is organized and displayed, show-
ing the interrelations between linked objects, through our website
www.lmfdb.org. I also showed how this has been created by a
world-wide open source collaboration, which we hope may become
a model for others.
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1. What is the LMFDB?

Since the early days of using computers in number theory, computa-
tions and tables have played an important part in experimentation, for
the purpose of formulating and proving (or disproving) conjectures.

Until the World Wide Web, such tables were hard to use, let alone
to make, as they were only available in printed form, or on microfiche!
An example relevant for the LMFDB is the 1976 Antwerp IV tables of
elliptic curves, published as part of a conference proceedings in Springer
Lecture Notes in Mathematics 476, as a computer printout with manual
amendments and diagrams.

However, even since the WWW, tables and databases have been
scattered among a variety of personal web pages (including my own
[Cremona 2015]). To use them, you had to know who to ask, down-
load data, and deal with a wide variety of formats. A few had more
sophisticated interfaces, but there was no consistency.

In some areas of number theory, such as elliptic curves, the situ-
ation is now much better and easier: packages such as SageMath
[Sage 2015], Magma [Bosma et al. 1997] and Pari/gp [Pari 2015] con-
tain elliptic curve databases (sometimes as optional add-ons, as they
are large). Also, the internet makes accessing even “printed” tables
much easier. But the data are still very scattered and incomplete.

The situation is now very much better: we have the LMFDB!

The LMFDB home page at www.lmfdb.org, January 2016
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2. L-functions and why they are important

L-functions are at the heart of the LMFDB. What are they? We
will give a brief survey, referring to number theory textbooks for details.

The simplest L-function is the Riemann zeta function ζ(s). This

• is a complex analytic function (apart from a pole at s = 1);
• has a Dirichlet series expansion over positive integers (valid

when <(s) > 1):

ζ(s) =
∞∑
n=1

1

ns
;

• has an Euler product expansion over primes p (when <(s) > 1):

ζ(s) =
∏
p

(1− p−s)−1;

• satisfies a functional equation:

ξ(s) = π−s/2Γ(s/2)ζ(s) = ξ(1− s);
• has links to the distribution of primes.

2.1. L-functions: a definition. The definition of an L-function en-
capsulates these properties: it is a complex function with a Dirich-
let series and an Euler product expansion which satisfies a func-
tional equation. There are other more technical axioms (by Selberg)
which we omit here: refer to the LMFDB’s own knowledge database
for details: http://www.lmfdb.org/knowledge/show/lfunction.

Some of the defining properties have not in fact been proved for all
the types of L-function in the database: this can be very hard! For
example, Andrew Wiles proved Fermat’s Last Theorem by proving the
modularity of certain elliptic curves over Q, which amounted to showing
that the L-functions associated to elliptic curves really are L-functions
in the above sense. This is not yet known in general for elliptic curves
defined over other algebraic number fields.

Other expected properties of L-functions are not even known for ζ(s).
For example, the Riemann hypothesis concerning the the zeros of
ζ(s) has remained open since it was formulated by Riemann in 1859.

2.2. The Riemann Hypothesis. The Riemann Hypothesis states
that all the “non-trivial” zeros of ζ(s) (excluding those coming triv-
ially from poles of Γ(s)) are on the “critical line” <(s) = 1/2.

This was (part of) Hilbert’s 8th problem and is also one of the Clay
Mathematics Institute Millennium Prize Problems, so a million dollars
awaits the person who proves it. There are similar conjectures about
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the location of the zeros of all L-functions, which are collectively known
as the Generalized Riemann Hypothesis (GRH). These are not
only of theoretical (or financial!) interest, but have important applica-
tions to the complexity of computing important quantities in number
theory. For example, computing the class number of a number field is
much faster if one assumes GRH for the number field’s own L-function,
its Dedekind ζ-function.

What can a database say in relation to this problem?

It can give the object its own web page (http://www.lmfdb.org/
L/Riemann/) which shows basic facts about it, and its graph along the
critical line 1/2+it to “show” the first few zeroes. This is a pedagogical
function of the database.

It can also store all the zeroes which have so far been explicitly
computed: there are more than 1011 (that is one hundred billion) of
them at http://www.lmfdb.org/zeros/zeta/, all computed to 100-
bit precision by David Platt (Bristol), who in 2014 won a prize for his
contributions to progress on the Goldbach Conjecture. This resource
can then be used to study properties of the zeroes, such as their distri-
bution, and connections to random matrices, showing that the database
also serves as a research tool.

