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Abstract. The modular symbols method developed by the author in [4] for the

computation of cusp forms for Γ0(N) and related elliptic curves is here extended to
Γ1(N). Two applications are given: the verification of a conjecture of Stevens [14]
on modular curves parametrised by Γ1(N); and the study of certain elliptic curves

with everywhere good reduction over real quadratic fields of prime discriminant,
introduced by Shimura and related to Pinch’s thesis [10].

1. Introduction

In [4] a method was presented for the computation of the space S2(G) of cusp

forms of weight 2 for a subgroup G of finite index in the modular group Γ =

PSL(2, Z). A detailed algorithm was given, in the case G = Γ0(N), for comput-

ing the 1-homology H1(Γ0(N), C) (which is isomorphic to S2(Γ0(N)) as a Hecke

module) explicitly in terms of certain “M-symbols” (see [4] and §2 below); finding

one-dimensional rational eigenspaces for the Hecke algebra and hence finding ra-

tional newforms f(z); computing numerically the period lattice of the differential

2πif(z)dz; and hence computing (approximately) the coefficients of the correspond-

ing modular elliptic curve Ef .

In this paper we extend the M-symbol method to the cases Γ1(N) and Γχ(N)

where χ is a quadratic character modulo N . It is hoped that we will hence be able

systematically to compile tables of cusp forms of weight 2 for Γ1(N), or equivalently

the spaces S2(N,χ) of cusp forms of weight 2 with arbitrary character χ for Γ0(N).

So far we have looked at the following two situations.

1. For each rational newform f(z) for Γ0(N) computed in [4], we can compute

the Γ1(N)-period lattice Λ1(f) of the differential 2πif(z)dz, and hence compute an

(approximate) equation for the corresponding elliptic curve E
(1)
f parametrized by

modular functions on Γ1(N). Clearly Λ1(f) has finite index in the Γ0(N)-period

lattice Λ0(f), so that E
(1)
f is isogenous to Ef . To carry out this computation we

only had to make certain modifications to the Γ0(N) computer programs used to

compile the tables in [4], specifically in that part of the computation in which a
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basis for the period lattice is computed. We have carried this out only for N ≤ 100

and in this range we have an independent verification of the results of Stevens [14].

Stevens shows that in each isogeny class of elliptic curves over Q there is a unique

curve with minimal period lattice (with respect to inclusion), and conjectures that

this minimal curve is always the Γ1(N) curve. Using a different method Stevens

has verified this for N ≤ 200, the range of the tables in [2].

2. Let N be a prime congruent to 1 modulo 4, and χ the quadratic character

modulo N , so that χ(−1) = 1. Set

Γχ(N) =

{ (
a b
c d

)
∈ Γ | χ(d) = 1

}
,

and let Xχ(N) be the corresponding modular curve with Jacobian Jχ(N). Set

Jχ(N) = Jχ(N)/J0(N). The Q-simple factors A of Jχ(N) have even dimension 2d

and split over Q(
√

N) as A = A′ ×A′′ (up to isogeny) where dimA′ = dimA′′ = d,

and A′ is isogenous to A′′. It is known ([12,7.7.6], [3,Theorem 1.1], [6, V.3.7(ii)])

that the factors A′ and A′′ have everywhere good reduction over Q(
√

N). In the

case d = 1 this gives a construction of elliptic curves of everywhere good reduction

over Q(
√

N) ([10], [11]). In [10], Pinch speculated that the curves he found and

tabulated might all be of this form. Using our methods we have been able to find

all such 2-dimensional A for N < 1000, and compute equations for the curves A′ in

all 16 cases. (The situation here is in fact very similar to the case of 2-dimensional

factors of J0(N) with ‘extra twist’, as studied in [5].) We find some curves not in

Pinch’s tables (for N = 461 and N = 509), and show that two of his curves could

not arise in this way, as each is not isogenous to its Galois conjugate.

The cases N = 29, 37, 41 have previously been worked out by Shiota [13] using

manual computations with modular symbols. These cases are considerably simpler,

since the genus is 2, so A = Jχ(N) and it is not necessary to find and split off par-

ticular 2-dimensional factors. Also, Shiota computes the j-invariants of the curves

A′ rather than the actual equations; these j-invariants are known to be integral,

and so can be computed exactly. One interesting feature of our computations is

that the models which we obtain for the curves are not always minimal models,

in striking contrast to the situation with Γ0(N) elliptic curves where in all known

cases one obtains a minimal model from the period lattice of the normalised new-

form (this is Manin’s “c = 1” conjecture). Indeed, in some of our cases here the

class number of Q(
√

N) is greater than 1 and no minimal equation exists for the

curve. This phenomenon is not noticed in [13], although it first occurs at level 37.

We present the results of these computations below in section 6 together with a

conjecture concerning the minimality of the models at the primes above 2 and 3.

Work is in progress to extend these computations to composite N and χ a primitive

character modulo N , and to imprimitive χ.

In §2 we review general aspects of the modular symbol method from [4]; in §3 we

show how to define M-symbols for Γ1(N). The first application, to Γ1(N) modular
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curves, occupies §4. In §5 we discuss the computation of S2(N,χ) for characters

χ in general, and in the specific case described above, where N is prime and χ

quadratic. The results in the latter case are given in §6.

2. The modular symbol method: generalities

In this section we outline the basic modular symbol method which may be used

to compute the 1-homology H1(G\H∗, Q) for any subgroup G of finite index in the

modular group Γ. Here H∗ = H ∪ Q ∪ {∞}, the extended upper half-plane. For

more details on this, see [4].

We have H1 = H+
1 ⊕H−

1 , where H±
1 denote the ±-eigenspaces for the conjugation

involution ∗ induced by z 7→ −z, and dimH+
1 = dimH−

1 = g, the genus of the

Riemann surface XG = G\H∗. There is a duality between homology and the space

of holomorphic differentials on XG. These differentials (or, more precisely, their

pullbacks to H) have the form 2πif(z)dz where f(z) is a cusp form of weight 2 for

G, and the bilinear pairing

S2(G) × H1(XG, C) −→ C

given by

(f, γ) 7→ 〈f, γ〉 =

∫

γ

2πif(z)dz

induces an isomorphism of complex vector spaces

S2(G) ∼= H+
1 (XG, C).

This isomorphism is also an isomorphism of modules for the Hecke algebra T (when

G is a congruence subgroup), since we then have

〈Tf, γ〉 = 〈f, Tγ〉

for all T ∈ T.

To compute H = H1(XG, C) we represent homology classes by modular symbols

{α, β}G with α, β ∈ H∗. The symbol {α, β} denotes a geodesic path from α to β in

H∗, and {α, β}G its image in XG, or its homology class. To generate H it suffices to

take α and β to be cusps, i.e. α, β ∈ Q ∪ {∞}. Moreover each symbol {α, β} may

be expressed as a sum of symbols of the special form {γ(0), γ(∞)} = {b/d, a/c}

with γ =

(
a b
c d

)
∈ Γ, using continued fractions in Q.

