The elliptic curve database to 130000

John Cremona
University of Nottingham, UK

ANTS 7: Berlin, 26 July 2006

Plan of the talk

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

Plan of the talk

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

Plan of the talk

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

Plan of the talk

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

Background and history

The Antwerp tables

"Antwerp IV" := Modular function of One Variable IV, edited by Birch and Kuyk, Proceedings of an International Summer School in Antwerp, July 17 - August 3, 1972. See http://modular.math.washington.edu/scans/antwerp/.

The tables in Antwerp IV

1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
3. Hecke eigenvalues for $p<100$ for the associated newforms. [Vélu, Stephens, Tingley]
4. All elliptic curves of conductor $N=2^{a} 3^{b}$. [Coghlan]
5. Dimensions of spaces of newforms for $\Gamma_{0}(N)$ for $N \leq 300$. [Atkin, Tingley]
6. Factorized supersingular j-polynomials for $p \leq 307$. [Atkin]

The tables in Antwerp IV

1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
3. Hecke eigenvalues for $p<100$ for the associated newforms. [Vélu, Stephens, Tingley]
4. All elliptic curves of conductor $N=2^{a} 3^{b}$. [Coghlan]
5. Dimensions of spaces of newforms for $\Gamma_{0}(N)$ for $N \leq 300$. [Atkin, Tingley]
6. Factorized supersingular j-polynomials for $p \leq 307$. [Atkin]

The tables in Antwerp IV

1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
3. Hecke eigenvalues for $p<100$ for the associated newforms. [Vélu, Stephens, Tingley]
4. All elliptic curves of conductor $N=2^{a} 3^{b}$. [Coghlan]
5. Dimensions of spaces of newforms for $\Gamma_{0}(N)$ for $N \leq 300$. [Atkin, Tingley]
6. Factorized supersingular j-polynomials for $p \leq 307$. [Atkin]

The tables in Antwerp IV

1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
3. Hecke eigenvalues for $p<100$ for the associated newforms. [Vélu, Stephens, Tingley]
4. All elliptic curves of conductor $N=2^{a} 3^{b}$. [Coghlan]
5. Dimensions of spaces of newforms for $\Gamma_{0}(N)$ for $N \leq 300$. [Atkin, Tingley]
6. Factorized supersingular j-polynomials for $p \leq 307$. [Atkin]

The tables in Antwerp IV

1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
3. Hecke eigenvalues for $p<100$ for the associated newforms. [Vélu, Stephens, Tingley]
4. All elliptic curves of conductor $N=2^{a} 3^{b}$. [Coghlan]
5. Dimensions of spaces of newforms for $\Gamma_{0}(N)$ for $N \leq 300$. [Atkin, Tingley]
6. Factorized supersingular j-polynomials for $p \leq 307$. [Atkin]

The tables in Antwerp IV

1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
3. Hecke eigenvalues for $p<100$ for the associated newforms. [Vélu, Stephens, Tingley]
4. All elliptic curves of conductor $N=2^{a} 3^{b}$. [Coghlan]
5. Dimensions of spaces of newforms for $\Gamma_{0}(N)$ for $N \leq 300$. [Atkin, Tingley]
6. Factorized supersingular j-polynomials for $p \leq 307$. [Atkin]

Table 1 in Antwerp IV

"The origins of Table 1 are ... complicated".

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2- and 3-isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \leq 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

$$
78 A: \quad Y^{2}+X Y=X^{3}+X^{2}-19 X+685
$$

Table 1 in Antwerp IV

"The origins of Table 1 are ... complicated".

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2 - and 3 -isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \leq 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

$$
78 A: \quad Y^{2}+X Y=X^{3}+X^{2}-19 X+685
$$

Table 1 in Antwerp IV

"The origins of Table 1 are ... complicated".

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2- and 3-isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \leq 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

$$
78 A: \quad Y^{2}+X Y=X^{3}+X^{2}-19 X+685
$$

Table 1 in Antwerp IV

"The origins of Table 1 are ... complicated".

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2 - and 3 -isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \leq 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

$$
78 A: \quad Y^{2}+X Y=X^{3}+X^{2}-19 X+685
$$

Antwerp IV Table 1 (contd.)