2.3. Degrees of L-functions. The Euler product for a general L-
function has the form

L(s) =
∏
p

1/Pp(1/p
s)

where each Pp(t) is a polynomial, and the product is over all primes p.
These polynomials all have the same degree, called the degree of the
L-function, except for a finite number indexed by primes dividing an
integer called the conductor of the L-function, where the degree is
smaller. The zeros of these polynomials are also restricted in a way
depending on another parameter, the weight.

For example, ζ(s) has Pp(t) = 1 − t for all primes p; the degree is
d = 1, and the conductor is N = 1.

2.4. L-functions of degree 1. There are other L-functions of de-
gree 1, with larger conductor N , which have been studied since the
19th century: Dirichlet L-functions. Their Dirichlet coefficients an
are given by the values of a Dirichlet character an = χ(n), meaning
that they are multiplicative and periodic with period N .

An example with N = 4 is

L(χ, s) = 1−s − 3−s + 5−s − 7−s +− . . . ,
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with all even coefficients 0 and the odd coefficients alternating ±1.
Dirichlet used such L-functions to prove his celebrated theorem about
primes in arithmetic progressions: for any integers N ≥ 1 and a, there
are infinitely many primes p ≡ a (mod N), provided that a and N
are coprime. The previous example can be used not only to show that
there are infinitely many primes p ≡ 1 (mod 4) (for which χ(p) = +1)
and infinitely many primes p ≡ 3 (mod 4) (for which χ(p) = −1) , but
also to show that (in a precise sense) the primes are equally distributed
between these two classes.

This is a complete list of all L-functions of degree 1. For degrees
greater than 1, a complete classification has not yet been established,
though a wide variety of sources of L-functions is known, and in some
cases (such as in degree 2, see below) we conjecture that all L-functions
do arise from these known sources.

2.5. Other sources of L-functions. A wide variety of mathematical
objects have L-functions: algebraic number fields, algebraic varieties
(including curves). There is a general term motive for objects which
have L-functions.

In many cases, while we know how to define the L-function of a
more complicated object, it has not yet proved that it actually satisfies
the defining axioms for L-functions. Even for elliptic curves over Q,
this would have been true until the mid-1990s; for elliptic curves over
real quadratic fields such as Q(

√
2) it was true until 2013! Now, these

elliptic curves are known to be modular [Siksek et al. 2015].

2.6. L-functions of number fields. An algebraic number field,
or simply number field, is a finite extension of the rational field Q,
such as Q(

√
2) or Q(i) or Q(e2πi/m). Every number field K has an L-

function called its Dedekind zeta function ζK(s), defined in a similar
way to Riemann’s ζ(s) = ζQ(s), and with similar analytic properties.

Just as the analytic properties of ζ(s) imply facts about the distri-
bution of primes, from the analytic properties of ζK(s) we can deduce
statements about prime factorizations in the field K. For example,
taking K = Q(e2πi/m) we can prove Dirichlet’s Theorem on primes in
arithmetic progressions using a combination of algebraic and analytic
properties of ζK(s).

Also, just as some properties of ζ(s) are not yet proved (for example
the Riemann Hypothesis), the same is true for ζK(s): the Generalized
Riemann Hypothesis or GRH remains unsolved.

2.7. L-functions of curves. Algebraic curves defined over algebraic
number fields also have L-functions, whose degree depends on both the
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degree of the field over which the curve is defined, and the genus of the
curve. So an elliptic curve over Q, which is a curve of genus 1 defined
over a field of degree 1, has a degree 2 L-function, elliptic curves over
fields of degree d have L-functions of degree 2d, and so on.

It is widely believed that all degree 2 L-functions arise as follows:
they are either products of two degree 1 L-functions, or come from
elliptic curves over Q, or from (a special kind of) modular form. The
insight of Weil, Taniyama, Shimura and others in the 1960s and 1970s
was to realize that the latter two sources actually produce the same
L-functions! This insight is behind the famous theorem of Wiles et al.
that “every elliptic curve (over Q) is modular”, from which Fermat’s
Last Theorem was a consequence. But it is still an unsolved problem to
show that those degree 2 L-functions which are not products of degree 1
L-functions do all arise from automorphic forms.

2.8. Higher degree L-functions. For degrees 3 and 4, we do not yet
even have a conjecture concerning all sources of L-functions, and for
those which are known, not all the conjectured connections between
them have been proved.

We mentioned above the recent result [Siksek et al. 2015] that ellip-
tic curves defined over real quadratic fields (such as Q(

√
5)) are modu-

lar. This means that two sources of L-functions of degree 4: on the one
hand, elliptic curves over such a field, and on the other hand Hilbert
modular forms over the same field, actually produce the same L-
functions. Such results are extremely deep and require a vast amount
of theory to establish, including real, complex and p-adic analysis and
algebra, as well as some explicit computations (the ArXiV version of
[Siksek et al. 2015] includes a number of Magma scripts).