Let (γ) denote the special symbol {γ(0), γ(∞)}G for each γ ∈ Γ. These symbols

generate H, while satisfying the relations

(gγ) = (γ) for g ∈ G;(1)

(γ) + (γS) = 0;(2)

(γ) + (γTS) + (γ(TS)2) = 0;(3)
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where S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
are the usual generators of Γ. In view of (1)

we may generate H1(XG, Q) using the finite number of symbols (γ) as γ ranges

over a set R of right coset representatives for G in Γ. Let C(G) be the Q-vector

space spanned by symbols (γ) with γ ∈ R, and B(G) the subspace spanned by the

left-hand sides of the relations (2) and (3).

Denote by H0(G) the Q-vector space with basis the equivalence classes [α] of

cusps α ∈ Q ∪ {∞} under the action of G. Define the ‘boundary map’ δ:C(G) →
H0(G) by

δ((γ)) = [γ(∞)] − [γ(0)],

extended by linearity, and set Z(G) = ker(δ). It is easy to see that B(G) ⊆ Z(G).

Finally set H(G) = Z(G)/B(G). The fundamental result, first formulated in this

way by Manin [8], is the following.

Theorem 2.1 (Manin). H(G) is isomorphic to H1(XG, Q), the isomorphism be-

ing given by

(γ) 7→ {γ(0), γ(∞)}G.

The flexibility of this result comes from the fact that the homology relations

(2), (3) do not depend on which subgroup G of Γ is being considered. Only the

generators change, coming from a set of right coset representatives of G in Γ. To

apply this result in practice, we thus need to determine these coset representatives

explicitly in an easily computable form. We also need to be able to determine when

two cusps are equivalent modulo G in order to compute ker δ.

In the case G = Γ0(N) considered in [4], we represented the right cosets of G

in Γ by means of so-called M-symbols (c : d), where c, d ∈ Z, gcd(c, d,N) = 1,

and (c : d) = (c′ : d′) ⇐⇒ cd′ ≡ c′d (mod N). The correspondence with coset

representatives is given by (
a b
c d

)
←→ (c : d)

where a and b are any integers such that ad − bc = 1; the boundary map becomes

δ((c : d)) = [a/c] − [b/d].

It is often desirable to compute H+
1 (G\H∗, Q) directly rather than as the +1-

eigenspace of the ∗-involution (given by (γ) 7→ (Jγ) where J =

(
−1 0
0 1

)
), in

order to work in a space of dimension g rather than 2g. To do this, define C(G) as

before but enlarge the relation subspace to B+(G), spanned by B(G) and the extra

relations (γ) = (Jγ) for γ ∈ Γ. Similarly, we replace Z(G) by Z+(G) = ker δ+

where

δ+((γ)) = δ((γ)) + δ((Jγ))

= [γ(∞)] − [γ(0)] + [−γ(∞)] − [−γ(0)].
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Then B+(G) ⊆ Z+(G) and

H+(G) = Z+(G)/B+(G) ∼= H+
1 (G\H∗, Q).

Alternatively we may set H+
0 (G) to be the quotient of H0(G) by the relations

[α] = [J(α)], that is [α] = [−α], and define δ:C(G) → H+
0 (G) by

δ(γ) = [±γ(∞)] − [±γ(0)],

where [±α] denotes the equivalence class of [α] in H+
0 (G). Then clearly ker δ+ =

ker δ = Z+(G), and H+(G) = Z+(G)/B+(G) as before.

This gives an explicit representation of the space H+
1 (G\H∗, C) = H+

1 (G\H∗, Q)⊗
C, which is isomorphic to the space of cusp forms S2(G), and on which we may

compute the actions of Hecke and other operators. As the dimension is half that

of the whole space H1, there is some saving in machine storage and computation

time with this approach.

3. Symbols for Γ1(N)

3.1. First we adapt the definition of M-symbols to give convenient coset represen-

tatives for Γ1(N) in Γ.

Lemma 3.1. For i = 1, 2 let γi =

(
ai bi

ci di

)
∈ Γ. The matrices γ1 and γ2 lie in

the same right coset of Γ1(N) if and only if c1 ≡ εc2 and d1 ≡ εd2 (mod N), where

ε = ±1.

Proof. We have

γ1γ
−1
2 =

(
a1d2 − b1c2 ∗
c1d2 − d1c2 a2d1 − b2c1

)
,

which is in Γ1(N) if and only if

c1d2 − d1c2 ≡ 0 (mod N)

and

a2d1 − b2c1 ≡ a1d2 − b1c2 ≡ ε (mod N)

with ε = ±1. Suppose that these congruences hold. Then

c2ε ≡ a2d1c2 − b2c1c2

≡ a2d2c1 − b2c2c1 since d1c2 ≡ d2c1 (mod N)

≡ c1 since a2d2 − b2c2 = 1

and d2ε ≡ d1 similarly. Conversely if c1 ≡ εc2 and d1 ≡ εd2 (mod N), with ε = ±1

then the congruences follow easily. ¤
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Thus we can represent each coset uniquely by a symbol (c, d) with c, d ∈ Z/NZ

provided that we identify (c, d) with (−c,−d). Such symbols will be called M1-

symbols. The correspondence between M1-symbols, coset representatives, and

modular symbols is given by

(3.1) (c, d) ↔ γ =

(
a b
c d

)
↔ (γ) = {b/d, a/c}

where a, b ∈ Z are chosen so that ad − bc = 1. (A different choice of a, b has the

effect of multiplying γ on the left by a power of T which does not change the symbol

(γ) since T ∈ Γ1(N) for all N .)

The right coset action of Γ on M1-symbols is given by

(3.2) (c, d)

(
p q
r s

)
= (cp + dr, cq + ds).

The boundary map δ has the form

(3.3) δ((c, d)) = [a/c] − [b/d].

We may test the equivalence of cusps by the following lemma.

Lemma 3.2. For i = 1, 2 let αi = pi/qi be cusps written in lowest terms. The

following are equivalent:

(1) α2 = γ(α1) for some γ ∈ Γ1(N);

(2) q2 ≡ εq1 (mod N) and p2 ≡ εp1 (mod gcd(q1, N)), with ε = ±1.