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N=2^{a} 3^{b}$.
- Tingley's thesis (1975) contains further curves with $200<N \leq 320$ found via modular symbols, newforms and periods.

No more systematic enumeration occurred between 1972 and the mid 1980s.

Antwerp IV Table 1 (contd.)

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N=2^{a} 3^{b}$.
- Tingley's thesis (1975) contains further curves with $200<N \leq 320$ found via modular symbols, newforms and periods.

No more systematic enumeration occurred between 1972 and the mid 1980s.

Antwerp IV Table 1 (contd.)

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N=2^{a} 3^{b}$.
- Tingley's thesis (1975) contains further curves with $200<N \leq 320$ found via modular symbols, newforms and periods.

No more systematic enumeration occurred between 1972 and the mid 1980s.

Antwerp IV Table 1 (contd.)

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N=2^{a} 3^{b}$.
- Tingley's thesis (1975) contains further curves with $200<N \leq 320$ found via modular symbols, newforms and periods.

No more systematic enumeration occurred between 1972 and the mid 1980s.

The origin of the 1992 tables

1985-1988: Implementation of modular symbols for $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ in Algol68 1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)
1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.
1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.
1991: Contract signed with Cambridge University Press.
8 October 1992: Algorithms for Modular Elliptic Curves published: full tables to conductor 1000 (except $N=702$).

The origin of the 1992 tables

1985-1988: Implementation of modular symbols for $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ in Algol68 1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)
1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.
1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.
1991: Contract signed with Cambridge University Press.
8 October 1992: Algorithms for Modular Elliptic Curves published: full tables to conductor 1000 (except $N=702$).

The origin of the 1992 tables

1985-1988: Implementation of modular symbols for $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ in Algol68 1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)
1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.
1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.
1991: Contract signed with Cambridge University Press.
8 October 1992: Algorithms for Modular Elliptic Curves published: full tables to conductor 1000 (except $N=702$).

The origin of the 1992 tables

1985-1988: Implementation of modular symbols for $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ in Algol68
1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)
1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.
1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.
1991: Contract signed with Cambridge University Press.
8 October 1992: Algorithms for Modular Elliptic Curves published: full tables to conductor 1000 (except $N=702$).

The origin of the 1992 tables

1985-1988: Implementation of modular symbols for $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ in Algol68
1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)
1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.
1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.
1991: Contract signed with Cambridge University Press.
8 October 1992: Algorithms for Modular Elliptic Curves published: full tables to conductor 1000 (except $N=702$).

The origin of the 1992 tables

1985-1988: Implementation of modular symbols for $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ in Algol68
1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)
1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.
1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.
1991: Contract signed with Cambridge University Press.
8 October 1992: Algorithms for Modular Elliptic Curves published: full tables to conductor 1000 (except $N=702$).

The 1997 tables

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

Full text available online since around 2002 at
http://www.maths.nott.ac.uk/personal/jec/book/fulltext/.

The 1997 tables

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

Full text available online since around 2002 at
http://www.maths.nott.ac.uk/personal/jec/book/fulltext/.

The 1997 tables

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

Full text available online since around 2002 at
http://www.maths.nott.ac.uk/personal/jec/book/fulltext/.

The 1997 tables

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

Full text available online since around 2002 at http://www.maths.nott.ac.uk/personal/jec/book/fulltext/.

Algorithms and Implementation

Overview

- Use modular symbols modulo N
- Find newforms for $\Gamma_{0}(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

Algorithms and Implementation

Overview

- Use modular symbols modulo N
- Find newforms for $\Gamma_{0}(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

Algorithms and Implementation

Overview

- Use modular symbols modulo N
- Find newforms for $\Gamma_{0}(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

Algorithms and Implementation

Overview

- Use modular symbols modulo N
- Find newforms for $\Gamma_{0}(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

Finding the newforms at level N

- Compute space of $\Gamma_{0}(N)$-modular symbols [fast]
- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.

Finding the newforms at level N

- Compute space of $\Gamma_{0}(N)$-modular symbols [fast]
- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.