By contrast, over imaginary quadratic fields (e.g. Q(
√
−1)) we

conjecture, but cannot prove in general, that elliptic curves have L-
functions also attached to a different kind of modular form, Bianchi
modular forms. These can be computed, and work is in progress in
entering many examples into the LMFDB, even though they are not
all known to “be modular” and hence have genuine L-functions.

Modularity of individual elliptic curves over imaginary quadratic
fields can be proved using the Serre-Faltings-Livné method (which uses
Galois representations rather than analysis) as explained in a 2008 pa-
per [Dieulefait et al. 2010] by Dieulefait, Guerberoff and Pacetti. We
are currently using their method to prove modularity of all the curves
in the database; at the same time we are developing enhancements to
the algorithm to make it more efficient. A theoretical proof that all
elliptic curves over these fields are modular seems very far off, so even



THE LMFDB PROJECT 7

in the world of L-functions of degree 4 it is still important to carry out
experiments and collect data.

2.9. Showing connections through the LMFDB. The LMFDB
shows connections between different objects with the same L-function,
such as those described above, by linking its databases of (for example)
elliptic curves over real quadratic fields, and Hilbert modular forms over
the same field. The home page of each elliptic curve includes a link to
the associated Hilbert modular form, and to the associated L-function,
and (in progress) vice versa.

One difficulty we have encountered in setting up these links on the
website, which is perhaps typical in a large project where many dif-
ferent individuals are providing data, is to maintain consistency of la-
belling of objects. Over the field Q(

√
5), the Hilbert modular forms

were computed (in Magma) by John Voight (Dartmouth College) and
Steve Donnelly (Sydney) [Dembélé and Voight 2013], while the ellip-
tic curves were computed (in SageMath) by Jonathan Bober (Bris-
tol), William Stein (Washington), Alyson Deines (CCR) and others
[Bober at al. 2013]. These groups used essentially the same naming
convention, but we were careful to check that the labels of matching
objects did match exactly, resulting in one set of data (the elliptic
curves) requiring relabelling.

3. The LMFDB database

The LMFDB consists of both a database, where the data collection
itself is organized and stored, together with the website www.lmfdb.

org. This provides a sophisticated user interface to the data, has home
pages for individual objects in the database, showing links between re-
lated objects, and also provides an online repository of knowledge about
L-functions and related objects, through its knowledge database.

Both database and website are currently hosted on servers at War-
wick, funded by EPSRC; until 2013 they were hosted at the University
of Washington on NSF-funded servers administered by William Stein.
Plans are also underway to have mirror sites in other countries: this is
an international project.

The LMFDB is also a group of mathematicians who collaborate to
create and develop the database and its website. We will say more
about this collaboration in the final section.
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3.1. The database and website software. We are using the open-
source database software MongoDB. This currently holds nearly a ter-
abyte of data and indices. This choice was made because MongoDB al-
lows data to be organized in a completely flexible schema, rather than
having to specify the schema for each item in advance as with SQL
databases. It also has a powerful Python interface, PyMongo, which
suits the project well, since it allows the website code to use other
Python modules such as Flask (a web framework), and to have ac-
cess to all the power of SageMath, another large Python-based open
source mathematical software project. All of these are open source,
which is another essential requirement. (Note, however, that not all
of the data in the database have been computed using open source
tools.) The website code is a collaborative open source project hosted
at GitHub (see https://github.com/LMFDB/lmfdb).

Basing all the website code on Python has many advantages. It is
relatively easy to learn to use, which is important since we want the
barriers to new people joining our project to be as low as possible. And
it is phenomenally powerful, giving access to a vast array of additional
modules for interfacing with the database (PyMongo), running the web
framework (Flask), web page templating (Jinja), testing and more.

Anyone contributing to the project who wants to do more than just
donate data has to learn how to use this software. At project work-
shops we run tutorial sessions for newcomers, where code is written by
beginners under the guidance of more experienced peers. All code is
reviewed and tested before being adopted, as well as being subject to
some automated testing.

3.2. Database organization. The database as a whole consists of
around 35 individual databases containing collections of mathemati-
cal objects (including elliptic curves, hilbert modular forms, and
number fields) and other data such as the knowledge database, which
holds the contents of knowls (see below).

The data are indexed in various ways for faster searching, and, of
course, backed up regularly. Many parts of the database can also be
recreated from plain text data files which are stored in separate Git

repositories, also hosted on GitHub.
Each constituent database contains collections of records, and these

records hold the data in a flexible format: additional data fields can be
added later.