Proof. That (1) implies (2) is easy. For the converse we use Lemma 3.1. Assume

(2), and write p1s
′
1 − q1r

′
1 = p2s2 − q2r2 = 1 with s′1, r

′
1, s2, r2 ∈ Z. Then p1s

′
1 ≡ 1

(mod q1) and p2s2 ≡ 1 (mod q2). Also gcd(q1, N) = gcd(q2, N) = N0, say, since

q2 ≡ ±q1 (mod N). Now p2 ≡ εp1 (mod N0) implies s′1 ≡ εs2 (mod N0), so we

may find x ∈ Z such that xq1 ≡ s′1 − εs2 (mod N). Set s1 = s′1 − xq1 and r1 =

r′1 − xp1. Then p1s1 − q1r1 = 1 and now s2 ≡ εs1 (mod N). By Lemma 3.1 there

exists γ ∈ Γ1(N) such that

(
p2 r2

q2 s2

)
= γ

(
p1 r1

q1 s1

)
, and so γ(p1/q1) = p2/q2 as

required. ¤

Let X1(N) = Γ1(N)\H∗. We may now compute H1(X1(N), Q) using Theo-

rem 2.1 as follows.

(1) Form the Q-vector space with basis a set of M1-symbols modulo N . A pairwise

inequivalent set of symbols is

{(c, 0) | 1 ≤ c ≤ N/2} ∪ {(c, d) | −N/2 < c ≤ N/2, 1 ≤ d ≤ N/2}.
(2) Factor out by the relations

(c, d) + (−d, c) = 0

(c, d) + (c + d,−c) + (−d, c + d) = 0

(3) Restrict to ker δ, where δ is defined by (3.3) and cusp equivalence is tested via

Lemma 3.2.

The result is a Q-basis for H1(X1(N), Q) given explicitly in terms of M1-symbols.
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3.2 Character decomposition. Recall that the multiplicative group (Z/NZ)∗

acts on the space of cusp forms S2(Γ1(N)) as follows (see [7]). For each u ∈
(Z/NZ)∗, let γu ∈ Γ be a matrix such that

γu ≡
(

u−1 0
0 u

)
(mod N).

Then γu acts on the modular forms f(z) ∈ S2(Γ1(N)) in the usual way, and we

obtain a decomposition

(3.4) S2(Γ1(N)) =
⊕

χ

S2(N,χ)

where χ ranges over all the even characters modulo N . Here S2(N,χ) is the sub-

space of forms f(z) such that f |γu = χ(u)f , which is zero if χ(−1) = −1 since we

always have γ−1 ∈ Γ1(N).

On H1(X1(N), C), given in terms of M1-symbols, the action of γu is

(3.5) γu: (c, d) 7→ (uc, ud)

and similarly we have a decomposition

(3.6) H1(X1(N), C) =
⊕

χ

H1(N,χ).

To compute this decomposition we use (3.5) to compute the action of each γu with

respect to an M1-symbol basis as a 2g × 2g matrix, where g is the genus of X1(N),

and simultaneously diagonalize these matrices. Clearly it suffices to work with γu

for a set of u which generates (Z/NZ)∗/{±1}; in particular, when N is a prime

power this group is cyclic, and we merely have to diagonalize the matrix γu for a

primitive root u.

The eigenvalues of γu will be roots of unity of order dividing ϕ(N), so the splitting

(3.5) will be defined over the cyclotomic field Q(µϕ(N)).

3.3 Hecke action. For primes p not dividing N the action of the Hecke operator

Tp is given by

Tp =
∑

a (mod p)

(
1 a
0 p

)
+ γp

(
p 0
0 1

)
.

Hence we may compute the action of Tp on modular symbols:

(3.7) Tp({α, β}) =
∑ {

α + a

p
,
β + a

p

}
+ {γp(pα), γp(pβ)}.

In practice we convert the generating M1-symbols to modular symbols via (3.1)

once and for all, then apply (3.7), and reconvert using continued fractions, as in

the Γ0(N) case. On the χ-eigenspace (3.7) becomes, more simply,

(3.8) Tp({α, β}) =
∑ {

α + a

p
,
β + a

p

}
+ χ(p){pα, pβ}.
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3.4 Computing eigenspaces separately. It is more efficient in practice to com-

pute the χ-eigenspaces of H1(X0(N), C) separately, instead of computing the whole

space first and then diagonalizing the γu matrices as described in §3.2. We may do

this by including extra relations between the symbols of the form

(3.9) (γuγ) = χ(u)(γ);

or, in terms of M1-symbols,

(3.10) (uc, ud) = χ(u)(c, d).

Also we have to replace H0(Γ1(N)) by Hχ
0 (Γ1(N)), obtained from H0(Γ1(N)) by

factoring out by relations of the form

(3.11) [γu(α)] = χ(u)[α]

on the cusp equivalence classes. As a special case, when χ is the trivial character, the

symbols reduce precisely to M-symbols for Γ0(N). The advantage of this approach

is that we will (in general) be working in spaces of smaller dimension from the start,

with a corresponding gain in computation time and saving in machine storage at

each stage of the computation. The technique is in fact very similar to the idea of

working in H+
1 , as at the end of §2. Moreover, using (3.10) we may cut down the

initial set of M1-symbols by a factor of [Γ0(N) : Γ1(N)] = 1
2ϕ(N) (if N > 2), and

just use (in effect) the M-symbols (c : d) which are in one-one correspondence with

the coset representatives for Γ0(N) in Γ, and satisfy

(c1 : d1) = (c2 : d2) ⇐⇒ c1d2 ≡ c2d1 (mod N).

In practice whenever we compare a given M1-symbol (c, d) with our standard list

of M-symbols and find (say) (c : d) = (c0 : d0), then we may replace (c, d) by

χ(u)(c0, d0) where u is such that c ≡ uc0 and d ≡ ud0 (mod N).

The method described in this subsection has so far only been implemented in

the case where χ is quadratic, so that χ(u) = ±1 for all u ∈ (Z/NZ)∗. In this case

we can work entirely with rational coefficients, which makes programming much

simpler. This will be described in more detail (for prime N) in §5, with the results

in §6.

4. Γ1(N) modular curves and Stevens’ conjecture

In [4] we computed numerically the period lattice

Λ0(f) =

{∫ γ(0)

0

2πif(z)dz | γ ∈ Γ0(N)

}

for rational newforms f ∈ S2(Γ0(N)), in order to find the corresponding ‘strong

Weil curves’ Ef = C/Λ0(f). This was carried out for all N ≤ 1000. Each such f is,
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of course, also a newform for Γ1(N), and we may also consider the Γ1(N) period

lattice

Λ1(f) =

{∫ γ(0)

0

2πif(z)dz | γ ∈ Γ1(N)

}

and the curve E1
f = C/Λ1(f). In [14] Stevens conjectured that E1

f is always the

unique curve in its isogeny class with minimal period lattice (ordered by inclusion),

and verified this in all cases for which data were then available in the Antwerp IV

tables [2], namely for all cases where N ≤ 200.