Finding the newforms at level N

- Compute space of $\Gamma_{0}(N)$-modular symbols [fast]
- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.

Finding the newforms at level N

- Compute space of $\Gamma_{0}(N)$-modular symbols [fast]
- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.

Finding the curves from the newforms

- Compute many Hecke eigenvalues ($=$ Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2 \pi i f(z) d z$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series $L(E, s)=L(f, s)$; finite precision!
- Compute coefficients of E (approximately, but they are integers).

For levels around 130000 we may need up to 3500 Hecke eigenvalues.
Memory requirements and time to compute periods are negligible.

Finding the curves from the newforms

- Compute many Hecke eigenvalues (= Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2 \pi i f(z) d z$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series $L(E, s)=L(f, s)$; finite precision!
- Compute coefficients of E (approximately, but they are integers).

For levels around 130000 we may need up to 3500 Hecke eigenvalues.
Memory requirements and time to compute periods are negligible.

Finding the curves from the newforms

- Compute many Hecke eigenvalues ($=$ Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2 \pi i f(z) d z$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series $L(E, s)=L(f, s)$; finite precision!
- Compute coefficients of E (approximately, but they are integers).

For levels around 130000 we may need up to 3500 Hecke eigenvalues.
Memory requirements and time to compute periods are negligible.

Finding the curves from the newforms

- Compute many Hecke eigenvalues (=Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2 \pi i f(z) d z$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series $L(E, s)=L(f, s)$; finite precision!
- Compute coefficients of E (approximately, but they are integers).

For levels around 130000 we may need up to 3500 Hecke eigenvalues.
Memory requirements and time to compute periods are negligible.

Finding the curves from the newforms

- Compute many Hecke eigenvalues (=Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2 \pi i f(z) d z$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series $L(E, s)=L(f, s)$; finite precision!
- Compute coefficients of E (approximately, but they are integers).

For levels around 130000 we may need up to 3500 Hecke eigenvalues.
Memory requirements and time to compute periods are negligible.

Finding the curves from the newforms

- Compute many Hecke eigenvalues (=Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2 \pi i f(z) d z$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series $L(E, s)=L(f, s)$; finite precision!
- Compute coefficients of E (approximately, but they are integers).

For levels around 130000 we may need up to 3500 Hecke eigenvalues.
Memory requirements and time to compute periods are negligible.

Information about the curves

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |ШI" computed using BSD formula.

All this is automated, but hard cases need human intervention!

Information about the curves

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |ШI" computed using BSD formula.

All this is automated, but hard cases need human intervention!

Information about the curves

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |ШI" computed using BSD formula.

All this is automated, but hard cases need human intervention!

Information about the curves

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |Ш|" computed using BSD formula.

All this is automated, but hard cases need human intervention!

Implementation: software

1980s: Algol68 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein. Most important single programming improvement: use of sparse matrices. Example: Stein-Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5 -torsion, conductor 13881, then "beyond the range of Cremona's tables". Computing the four curves (up to isogeny) with $N=13881$ now takes less than 2 minutes and 60 MB of RAM.
[Most of the computation time is taken up finding the eigenspaces for the first Hecke operator T_{2} on the modular symbol space of dimension 1768.]

Implementation: software

1980s: Algol68 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein.
Most important single programming improvement: use of sparse matrices.
Example: Stein-Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5 -torsion, conductor 13881, then "beyond the range of Cremona's tables". Computing the four curves (up to isogeny) with $N=13881$ now takes less than 2 minutes and 60 MB of RAM.
[Most of the computation time is taken up finding the eigenspaces for the first Hecke operator T_{2} on the modular symbol space of dimension 1768.]

Implementation: software

1980s: Algol68 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein. Most important single programming improvement: use of sparse matrices. Example: Stein-Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5 -torsion, conductor 13881, then "beyond the range of Cremona's tables" Computing the four curves (up to isogeny) with $N=13881$ now takes less than 2 minutes and 60 MB of RAM.
[Most of the computation time is taken up finding the eigenspaces for the first Hecke operator T_{2} on the modular symbol space of dimension 1768.]