3.3. Sample database entry. To take just one example, the database
number fields contains just one collection fields, for which a typical
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entry looks as follows (after being converted by PyMongo into a Python

dictionary):

{u’_id’: ObjectId(’4cb80fdb5009fb52db0946b6’),

u’class_group’: u’’,

u’class_number’: 1,

u’coeffs’: u’1,0,-1,1’,

u’degree’: 3,

u’disc_abs_key’: u’00123’,

u’disc_sign’: -1,

u’galois’: {u’n’: 3, u’t’: 2},

u’label’: u’3.1.23.1’,

u’ramps’: [u’23’],

u’signature’: u’1,1’,

u’unitsGmodule’: [[3, 1]]}

Here we see the coefficients of the minimal polynomial x3− x2 + 1 of a
generator of the field stored as coeffs, and the label ’3.1.23.1’ which
also uniquely determines the field. Invariants of the field which are easy
to compute on the fly, and to which we do not need to provide direct
access through database queries, need not be stored, while quantities
which might be expensive to compute, or for which we may want to
run searches, are stored and indexed.

This is only a simple example. The database entry for an individual
elliptic curve over Q currently contains 33 fields, some very technical.
The number of fields grows over time as new data are contributed. For
example, in 2015 Jeremy Rouse offered to provide information concern-
ing the 2-adic Galois Representation attached to every elliptic curve
over Q, after developing and implementing an algorithm to determine
this jointly with David Zureick-Brown (see [Rouse et al. 2015]). He
provided us with a Magma script of their implementation, we ran it
and uploaded the data, and added a corresponding section on the home
page of every curve showing these additional data.

3.4. Software choices, pros and cons. Using off-the-shelf software
has plenty of advantages but will never be perfect for a mathematical
project.

Most mathematicians, even those with substantial computational ex-
perience and expertise, know almost nothing about databases or run-
ning websites, and many of the contributors to the LMFDB knew noth-
ing at all about these before they joined the project. Decisions about
the specific software used by the project was made by those who did
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have such experience, notably William Stein (lead developer of Sage-
Math) and Harald Schilly (another key developer of the SageMath-
Cloud project, https://cloud.sagemath.com/).

We have already seen some of the advantages of our choice of data-
base, MongoDB. There are disadvantages too: MongoDB data consists of
strings or integers or floating point values, with strings as keys. Values
can also be lists of these, but a serious deficiency for number-theoretic
data is that the integers cannot be larger than 232. This means that
most data fields which hold integers have to be stored as strings, and
this limits functionality, such as searching for the value being in a cer-
tain range.

Similarly, rational numbers cannot be stored as such, or even as a
pair of integers [numerator,denominator ] if these could be large, so in-
stead they are stored as strings such as ‘1728’ or ‘-122023936/161051’.
Building on these, considerable thought has to be given as to how to
store more complicated data, such as an element of a number field.
Decisions such as these are made by consensus at LMFDB workshops,
since they affect all developers, even though the effects of such decisions
are hidden from users of the website.

4. The LMFDB website

The LMFDB website serves several purposes. It provides

• a shop window for the data;
• a way to visualize the data, and the connections between dif-

ferent, linked mathematical objects;
• a way to browse types of object;
• a way to search for objects with specified properties;
• a repository of knowledge through its “knowledge database”;
• a source of data for downloading for further work.

Catering for several different audiences at once is hard to get right!

4.1. Technical support (or lack of). The project would benefit
greatly from having technical support staff. Our current grant from
EPSRC does not provide this—it does support six postdoctoral re-
searchers, who all have a certain amount of experience writing math-
ematical software, but not any dedicated software engineers. For this,
we are currently relying on charitable contributions of time. We would
not be where we are now, and indeed the website would never have
been launched, without the enormous contributions of one person in
particular: Harald Schilly, a doctoral student in Vienna and software
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consultant, who knows more than the rest put together about Python,
MongoDB, Flask, and the rest.

From September 2015, through the Horizon 2020 European Research
Infrastructure project OpenDreamKit (http://opendreamkit.org/),
which provides substantial funding for the development of open source
computational mathematics, we are currently seeking to employ a soft-
ware engineer to provide support to the project.

4.2. Homepages. A key organizing principle of the LMFDB is that
every object has its own homepage. These have mathematically mean-
ingful, permanent URLs which follow a carefully thought out schema.
The home pages themselves are created on demand from templates,
filled in with data partly retrieved directly from the database and partly
computed on the fly. For example, the elliptic curve with label 5077a1
has URL http://www.lmfdb.org/EllipticCurve/Q/5077/a/1.