As an application of the method of the previous section, we checked Stevens’

results for N ≤ 100. In each case we already had on computer files the Hecke

eigenvalues of each rational newform f ∈ S2(Γ0(N)). Now we adapted the com-

puter programs, used in [4] to compute Λ0(f), to compute Λ1(f) instead. We first

computed a basis for H1(X1(N), C) in terms of M1-smbols and found a pair of

eigencycles with the same eigenvalues as f . Then we used the same method as

in [4] (with very minor changes) to obtain a pair of generating periods for Λ1(f).

From these we computed the c4 and c6 covariants of Λ1(f), and found them to

be very close to integers, integers which were indeed the covariants of the minimal

model of a curve E1
f of conductor N .

While this was a simple procedure in principle, in practice it became very time-

consuming since the number of M1-symbols grows rapidly with N . This number is

the index [Γ : Γ1(N)] = 1
2N2

∏
p|N (1 − p−2) for N > 2, which is 1

2ϕ(N) times the

number of M-symbols. Hence this method does not seem a practical way of verifying

Stevens’ conjecture much past N = 200. However, a more efficient algorithm is

currently being implemented by the author, using which it is hoped to carry the

verification much further, perhaps for N up to 1000, the range of [4].

5. Computation of elliptic curves with everywhere good reduction

5.1 Modular symbols. From now on N will be a prime congruent to 1 modulo

4, and χ the quadratic character modulo N , so that χ(−1) = 1. Set

Γχ(N) =

{ (
a b
c d

)
∈ Γ | χ(d) = 1

}
,

a normal subgroup of index 2 in Γ0(N). The space of cusp forms for Γχ(N) is a

subspace of S2(Γ1(N)) and splits as

S2(N,χ) ⊕ S2(N);

we will be concerned with the χ-eigenspace only. As described in §3.4, we have

S2(N,χ) ∼= H1(Γχ(N)\H∗, C)/H1(Γ0(N)\H∗, C)

= Hχ
1 (N),
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say, which may be computed using M1-symbols (c, d) modulo N with the extra

relations

(gc, gd) = −(c, d)

where g is a primitive root modulo N . These relations reduce the generating set of

symbols to N + 1 since

(c, d) =

{
χ(d)(cd−1, 1) if d 6≡ 0 (mod N),

χ(c)(1, 0) if d ≡ 0 (mod N).

Then we impose the usual homology relations from §3.1. The boundary map δχ is

given by

δχ(c, d) = δ(c, d) − δ(gc, gd)

with δ given by (3.3). It is easy to see that there are four cusp equivalence classes,

since N is prime:

C1 = {p/q ∈ Q ∪∞ | χ(q) = 0, χ(p) = +1};
C2 = {p/q ∈ Q ∪∞ | χ(q) = 0, χ(p) = −1};
C3 = {p/q ∈ Q ∪∞ | χ(q) = +1};
C4 = {p/q ∈ Q ∪∞ | χ(q) = −1}.

We have δχ((1, 0)) = C3 − C1 − C4 + C2, while

δχ((c, 1)) =

{
0 if χ(c) = +1

2(C4 − C3) if χ(c) = −1

= (1 − χ(c))(C4 − C3).

Thus Hχ
1 (N) = ker(δχ) may be computed.

5.2. Hecke eigenspaces. Let p denote a prime with χ(p) = +1, and q a prime

with χ(q) = −1. Then (see [7]) the Hecke operator Tp is Hermitian, while Tq is

skew-Hermitian, so the eigenvalues ap, aq are real and pure imaginary respectively.

We also have the Fricke involution W = WN induced by z 7→ −1/Nz, which satisfies

WTp = TpW, WTq = −TqW.

Since N is square-free there cannot be any complex multiplication. It follows

that simultaneous eigenforms for all Tp, Tq come in pairs {f1, f2}, with eigenvalues

as follows:

Tp(f1) = apf1, Tp(f2) = apf2 with ap ∈ R;

Tq(f1) = aqf1, Tp(f2) = −aqf2 with aq ∈ i · R.

Moreover, W (f1) is a scalar multiple of f2 and vice versa. These scalars are called

“pseudo-eigenvalues” in [1]. In our case we have (see [13, §2.1] or [9, Lemma 2]):

W (f1) =
aN√
N

f2, W (f2) =
aN√
N

f1

where aN and aN are the TN -eigenvalues of f1 and f2, which satisfy |aN | = N .
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5.3. The elliptic curves. Suppose that f1 =
∑∞

n=1 an exp(2πinz) and f2 are a

conjugate pair of eigenforms, as above, normalized so that a1 = 1, and such that

ap ∈ Z. Then each aq has the form bq

√
−d with bq ∈ Z and d a square-free positive

integer depending only on f1, f2 but not on q. From such a pair of forms we may

construct elliptic curves defined over Q(
√

N), which are known to have everywhere

good reduction.

Let Λ be the period lattice in C2 of the pair {f1, f2}:

Λ =

{
(2πi

∫

γ

f1, 2πi

∫

γ

f2) | γ ∈ H1(Γχ(N)\H∗, Z)

}
.

Set A = C2/Λ, a two-dimensional abelian variety defined over Q. We have

EndQ(A) ⊗Z Q ∼= Q(
√
−d),

so that A is simple over Q, while

End
Q(

√
N)(A) ⊗Z Q ∼= M2(Q)

so that A splits as a product of two elliptic curves (up to isogeny) over Q(
√

N).

These are the elliptic curves which we wish to compute.

Now W is defined over Q(
√

N), and W 2 = 1; the splitting is achieved by sepa-

rating the +1 and −1 eigenspaces for W . Let h1 and h2 be the normalized forms

in Cf1 + Cf2 with W -eigenvalues −1 and +1 respectively; up to normalization we

have h1 = (1 − W )f1 and h2 = (1 + W )f1. Then changing basis from {f1, f2} to

{h1, h2} we find that Λ = Λ1 ×Λ2 where Λ1 and Λ2 are the (rank 2) period lattices

of h1 and h2 in C. Setting Aj = C/Λj we have A = A1 × A2 (up to isogeny). The

elliptic curves Aj are thus defined over Q(
√

N) and are known to have everywhere

good reduction.

In order to compute the curves Aj explicitly we must first identify the occurrence

of a suitable pair of cusp forms f1, f2; then compute a large number of the Fourier

coefficients (Hecke eigenvalues) ap, aq; and determine explicitly the cycles in integral

homology which will give a Z-basis for the lattices Λ1, Λ2. In practice we perform

the first two steps working in the smaller space H+
1 (fixed by conjugation), and

move to the whole space H1 to find the full period lattices before computing the

periods. However, for simplicity of exposition, here we will work in the full space

H1 throughout. The periods themselves will be computed indirectly, by computing

the values of certain L-series (attached to appropriate quadratic twists of h1 and

h2) at s = 1.

These three stages will now be discussed in detail.