Implementation: software

1980s: Algol68 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein. Most important single programming improvement: use of sparse matrices. Example: Stein-Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5 -torsion, conductor 13881, then "beyond the range of Cremona's tables". Computing the four curves (up to isogeny) with $N=13881$ now takes less than 2 minutes and 60 MB of RAM.
[Most of the computation time is taken up finding the eigenspaces for the first Hecke operator T_{2} on the modular symbol space of dimension 1768.]

Implementation: hardware

Until 2005: between 0 and 3 shared machines.
Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a $V 20$ z dual opteron with $2 G B$ of RAM.
- Some hard levels run separately on a machine with 8GB of RAM.
- Levels 30000-130000 in only nine months!

Implementation: hardware

Until 2005: between 0 and 3 shared machines.
Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a $V 20$ dual opteron with $2 G B$ of RAM.
- Some hard levels run separately on a machine with 8 GB of RAM.
- Levels 30000-130000 in only nine months!

Implementation: hardware

Until 2005: between 0 and 3 shared machines.
Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a V20z dual opteron with $2 G B$ of RAM.
- Some hard levels run separately on a machine with 8GB of RAM.
- Levels 30000-130000 in only nine months!

Implementation: hardware

Until 2005: between 0 and 3 shared machines.
Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a V20z dual opteron with $2 G B$ of RAM.
- Some hard levels run separately on a machine with 8GB of RAM.
- Levels 30000-130000 in only nine months!

Milestones: pre-2005

Date Conductor reached

Mar 2001	10000
Oct 2002	15000
Apr 2003	20000
Jun 2004	25000
Feb 2005	30000

Milestones in 2005

Date

22 Apr 2005	40000
27 May 2005	50000
9 Jun 2005	60000
20 Jun 2005	70000
14 Jul 2005	80000
26 Aug 2005	90000
31 Aug 2005	100000
18 Sep 2005	120000
3 Nov 2005	130000

A typical log file (node 26)

running nfhpcurve on level 120026 at Fri Sep 23 18:26:48 BST 2005
running nfhpcurve on level 120197 at Fri Sep 23 20:12:31 BST 2005
running nfhpcurve on level 120224 at Fri Sep 23 20:58:18 BST 2005
running nfhpcurve on level 120312 at Fri Sep 23 23:35:19 BST 2005
running nfhpcurve on level 120431 at Sat Sep 24 04:19:54 BST 2005
running nfhpcurve on level 120568 at Sat Sep 24 10:42:18 BST 2005 running nfhpcurve on level 120631 at Sat Sep 24 13:56:49 BST 2005 running nfhpcurve on level 120646 at Sat Sep 24 14:48:21 BST 2005 running nfhpcurve on level 120679 at Sat Sep 24 15:59:54 BST 2005 running nfhpcurve on level 120717 at Sat Sep 24 18:11:20 BST 2005 running nfhpcurve on level 120738 at Sat Sep 24 19:13:11 BST 2005 running nfhpcurve on level 120875 at Sun Sep 25 02:20:27 BST 2005 running nfhpcurve on level 120876 at Sun Sep 25 02:20:28 BST 2005 running nfhpcurve on level 120918 at Sun Sep 25 04:58:32 BST 2005 running nfhpcurve on level 120978 at Sun Sep 25 08:08:00 BST 2005

Summary of data and highlights of results

Availability of the data

All the tables from the Book are available online at http://www.maths.nott.ac.uk/personal/jec/book/fulltext/ (conductors to 1000 only).
Full raw data for conductors to 130000 is available from http://www.maths.nott.ac.uk/personal/jec/ftp/data/ with a mirror at http://modular.math.washington.edu/cremona/INDEX.html.
Typeset versions (similar to the book) are in preparation.
There are now several other ways of accessing and using the data.

- A web-based interface by Gonzalo Tornaria is at http://www.math.utexas.edu/users/tornaria/cnt/cremona.html, covering $N<100000$. This provides an attractive interactive interface to the data; as a bonus, information on quadratic twists is included.

Summary of data and highlights of results

Availability of the data

All the tables from the Book are available online at http://www.maths.nott.ac.uk/personal/jec/book/fulltext/ (conductors to 1000 only).
Full raw data for conductors to 130000 is available from http://www.maths.nott.ac.uk/personal/jec/ftp/data/ with a mirror at http://modular.math.washington.edu/cremona/INDEX.html.
Typeset versions (similar to the book) are in preparation.
There are now several other ways of accessing and using the data. . .