Each homepage gives a view of the object (depending on its nature),
highlighting its most important properties, with breadcrumbs to show
its position in the whole. In some cases, where the object has some
interesting additional historical or mathematical significance, this can
also be shown on its home page. For example, the elliptic curve 5077a1
was used by Dorian Goldfeld in 1985 to solve Gauss’s class number
problem effectively, by making use of a new connection between the
problem and L-functions of elliptic curves, and this piece of historical
information is shown on the curve’s home page.

A related objects box on each homepage provides links between
related objects. For example, from the pages of an elliptic curve, or
a number field, or a modular form there are links to the associated
L-function.

Where possible, on the home page of an object, we make it possi-
ble to see and download code which will re-create the object in one
of the standard number-theoretical packages (SageMath, Pari/gp

or Magma) and work with it there. In this way, the LMFDB can
be used by students learning a subject who wish to work out their
own examples, as well as researchers wishing to carry out larger-scale
investigation starting from the LMFDB data. A more sophisticated
programming interface through SageMath is also planned.

4.3. Searching and browsing. Each class of objects in the LMFDB
has its own Browse and Search page.

The Browse section is intended to be usable by people who know
nothing of the underlying theory but want to browse through examples
without having to type anything or have technical knowledge.
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The Search section is more for experts looking for a specific object
(possibly by its label), or for an object with certain properties: “a
number field with Galois group C5 ramified only at p = 5”, or “an
elliptic curve with rank 2 and non-trivial Tate-Shafarevich group”, or
“a classical modular form of weight 12 and level 12”. This leads to a
Search Results page listing all database entries which match (if any),
with links to the home pages of each individual matching object.

4.4. Knowledge and knowls. The knowledge aspect of the LMFDB
exists in the first place as a glossary of technical terms used on the web
pages, so the pages themselves do not get cluttered up, and there is
consistency between pages on basic definitions.

The mechanism which serves these is the knowl, created by Harald
Schilly and first demonstrated at an LMFDB workshop. The text ex-
pands within the page and can be dismissed after reading, without any
need for “pop-ups” or new pages.

Knowls can be used anywhere on the web—for example, I use them
on my own web page of preprints and publications to display abstracts
of papers. Another good example of their use is in the online under-
graduate textbook on Linear Algebra by Robert Beezer [Beezer 2014].
For more about knowls and how to use them, see the knowl on the
LMFDB itself, http://www.lmfdb.org/knowledge/show/doc.knowl,
or the page http://aimath.org/knowlepedia/.

The content of knowls can be edited by any project member (someone
who has a login account), and is itself stored in the database.

5. The LMFDB project

5.1. The LMFDB as a collaborative project. The LMFDB was
first conceived at an AIM workshop in 2007. It holds regular workshops,
which are run along the lines of AIM workshops: few talks and a lot of
hard work. As well as individual workshops of around 30 people, there
are smaller groups who meet to work together on specific projects,
and there have also been longer periods of activity hosted at MSRI,
during the semester programme “Arithmetic Statistics” in 2011, and
ICERM, during the semester programme “Computational Aspects of
the Langlands Program” in late 2015 (see http://icerm.brown.edu/

sp-f15/). All members of the organizing committee for the latter are
LMFDB contributors, and we expect that the LMFDB will make a
substantial leap forward during the semester.

The AIM connection remains strong: both Brian Conrey (Director
of AIM) and David Farmer (Director of Programs at AIM) are number
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theorists who have been intimately connected with the project from
the start.

We have Editorial and Management Boards, but essentially all deci-
sions are made by consensus at workshops.

5.2. Funding. During 2008–2012, the LMFDB was funded by NSF
FRG grant DMS:0757627; currently (2013-2019) it is supported by
Programme Grant EP/K034383/1 from the UK research council EP-
SRC. The investigators on this are the author and Samir Siksek (War-
wick) and Brian Conrey (AIM and Bristol), and Andy Booker and
Jon Keating (Bristol). David Farmer (AIM) is a project partner, as
are Fernando Rodriguez-Villegas (ICTP), William Stein (Washington)
and Mike Rubinstein (Waterloo).

These research grants provide funding both for LMFDB workshops
and for servers hosting the database and website; the NSF FRG grant
also paid for some technical software support.

5.3. Collaboration. The LMFDB encompasses such a wide range of
mathematics, and it is essential to have an equally wide range of mathe-
matical expertise contributing to the project. Many of the collaborators
on the LMFDB project, who are all listed at http://www.lmfdb.org/
acknowledgment, have contributed not by coding for the website but
by providing the data (without which the project would be nothing!).
More contributors are always welcome.
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