5.4. Finding the eigenforms. Having computed Hχ
1 (N) using symbols as in

§5.1 we restrict to the +1-eigenspace for conjugation and then further to the −1-

eigenspace for the W involution. Then we search through primes p with χ(p) = +1



12 J. E. CREMONA

for an eigenspace for Tp of dimension 1 for some rational integer eigenvalue ap

(which must satisfy |ap| < 2
√

p). If some p has no rational eigenvalues we abandon

this value of N . If p has a rational eigenvalue of multiplicity greater than 1 we try

another prime p.

Once we have an eigenvector η1 ∈ Hχ
1 (N) with ∗(η1) = η1, W (η1) = −η1,

Tp(η1) = apη1, we then compute η2 = Tq(η1) for a prime q with χ(q) = −1. We may

assume that η2 6= 0 (otherwise we try a different q), so that {η1, η2} is a basis for the

2-dimensional subspace of Hχ
1 (N) corresponding to a suitable pair of eigenforms

{f1, f2}. We thus have Tq(η2) = −k2dη1 where k and d are positive integers, d

square-free. Also Tp(η2) = apη2 since Tp and Tq commute, while W (η2) = +η2

since W and Tq anti-commute. Hence we have located the occurrence of a suitable

pair of newforms {f1, f2} and know the imaginary quadratic field Q(
√
−d) in which

their Fourier coefficients (or Hecke eigenvalues) lie.

5.5. Computing Fourier coefficients. We keep the notation of the previous

section.

Computing ap, χ(p) = +1. The technique of [4] needs little change in this case.

Let η̂1, η̂2 be dual eigenvectors with the same eigenvalues as η1, η2, and η̂2 = T̂q η̂1.

(In practice we have a matrix for Tq, the ηj are right column eigenvectors, and

the η̂j are left row eigenvectors, or equivalently right column eigenvectors for the

transpose T̂q of Tq.) For χ(p) = +1 set γ(p) =
∑

a (mod p){0, a/p}. Let p0 be the

smallest prime p with χ(p) = +1. Set

η̂ =

{
η̂1 if η̂1 · γ(p0) 6= 0,

η̂2 if η̂1 · γ(p0) = 0, η̂2 · γ(p0) 6= 0.

(In all cases we never had η̂1 · γ(p0) = η̂2 · γ(p0) = 0, which is equivalent to

L(h1, 1) = L(h2, 1) = 0.) We suppose that the value η̂1 · γ(p0) is computed once

and for all, and that we know ap0
by direct computation of Tp0

. Then the values

of ap for all other p with χ(p) = +1 are given by the following.

Lemma 5.5.1. For all primes p with χ(p) = +1,

ap = 1 + p − (1 + p0 − ap0
)γ(p) · η̂

γ(p0) · η̂
.

Proof. We have

(1 + p − ap)L(h1, 1) = (γ(p) · η̂)λ,

where λ is a fixed real period of h1, not depending on p, so (1 + p − ap)/(γ(p) · η̂)

is independent of p and the result follows. ¤
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Computing aq, χ(q) = −1. Recall that for χ(q) = −1 we have eigenvalues of the

form aq = bq

√
−d where bq ∈ Z. For one such prime q0 we already know bq0

from

the first stage. When χ(q) = −1 define

γ(q) =
∑

a (mod q)

{
0,

1 + aq0

qq0

}
−

{
0,

q

q0

}
.

Lemma 5.5.2. γ(q) is in the integral homology.

Proof. First suppose q 6= q0. If 1+aq0 6≡ 0 (mod q) then the fraction (1+aq0)/(qq0)

is in lowest terms, with χ(qq0) = +1, so the term {0, (1 + aq0)/(qq0)} is integral.

Let a0 denote the unique solution to 1 + aq0 ≡ 0 (mod q). Then

{
0,

1 + a0q0

qq0

}
−

{
0,

q

q0

}
=

{
q

q0
,
(1 + a0q0)/q

q0

}

is integral.

If q = q0 then {0, q/q0} = 0 and {0, (1 + aq0)/(q2
0)} is integral for all a. ¤

Now the values of bq for all q with χ(q) = −1 are given by the following.

Lemma 5.5.3.

bq

bq0

=
[(q − 1)γ(p0) − (1 + p0 − ap0

)γ(q)] · η̂
[(q0 − 1)γ(p0) − (1 + p0 − ap0

)γ(q0)] · η̂
.

Proof.

Tq

({
1

q0
,∞

})
= −

{
q

q0
,∞

}
+

∑

a (mod q)

{
1 + aq0

qq0
,∞

}

= (q − 1){0,∞}− γ(q).

Hence

aq

{
1

q0
,∞

}
= [(q − 1){0,∞}− γ(q)] · η̂.

Substituting q = q0 and dividing gives

aq

aq0

=
[(q − 1){0,∞}− γ(q)] · η̂

[(q0 − 1){0,∞}− γ(q0)] · η̂

for all q with χ(q) = −1. Since {0,∞} · η̂ is a constant multiple of (γ(p0) · η̂)/(1 +

p0 − ap0
), the result follows. ¤

Remark. If the denominator of the right-hand side of the expression for bq/bq0
is

zero, we choose a new value of q0. In practice this condition is tested in the first

stage, when a suitable value for q0 is sought.

Computing aN . We may compute the full matrix of TN acting on Hχ
1 (N) and

hence express TN (η1) as a Q-linear combination of η1 and η2.
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Lemma 5.5.4. Let TN (η1) = xη1 + yη2 with x, y ∈ Q. Then aN = x + ky
√
−d.

Proof. The element k
√
−dη1 + η2 has eigenvalue ap for Tp and eigenvalue aq =

k
√
−d for Tq and hence corresponds to the eigenform f1, so TN (k

√
−dη1 + η2) =

aN (k
√
−dη1 + η2). Similarly TN (−k

√
−dη1 + η2) = aN (−k

√
−dη1 + η2). A simple

calculation now shows that x = (aN + aN )/2 and y = (aN − aN )/2k
√
−d, from

which the result follows. ¤

In practice, computing TN directly is very time-consuming when N is large. As

an alternative we may use the following trick. We have W (f1) = (aN/
√

N)f2, or

N−1z−2f1(−1/Nz) =
aN√
N

f2(z).

Substituting z = i/
√

N gives

f1(i/
√

N) = − aN√
N

f2(i/
√

N).

But also f2(i/
√

N) = f1(i/
√

N), and hence aN/
√

N = −w/w where w = f1(i/
√

N).

The latter may be computed from its Fourier expansion:

f1(i/
√

N) =
∞∑

n=1

an exp(−2πn/
√

N).

Hence, finally,

(5.5.1) aN = −
√

N

∑∞
n=1 an exp(−2πn/

√
N)

∑∞
n=1 an exp(−2πn/

√
N)

.

If we have computed sufficiently many an with N ∤ n then we are able to compute

the right-hand side of (5.5.1) sufficiently accurately to be able to determine the

algebraic number aN = a + b
√
−d.