- A web-based interface by Gonzalo Tornaria is at http://www.math.utexas.edu/users/tornaria/cnt/cremona.html, covering $N<100000$. This provides an attractive interactive interface to the data; as a bonus, information on quadratic twists is included.
- The free open-source number theory package pari/gp (see http://pari.math. u-bordeaux.fr/) makes the full elliptic curve database available (though not installed by default), thanks to Bill Allombert. For example:

```
(12:05) gp > ellsearch(5077)
%1 = [["5077a1", [0, 0, 1, -7, 6], [[-2, 3], [-1, 3], [0, 2]]]]
(12:05) gp > ellinit("5077a1")
%2 = [0, 0, 1, -7, 6, 0, -14, 25, -49, 336, -5400, 5077,
(12:05) gp > ellidentify(ellinit([1,2,3,4,5]))
%3 = [["10351a1", [1, -1, 0, 4, 3], [[2, 3]]], [1, -1, 0, -1]]
```

The output of ellsearch contains all matching curves with their generators, while ellidentify locates a curve in the database.

- The free open-source number theory package pari/gp (see http://pari.math. u-bordeaux.fr/) makes the full elliptic curve database available (though not installed by default), thanks to Bill Allombert. For example:
(12:05) gp > ellsearch(5077)
$\% 1=[[" 5077 a 1 ",[0,0,1,-7,6],[[-2,3],[-1,3],[0,2]]]]$
(12:05) gp > ellinit("5077a1")
$\% 2=[0,0,1,-7,6,0,-14,25,-49,336,-5400,5077, \ldots$ (12:05) gp > ellidentify(ellinit([1, 2, 3, 4, 5]))
$\% 3=[[" 10351 a 1 ",[1,-1,0,4,3],[[2,3]]],[1,-1,0,-1]]$
The output of ellsearch contains all matching curves with their generators, while ellidentify locates a curve in the database.
- William Stein's free open-source package SAGE (Software for Algebra and Geometry Experimentation, see http://sage.scipy.org/sage) also has all our data available and many ways of working with it, including a transparent interface to many other pieces of elliptic curve (and other) software. For example:

```
sage: E = EllipticCurve("389a"); E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Fielc
sage: E.rank()
2
sage: E.gens() # Cremona's mwrank
[(-1 : 1 : 1), (0 : 0 : 1)]
sage: L = E.Lseries_dokchitser(); L(1+I) # Tim Dokchitser's program
-0.63840993858803874 + 0.71549523920466740*I
sage: E.Lseries_zeros(4) # Mike Rubinstein's program
[0.00000000000, 0.00000000000, 2.8760990715, 4.4168960843]
```

- William Stein's free open-source package SAGE (Software for Algebra and Geometry Experimentation, see http://sage.scipy.org/sage) also has all our data available and many ways of working with it, including a transparent interface to many other pieces of elliptic curve (and other) software. For example:

```
sage: E = EllipticCurve("389a"); E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Fielc
sage: E.rank()
2
sage: E.gens() # Cremona's mwrank
[(-1 : 1 : 1), (0 : 0 : 1)]
sage: L = E.Lseries_dokchitser(); L(1+I) # Tim Dokchitser's program
-0.63840993858803874 + 0.71549523920466740*I
sage: E.Lseries_zeros(4)
    # Mike Rubinstein's program
[0.00000000000, 0.00000000000, 2.8760990715, 4.4168960843]
```

- MAGMA (see http://magma.maths.usyd.edu.au/magma/) has the database for conductors up to 130000 (as of version 2.13-1, released 14 July 2006); and also (optionally) the Stein-Watkins database:
> CDB:=CremonaDatabase(); NumberOfCurves (CDB);
845960
> LargestConductor (CDB);
130000
> E:=EllipticCurve(CDB,"389a1"); Rank(E);
2
> SWDB:=SteinWatkinsDatabase(); NumberOfCurves(SWDB);
136924520
> LargestConductor (SWDB);
99999999