For example, when N = 509 we have χ(2) = −1 and χ(5) = +1, with eigenvalues

a2 =
√
−5 and a5 = −2. Thus d = 5 here. We numerically evaluate the right-hand

side of (5.5.1) using an for n ≤ 1000, n 6= 509, and obtain a509 = −3.000 . . . − i ∗
22.36067977 . . . , from which we may deduce the exact value a509 = −3 − 10

√
−5.

5.6. Computing the period lattices. So far we have a conjugate pair of eigen-

forms f1, f2 and have computed a large supply of their Fourier coefficients an (we

used n ≤ 200 for N = 29, rising to n ≤ 1000 for N = 997). We now compute the

period lattices of the normalized forms h1, h2 introduced in §5.3. These are the

period lattices of the elliptic curves defined over Q(
√

N) which we seek.

Fix primes p = p0 and q = q0 such that, as above,

χ(p) = +1, Tp(f1) = apf1, Tp(f2) = apf2,
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and

χ(q) = −1, Tq(f1) = bq

√
−df1, Tq(f2) = −bq

√
−df2,

where bq 6= 0. Let aN = a + b
√
−d, so that

aNaN = a2 + db2 = N.

Set

α =
a +

√
N

b
√
−d

, α′ = α−1 =
a −

√
N

b
√
−d

;

and

β =
aN√
N

=
a + b

√
−d√

N
, β′ = β−1 =

aN√
N

=
a − b

√
−d√

N
.

Then W (f1) = β′f2 and W (f2) = βf1.

Lemma 5.6.1. (1) β =
α + 1

α − 1
; (2) α =

β + 1

β − 1
.

Proof. Both statements follow from αβ = α + β + 1, which is an elementary conse-

quence of a2 + db2 = N . ¤

Define

h1 =
1

2
(1 + α)f1 +

1

2
(1 − α)f2,

h2 =
1

2
(1 + α′)f1 +

1

2
(1 − α′)f2.

Lemma 5.6.2. (1) In the Fourier expansions of h1 and h2 the first coefficients are

both 1.

(2) Tp(hj) = aphj for j = 1, 2.

(3) W (h1) = −h1 and W (h2) = +h2.

(4) Tq(h1) =
bq(a +

√
N)

b
h2 and Tq(h2) =

bq(a −
√

N)

b
h1.

Proof. 1. h1 and h2 are both affine combinations of f1 and f2 which have first

coefficients equal to 1.

2. Immediate since Tp(fj) = apfj for j = 1, 2.

3.

W (h1) =
1

2
(1 + α)W (f1) +

1

2
(1 − α)W (f2)

=
1

2
(1 + α)β′f2 +

1

2
(1 − α)βf1

=
1

2
(α − 1)f2 −

1

2
(1 + α)f1

= −h1,
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using Lemma 5.6.1. Similarly W (h2) = +h2.

4.

Tq(h1) = bq

√
−d

(
1

2
(1 + α)f1 −

1

2
(1 − α)f2

)
= bq

√
−dαh2,

and similarly Tq(h2) = bq

√
−dα′h1. ¤

It follows that h1, h2 are defined over Q(
√

N); in particular they are defined over

R.

Now define eigencycles η±
j ∈ H1(Γχ(N)\H∗, Z) with eigenvalues as follows:

∗(η+
j ) = +η+

j ,

∗(η−
j ) = −η−

j ,

Tp(η
±
j ) = apη

±
j ,

W (η±
1 ) = −η±

1 ,

W (η±
2 ) = +η±

2 .

We may also assume the normalisation η±
2 = Tq(η

±
1 ). (Note that η±

j has the same

eigenvalues as the dual element η̂j used in §5.5).

Define periods as follows:

uj = 2πi

∫

η
+

j

hj(z)dz,

ivj = 2πi

∫

η
−

j

hj(z)dz.

Note that uj and vj are real since h1 and h2 are defined over R, as are the cycles

η±
j . Also if j 6= k, then it is easy to see that

∫
η
±

k

hj = 0.

We now show how to obtain Z-bases for the full period lattices of the forms h1 and

h2; note that Zuj+iZvj will (in general) only be a sublattice of finite index in the full

period lattice. For j = 1, 2 all integral periods of hj are rational linear combinations

of uj and ivj . Precisely, let {γj | j = 1, . . . , 2g} be a Z-basis for H1(Γχ(N)\H∗, Z);

then if γ =
∑

cjγj is an integral cycle with c = (c1, . . . , c2g) ∈ Z2g, we have

2πi

∫

γ

hj(z)dz = (c · η̂+
j )uj + (c · η̂−

j )ivj ;

here η̂±
j are dual eigenvectors to η±

j . For j = 1, 2 let {(λ(j)
1 , µ

(j)
1 ), (λ

(j)
2 , µ

(j)
2 )} be a

Z-basis for the subgroup of Z2 generated by the columns of the 2× 2g matrix with

rows η̂+
j , η̂−

j . Then the period lattice Λj of hj has Z-basis

ω
(j)
1 = λ

(j)
1 uj + µ

(j)
1 vji,

ω
(j)
2 = λ

(j)
2 uj + µ

(j)
2 vji.
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In fact we may take µ
(j)
1 = 0 (so that ω

(j)
1 ∈ R) in all cases; and if Λj is a rectangular

lattice, then we may take λ
(j)
2 = 0 (so that ω

(j)
1 is pure imaginary).

Remark. The cycles η±
j are only defined up to a scalar multiple (by their eigen-

values), but are only used above in defining the quantities uj and vj . If η±
j are

replaced by scalar multiples of themselves, thus scaling up uj and vj , then the dual

vectors η̂±
j are scaled down by the same amount, so that the integers λ

(j)
k are also

scaled down; and so the periods ω
(j)
k are unambiguously defined by the preceding

equations. In practice, we will not in fact need η±
j at all, but will compute the dual

vectors η̂±
j as eigenvectors for the appropriate transposed matrices.

Hence to compute the lattices Λj it remains to compute the four real numbers

uj , vj (j = 1, 2). So far all the calculation has been algebraic; and in fact the

periods of h2 are algebraic multiples of those of h1.

Lemma 5.6.3.

u2

u1
=

v2

v1
= bq

a −
√

N

b
.

Proof. We compute
∫

η
+

2

Tq(h1) in two ways. For simplicity we omit the factors of

2πi. First,

∫

η
+

2

Tq(h1) =

∫

η
+

2

bq

a +
√

N

b
h2 by Lemma 5.6.2

= bq(a +
√

N)u2/b.

On the other hand,

∫

η
+

2

Tq(h1) =

∫

Tq(η+

2
)

h1 =

∫

T 2
q (η+

1
)

h1 = −b2
qd

∫

η
+

1

h1 = −b2
qdu1.

Comparing the two expressions gives

u2

u1
=

−b2
qd

bq(a +
√

N)/b
=

−bqd(a −
√

N)

(a2 − N)/b
=

bq(a −
√

N)

b
.

The calculation for v2/v1 is similar. For future reference we also note that

v1

v2
=

b

bq(a −
√

N)
=

b(a +
√

N)

bq(a2 − N)
=

−(a +
√

N)

dbbq

. ¤

We now show how to compute the periods u1 and v2 numerically. The compu-

tation of u1 is simpler, since the W -eigenvalue of h1 is −1.
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Proposition 5.6.4.

u1 =
(1 + p − ap)L(h1, 1)

γ(p) · η̂+
1

, and u2 = u1bq(a −
√

N)/b,

where γ(p) =
∑

a (mod p){0, a/p}, expressed as a Z-linear combination of the Z-basis

{γ1, . . . , γ2g}, and L(h1, 1) is given by

L(h1, 1) = 2
∞∑

n=1

an

n
exp(−2πn/

√
N).

Proof. Identical to the method of [4, (2.8.3), (2.11.1)]. ¤

For h2 we must first twist with a suitable quadratic character.

Proposition 5.6.5. Let l be a prime congruent to 3 modulo 4, and ψ the quadratic

character modulo l. Let h2 ⊗ ψ be the twist of h2 by ψ. Then

(1) h2 ⊗ ψ is a cusp form of level Nl2 satisfying WNl2(h2 ⊗ ψ) = −h2 ⊗ ψ;

(2)

L(h2 ⊗ ψ) = 2
∞∑

n=1

ψ(n)an

n
exp(−2πn/l

√
N);

(3)

v2 =
−
√

lL(h2 ⊗ ψ, 1)

γ(l, ψ) · η̂−
2

, and v1 = −v2(a +
√

N)/dbbq,

where γ(l, ψ) =
∑

a (mod l) ψ(a){0, a/l}.

Proof. 1. That h2⊗ψ is a form at level Nl2 is standard. The WNl2-eigenvalue may

be computed by an argument similar to that used for Γ0(N) forms in [15]. We have

h2 ⊗ ψ =
g(ψ)

l

l−1∑

a=1

ψ(−a)h2

∣∣∣∣
(

l a
0 l

)

where g(ψ) is the Gauss sum. Hence

h2 ⊗ ψ

∣∣∣∣
(

0 −1
Nl2 0

)
= l−1g(ψ)

l−1∑

a=1

ψ(−a)h2

∣∣∣∣
(

l a
0 l

)(
0 −1

Nl2 0

)
.

Now

(
l a
0 l

)(
0 −1

Nl2 0

)
=

(
l 0
0 l

) (
0 −1
N 0

)(
l b

−Na c

) (
l −b
0 l

)



MODULAR SYMBOLS FOR Γ1(N) 19

where for 1 ≤ a ≤ l − 1 we choose b, c such that Nab + lc = 1. Note that Nab ≡ 1

(mod l), so ψ(−a) = ψ(−Nb), and that lc ≡ 1 (mod N), so that χ(c) = χ(l). Then

h2 ⊗ ψ |WNl2 = l−1g(ψ)
∑

ψ(−a)h2

∣∣∣∣
(

l b
−Na c

)(
l −b
0 l

)

(using h2|WN = h2)

= l−1g(ψ)χ(l)
∑

ψ(−a)h2

∣∣∣∣
(

l −b
0 l

)

(since

(
l b

−Na c

)
∈ Γ0(N))

= l−1g(ψ)χ(l)ψ(−N)
∑

ψ(b)h2

∣∣∣∣
(

l −b
0 l

)

= χ(l)ψ(−N)h2 ⊗ ψ.

Hence the WNl2-eigenvalue of h2 ⊗ ψ is

χ(l)ψ(−N) =

(
l

N

)(−N

l

)
=

(
N

l

)(−N

l

)
=

(−1

l

)
= −1.

Parts (2) and (3) of the proposition now follow as in [4]. Note that γ(l, ψ) is in

the integral homology since

γ(l, ψ) =
∑

a (mod l)

ψ(a){0, a/l}

=
∑

a (mod l)

ψ(a){1/l, a/l}. ¤

This completes the method of numerically computing generators for the period

lattices Λ1,Λ2.

5.7. The elliptic curves. We now have, to a certain precision, Z-bases {ω(j)
1 , ω

(j)
2 }

for the lattices Λj (j = 1, 2) of periods of the normalised cusp forms h1, h2 defined

over Q(
√

N). If we need greater precision later we merely have to compute more

Hecke eigenvalues and recompute the periods from the data obtained in the previ-

ous section. If necessary we adust these Z-bases so that each ω
(j)
2 /ω

(j)
1 lies in the

usual fundamental region for SL(2, Z) in the upper half-plane.

We now use the rapidly convergent series to compute the lattice covariants c
(j)
4

and c
(j)
6 . These quantities are a priori elements of Q(

√
N), with c

(2)
4 , c

(2)
6 the Galois

conjugates of c
(1)
4 , c

(1)
6 , so that c

(1)
4 +c

(2)
4 , (c

(1)
4 −c

(2)
4 )/

√
N , c

(1)
6 +c

(2)
6 , (c

(1)
6 −c

(2)
6 )/

√
N

are rational numbers for which we have decimal approximations.

In all cases computed (N ≤ 1000) we found these four numbers to be integers;

more precisely, their computed values are integral to at least 20 decimal places.
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Equivalently, the computed values of c
(j)
4 and c

(j)
6 are extremely close to conjugate

pairs of elements of the ring of integers of Q(
√

N).

Let c4 and c6 be the exact algebraic integers obtained by rounding the approx-

imate values computed for c
(1)
4 and c

(1)
6 . Set ∆ = (c3

4 − c2
6)/1728 and j = c3

4/∆.

Then we have an elliptic curve E′
1 defined over Q(

√
N) with j-invariant j and in-

tegral covariants c4 and c6. In every case, j is integral and E′
1 has everywhere

good reduction. But also we know that the actual modular curve E1 = C/Λ1 has

everywhere good reduction and hence has integral j-invariant equal to

j(E1) =
1728(c

(1)
4 )3

(c
(1)
4 )3 − (c

(1)
6 )2

.

Hence j, the integral value obtained by numerical approximation, must be exactly

equal to j(E1). Thus E1 and E′
1 both have everywhere good reduction, and also

have the same j-invariant; it follows from a result of Ishii (see [13, Lemma 1.5])

that in fact E1 = E′
1. Hence we have determined the curve E1, and its conjugate

E2, exactly.

6. Results

We have carried out all the calculations described in the previous section for all

80 primes N congruent to 1 modulo 4 and less than 1000. In 15 cases we found a

pair of newforms f1, f2 satisfying our conditions, namely for

N = 29, 37, 41, 109, 157, 229, 257, 337, 349, 397, 461, 509, 877, 881, 997.