Counting curves: isogeny classes

range of N	$\#$	$r=0$	$r=1$	$r=2$	$r=3$
$0-9999$	38042	16450	19622	1969	1
$10000-19999$	43175	17101	22576	3490	8
$20000-29999$	44141	17329	22601	4183	28
$30000-39999$	44324	16980	22789	4517	38
$40000-49999$	44519	16912	22826	4727	54
$50000-59999$	44301	16728	22400	5126	47
$60000-69999$	44361	16568	22558	5147	88
$70000-79999$	44449	16717	22247	5400	85
$80000-89999$	44861	17052	22341	5369	99
$90000-99999$	43651	16370	21756	5442	83
$100000-109999$	44274	16599	22165	5369	141
$110000-119999$	44071	16307	22173	5453	138
$120000-129999$	44655	16288	22621	5648	98
$0-129999$	568824	217401	288675	61840	908

Counting curves: isomorphism classes

range of N	$\#$ isogeny classes	$\#$ isomorphism classes
$0-9999$	38042	64687
$10000-19999$	43175	67848
$20000-29999$	44141	66995
$30000-39999$	44324	66561
$40000-49999$	44519	66275
$50000-59999$	44301	65393
$60000-69999$	44361	65209
$70000-79999$	44449	64687
$80000-89999$	44861	64864
$90000-99999$	43651	63287
$100000-109999$	44274	63410
$110000-119999$	44071	63277
$120000-129999$	44655	63467
$0-129999$	568824	845960

Distribution of isogeny class sizes and degrees

D	Size	\# classes	$\%$
1	1	372191	65.43
2	2	123275	21.67
3	2	31372	5.52
4	4	27767	4.88
5	2	2925	0.51
6	4	3875	0.68
7	2	808	0.14
8	6	2388	0.42
9	3	2709	0.48
10	4	271	0.05
11	2	60	0.01
12	8	286	0.05
13	2	130	0.02

D	Size	\# classes	$\%$
14	4	28	<0.01
15	4	58	0.01
16	8	270	0.05
17	2	8	<0.01
18	6	162	0.03
19	2	12	<0.01
21	4	30	0.01
25	3	134	0.02
27	4	33	0.01
37	2	20	<0.01
43	2	7	<0.01
67	2	4	<0.01
163	2	1	<0.01

Mordell-Weil groups I: Distribution of ranks

Mordell-Weil groups: higher ranks?

All curves with conductor <130000 have rank ≤ 3. The smallest known conductor of a rank 4 curve is $N=234446$.
In fact there are three curves with conductor 234446:

234446	a	1	$[1,1,0,-696,6784]$	3	1
234446	b	1	$[1,-1,0,-79,289]$	4	1
234446	c	1	$[1,1,1,-949,-7845]$	3	1

The other two both have rank 3! Data in the Stein-Watkins database shows that no curve with prime conductor less than 234446 has rank 4 , but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range $130000<N<234446$.

Mordell-Weil groups: higher ranks?

All curves with conductor <130000 have rank ≤ 3. The smallest known conductor of a rank 4 curve is $N=234446$.
In fact there are three curves with conductor 234446 :

234446	a	1	$[1,1,0,-696,6784]$	3	1
234446	b	1	$[1,-1,0,-79,289]$	4	1
234446	c	1	$[1,1,1,-949,-7845]$	3	1

The other two both have rank 3! Data in the Stein-Watkins database shows that no curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range $130000<N<234446$.

Mordell-Weil groups: higher ranks?

All curves with conductor <130000 have rank ≤ 3. The smallest known conductor of a rank 4 curve is $N=234446$.
In fact there are three curves with conductor 234446 :

234446	a	1	$[1,1,0,-696,6784]$	3	1
234446	b	1	$[1,-1,0,-79,289]$	4	1
234446	c	1	$[1,1,1,-949,-7845]$	3	1

The other two both have rank 3! Data in the Stein-Watkins database shows that no curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range $130000<N<234446$.

Mordell-Weil groups: higher ranks?

All curves with conductor <130000 have rank ≤ 3. The smallest known conductor of a rank 4 curve is $N=234446$.
In fact there are three curves with conductor 234446:

234446	a	1	$[1,1,0,-696,6784]$	3	1
234446	b	1	$[1,-1,0,-79,289]$	4	1
234446	c	1	$[1,1,1,-949,-7845]$	3	1

The other two both have rank 3! Data in the Stein-Watkins database shows that no curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range $130000<N<234446$.

Mordell-Weil groups II: distribution of torsion structures

Structure	\# curves	$\%$
C_{1}	432622	51.14
C_{2}	344010	40.67
C_{3}	18512	2.19
C_{4}	12832	1.52
$C_{2} \times C_{2}$	33070	3.91
C_{5}	698	0.08
C_{6}	3155	0.37
C_{7}	50	<0.01
C_{8}	101	0.01
$C_{2} \times C_{4}$	793	0.09
C_{9}	16	<0.01
C_{10}	28	<0.01
C_{12}	11	<0.01
$C_{2} \times C_{6}$	58	<0.01
$C_{2} \times C_{8}$	4	<0.01

Order parity	$\#$ curves	$\%$
Odd	451898	53.42
Even	394062	46.58
All	845960	100.00

Mordell-Weil groups III: largest generator

Curve 108174c2: $[1,1,0,-330505909530535,-2312687660697986706251]$ has a generator of canonical height 1193.35: $\left(a / c^{2}, b / c^{3}\right)$ where
$a=-13632833703140681033503023679128670529558218420063432397971439281876168936925608099278686103768271165751$ 437633556213041024136275990157472508801182302454436678900455860307034813576105868447511602833327656978462 242557413116494486538310447476190358439933060717111176029723557330999410077664104893597013481236052075987 42554713521099294186837422237009896297109549762937178684101535289410605736729335307780613198224770325365111 296070756137349249522158278253743039282375024853516001988744749085116423499171358836518920399114139315005
$C=113966855669333292896328833690552943933212422262287285858336471843279644076647486592460242089049033370292$ 485250756121056680073078113806049657487759641390843477809887412203584409641844116068236428572188929747 7694986150009319617653662693006650248126059704441347

Finding large generators

How is such a large rational point found? When the rank is 1 , it is as easy (and quick) as this (using Magma's Heegner Point package, implemented by Mark Watkins):
> E:=EllipticCurve([1,1,0,-330505909530535,-2312687660697986706251]);
> time HeegnerPoint(E);
true (-13632833.../12988444... : 77684538.../14802521... : 1)
Time: 26.680

Finding large generators

How is such a large rational point found? When the rank is 1 , it is as easy (and quick) as this (using Magma's Heegner Point package, implemented by Mark Watkins):
> E:=EllipticCurve([1,1,0,-330505909530535,-2312687660697986706251]);
> time HeegnerPoint(E);
true (-13632833.../12988444... : 77684538.../14802521... : 1)
Time: 26.680

Nontrivial (analytic) orders of Ш

$\sqrt{\|W\|}$	$\#$
2^{2}	37074
3^{2}	11512
4^{2}	4013
5^{2}	1954
6^{2}	426
7^{2}	468
8^{2}	250
9^{2}	85
10^{2}	52
11^{2}	73
12^{2}	20
13^{2}	19
14^{2}	9

$\sqrt{\|W\|}$	$\#$
15^{2}	2
16^{2}	6
17^{2}	4
19^{2}	2
20^{2}	3
21^{2}	2
23^{2}	4
26^{2}	1
all >1	55979

The Manin Constant

The Manin constant for an elliptic curve E of conductor N is the rational number c such that

$$
\varphi^{*}\left(\omega_{E}\right)=c(2 \pi i f(z) d z)
$$

where ω_{E} is a Néron differential on E, f is the normalized newform for $\Gamma_{0}(N)$ associated to E, and $\varphi: X_{0}(N) \rightarrow E$ is the modular parametrization.
A long-standing conjecture is that $c=1$ for all elliptic curves over \mathbb{Q} which are optimal $J_{0}(N)$-quotients ("strong Weil curves"). It is known by work of Edixhoven and others that $c \in \mathbb{Z}$, and there are many results restricting the primes which may divide c.
In a recent paper by Agashe, Ribet and Stein these conditions have been strengthened considerably. In an appendix to that paper, there is an account of numerical verifications I have carried out which establish the conjecture for all the curves in the tables.