In no case did we find more than one such pair at the same level.

In Table 1 we give, for each of these levels N ,

(1) The positive integer d such that the Hecke eigenvalues lie in Q(
√
−d).

(2) The Hecke eigenvalue ap of f1 for each of the first 15 primes p; when χ(p) = −1

these are given in the form bω, where w =
√
−d if d ≡ 1, 2 (mod 4), or w =

(1 +
√
−d)/2 if d ≡ 3 (mod 4).

(3) The value aN .

In Table 2 we give the computed values for each curve E1 found. We list the

values of c4, c6, and the j-invariant, in the form x + yα where α = (1 +
√

N)/2.

We also give the norm of the discriminant ∆ in factorized form: this norm is not

usually 1 as the curves are not usually minimal (see remarks below).

Finally, in Table 3, we give global minimal equations for the curves, where these

exist. All but two are taken from [10]; we give Pinch’s code in the second column

(a prime here indicates the conjugate of the corresponding curve in [10]). Curves

461A and 509B are new; the equations were computed by Pinch from the c4 and

c6 values in Table 2.

Comparing our list of curves with the table in Pinch’s thesis [10], we make the

following observations.
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N = 461. This curve does not appear in [10], where there are no curves given

over Q(
√

461).

N = 509. Our curve is not the same as Pinch’s 509A. Indeed, the latter is not

isogenous to its conjugate, so could not arise via this construction. However the

L-series of these two curves are congruent modulo 5 (see [11]).

N = 733. Pinch’s 733A is again not isogenous to its conjugate; we found no

curves at this level.

Our computations agree with these of Shiota at levels 29, 37, 41; Shiota computed

j but not c4 and c6 separately.

While we always obtain integral equations for the curves (that is, c4 and c6 are

integral) we do not always obtain a minimal equation: ∆ is usually not a unit. This

is in marked contrast with the situation for modular elliptic curves over Q attached

to rational newforms for Γ0(N), where in all known cases the period lattice of the

normalized cusp form f is that of a global minimal equation for the modular curve

Ef . Indeed, in two cases (N = 229 and N = 257) there is no global minimal

equation (the class number is 3 in both these cases).

Non-minimality at the primes dividing 2 and 3 in Q(
√

N) seems to follow a

pattern. Within the range of our table we have

• Minimality at primes above 2 ⇐⇒ N ≡ 1 (mod 16).

• Minimality at primes above 3 ⇐⇒ N ≡ 1 (mod 3).

It would be interesting to know whether this pattern continues, and if there is a

reason for it.

We also find nonminimality at a prime dividing 5 at levels 509 and 881; but it

is not clear what the pattern is here, if any.

Table 1 here

Table 2 here

Table 3 here
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Table 1. Hecke eigenvalues

N d a2 a3 a5 a7 a11 a13 a17 a19 a23 a29 aN

29 5 ω −ω −3 2 ω −1 −2ω 0 6 −3 + 2ω −3 + 2ω
37 1 2ω −1 −2ω 3 −3 −6ω 2ω 6ω 4ω −4ω −1 + 6ω
41 2 −1 2ω 2 −2ω 2ω −4ω 0 2ω 0 −4ω −3 + 4ω

109 3 ω 2 −3 2 −3ω 0 2ω −3ω −ω −3 −1 + 6ω
157 1 ω −2 −4ω −3ω 6 −5 3 0 −5ω 4ω −11 − 6ω
229 5 ω 1 3 0 3 0 −3 −1 −2ω −2ω 7 + 6ω
257 2 −1 ω −2ω ω 0 2 4 3ω 4 4 −15 − 4ω
337 2 1 0 2ω 4 3ω 4 4ω −3ω −ω 2ω −7 + 12ω
349 5 0 −1 2 −2ω −2ω 2ω 3 −5 1 1 −13 − 6ω
397 1 ω 2 −2ω −3ω 0 0 4ω −2 6 −3 −19 + 6ω
461 5 ω 0 1 ω ω 0 3 0 −6 2ω 21 + 2ω
509 5 ω ω −2 ω −2 0 7 0 6 −5 −3 − 10ω
877 1 2ω 1 −4ω 1 −4ω 0 −2ω −6ω 0 6 −29 − 6ω
881 2 1 ω 4 3ω −4 −2 4ω 0 −5ω −2ω 9 + 20ω
997 3 0 1 2ω 0 2ω −1 −2ω 4 −3 4ω −5 + 18ω
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Table 2. Elliptic curve data – computed values

N c4 c6 Norm(∆) j

29 32 + 15α 299 + 140α 1 −7688 − 3515α

37 144 + 16α −1368 − 224α 312 4096

41 17 103 + 64α −1 181781 − 49130α

109 27 + 25α 999 + 280α 312 −1243 − 585α

157 832 + 143α 46955 + 8140α 312 −2197

229 2173 − 235α −124369 + 15988α 312 7334137 − 888615α

257 −607 − 81α −15025 − 1999α −212 873 − 82α

337 117 − 33α 22599 + 1701α −212312 14121 − 1458α

349 2112 + 160α 84840 + 11680α 312 1983152128 − 201523200α

397 −1980 − 209α 69759 + 7372α 312 1331

461 3876 − 345α −333693 + 29700α 1 −1595511 + 142155α

509 478856 − 35769α −426923825 + 34954300α 512 −31541630772320810747
+2677440925751149675α

877 46480 + 3248α −14405560 − 1006880α 312 1404928

881 5405 − 321α −532025 + 32605α −212512 270553 − 17650α

997 43936 + 2528α 12181064 + 776608α 324 32253902848 + 2109800448α
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Table 3. Elliptic curves – minimal models

Curve a1 a2 a3 a4 a6

29B α −2 − 2α 1 − α 10 + α −3 − α

37A 0 2 1 −19 − 8α 28 + 11α

41C′ 1 α α 3 −2

109A′ 2 − α 1 −α −244 − 59α −3189 − 689α

157A −1 − α 0 1 + α −5593 − 974α −350775 − 60846α

229A′ No global minimal model

257A No global minimal model

337A −1 −1 0 −416 + 43α −4249 + 439α

349A′ 0 2 1 −11906 + 1210α 681129 − 69215α

397A −1 1 −α 1430031 − 136646α −486945568 + 46542441α

461A α −1 − α α 140 − 7α 393 − 14α

509B 1 + α 0 1 + α −4051846 + 343985α 4312534180 − 366073300α

877A′ 0 1 1 −262601139278 74473105793336434
−18354612024α −5205327618971097α

881A −1 0 1 −358 − 25α 11329 + 790α

997A 0 1 −1 −125389 − 8202α −24602589 − 1609311α
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