The Manin Constant

The Manin constant for an elliptic curve E of conductor N is the rational number c such that

$$
\varphi^{*}\left(\omega_{E}\right)=c(2 \pi i f(z) d z)
$$

where ω_{E} is a Néron differential on E, f is the normalized newform for $\Gamma_{0}(N)$ associated to E, and $\varphi: X_{0}(N) \rightarrow E$ is the modular parametrization.
A long-standing conjecture is that $c=1$ for all elliptic curves over \mathbb{Q} which are optimal $J_{0}(N)$-quotients ("strong Weil curves"). It is known by work of Edixhoven and others that $c \in \mathbb{Z}$, and there are many results restricting the primes which may divide c.
In a recent paper by Agashe, Ribet and Stein these conditions have been strengthened considerably. In an appendix to that paper, there is an account of numerical verifications I have carried out which establish the conjecture for all the curves in the tables.

The Manin Constant

The Manin constant for an elliptic curve E of conductor N is the rational number c such that

$$
\varphi^{*}\left(\omega_{E}\right)=c(2 \pi i f(z) d z)
$$

where ω_{E} is a Néron differential on E, f is the normalized newform for $\Gamma_{0}(N)$ associated to E, and $\varphi: X_{0}(N) \rightarrow E$ is the modular parametrization.
A long-standing conjecture is that $c=1$ for all elliptic curves over \mathbb{Q} which are optimal $J_{0}(N)$-quotients ("strong Weil curves"). It is known by work of Edixhoven and others that $c \in \mathbb{Z}$, and there are many results restricting the primes which may divide c.
In a recent paper by Agashe, Ribet and Stein these conditions have been strengthened considerably. In an appendix to that paper, there is an account of numerical verifications I have carried out which establish the conjecture for all the curves in the tables.

The Manin Constant: a new Theorem

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_{0}(N)$ has Manin constant equal to 1.
Moreover, for $N<60000$ the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).

The second part of the Theorem for all $N<130000$ would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_{1}(N)$-quotient: this can be verified in each case using Mark Watkins's program ec.
Verifying the second part for all $N<130000$ would require more computations with modular symbols; see
A. Agashe, K. A. Ribet and W. A. Stein, The Manin Constant, JPAM Coates Volume, http://modular.math.washington.edu/papers/ars-manin/ (2006).

The Manin Constant: a new Theorem

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_{0}(N)$ has Manin constant equal to 1.
Moreover, for $N<60000$ the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).
The second part of the Theorem for all $N<130000$ would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_{1}(N)$-quotient: this can be verified in each case using Mark Watkins's program ec.
Verifying the second part for all $N<130000$ would require more computations with modular symbols; see
A. Agashe, K. A. Ribet and W. A. Stein, The Manin Constant, JPAM Coates Volume, http://modular.math.washington.edu/papers/ars-manin/ (2006).

The Manin Constant: a new Theorem

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_{0}(N)$ has Manin constant equal to 1.
Moreover, for $N<60000$ the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).
The second part of the Theorem for all $N<130000$ would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_{1}(N)$-quotient: this can be verified in each case using Mark Watkins's program ec.
Verifying the second part for all $N<130000$ would require more computations with modular symbols; see
A. Agashe, K. A. Ribet and W. A. Stein, The Manin Constant, JPAM Coates Volume, http://modular.math.washington.edu/papers/ars-manin/ (2006).

The Manin Constant: a new Theorem

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_{0}(N)$ has Manin constant equal to 1.
Moreover, for $N<60000$ the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).

The second part of the Theorem for all $N<130000$ would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_{1}(N)$-quotient: this can be verified in each case using Mark Watkins's program ec.
Verifying the second part for all $N<130000$ would require more computations with modular symbols; see
A. Agashe, K. A. Ribet and W. A. Stein, The Manin Constant, JPAM Coates Volume, http://modular.math.washington.edu/papers/ars-manin/ (2006).

