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Background and history

The Antwerp tables

“Antwerp IV” := Modular function of One Variable IV, edited by Birch and Kuyk,
Proceedings of an International Summer School in Antwerp, July 17 - August 3, 1972.
See http://modular.math.washington.edu/scans/antwerp/.

http://modular.math.washington.edu/scans/antwerp/
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The tables in Antwerp IV

1. “All” elliptic curves of conductor N ≤ 200, together with most ranks and generators,
arranged in isogeny classes. [See below]

2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]

3. Hecke eigenvalues for p < 100 for the associated newforms. [Vélu, Stephens, Tingley]

4. All elliptic curves of conductor N = 2a3b. [Coghlan]

5. Dimensions of spaces of newforms for Γ0(N) for N ≤ 300. [Atkin, Tingley]

6. Factorized supersingular j-polynomials for p ≤ 307. [Atkin]
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The tables in Antwerp IV
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The tables in Antwerp IV

1. “All” elliptic curves of conductor N ≤ 200, together with most ranks and generators,
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4. All elliptic curves of conductor N = 2a3b. [Coghlan]

5. Dimensions of spaces of newforms for Γ0(N) for N ≤ 300. [Atkin, Tingley]

6. Factorized supersingular j-polynomials for p ≤ 307. [Atkin]



3

The tables in Antwerp IV
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The tables in Antwerp IV
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Table 1 in Antwerp IV

“The origins of Table 1 are ... complicated”.

• Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor
N ≤ 200, added curves obtained via a succession of 2- and 3-isogenies.

• Higher degree isogenies checked using Vélu’s method; some curves added.

• Tingley computed newforms for N ≤ 300, revealing 30 gaps, which were then filled,
in some cases by computing the period lattice of the newform. For example

78A : Y 2 + XY = X3 + X2 − 19X + 685.
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Antwerp IV Table 1 (contd.)

• Ranks computed by James Davenport using 2-descent.

• List complete for certain N , such as N = 2a3b.

• Tingley’s thesis (1975) contains further curves with 200 < N ≤ 320 found via
modular symbols, newforms and periods.

No more systematic enumeration occurred between 1972 and the mid 1980s.
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The origin of the 1992 tables

1985-1988: Implementation of modular symbols for Γ0(N) and Γ1(N) in Algol68

1988: Paper submitted to Mathematics of Computation including all elliptic curves of
conductor N ≤ 600. (No isogenies, ranks, generators.)

1989: Paper rejected. Resubmission invited, to include (1) no implementation details
and (2) fuller tables, including isogenies and ranks and generators.

1990: Paper resubmitted to Math Comp: tables for N ≤ 1000 with ranks, generators,
isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.

1991: Contract signed with Cambridge University Press.

8 October 1992: Algorithms for Modular Elliptic Curves published: full tables to
conductor 1000 (except N = 702).
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The 1997 tables

A revised edition of the 1992 book and tables appeared in 1997.

• Various corrections; “missing” curves of conductor 702 included;

• new table of degrees of modular parametrizations;

• links to online data for N ≤ 5077.

Full text available online since around 2002 at
http://www.maths.nott.ac.uk/personal/jec/book/fulltext/.

http://www.maths.nott.ac.uk/personal/jec/book/fulltext/
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Algorithms and Implementation

Overview

• Use modular symbols modulo N

• Find newforms for Γ0(N) with Hecke eigenvalues

• Compute their periods and hence the associated elliptic curves

• Use any available method to find Mordell-Weil groups, isogenous curves, etc.
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Finding the newforms at level N

• Compute space of Γ0(N)-modular symbols [fast]

• Compute action of the Hecke algebra on it [quite fast]

• Find one-dimensional rational eigenspaces: each corresponds to a rational newform f
[slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the
tables, despite the use of sparse algorithms for linear algebra.
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Finding the curves from the newforms

• Compute many Hecke eigenvalues (= Fourier coefficients of f)

• Compute homology information from modular symbols

• Integrate 2πif(z)dz along appropriate paths in upper half-plane

• Obtain the periods of f , and hence of associated elliptic curve E of conductor N and
L-series L(E, s) = L(f, s); finite precision!

• Compute coefficients of E (approximately, but they are integers).

For levels around 130000 we may need up to 3500 Hecke eigenvalues.

Memory requirements and time to compute periods are negligible.
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Information about the curves

• Analytic ranks computed from newform; checked with Mordell-Weil ranks found by
2-descent.

• Generators found by search, 2- and 4-descent, Heegner points, plus saturation.

• Isogenies computed via periods and division polynomials.

• “Analytic |X|” computed using BSD formula.

All this is automated, but hard cases need human intervention!
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Implementation: software

1980s: Algol68 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup’s NTL, Buchmann’s LiDIA,
gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein.

Most important single programming improvement: use of sparse matrices.

Example: Stein–Watkins (ANTS V, 2002) gave an example of a curve of rank 2,
rational 5-torsion, conductor 13881, then “beyond the range of Cremona’s tables”.
Computing the four curves (up to isogeny) with N = 13881 now takes less than 2
minutes and 60MB of RAM.

[Most of the computation time is taken up finding the eigenspaces for the first Hecke
operator T2 on the modular symbol space of dimension 1768.]
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Implementation: hardware

Until 2005: between 0 and 3 shared machines.

Since spring 2005: availability of a 1024-processor cluster in Nottingham!

• Up to 250 processors simultaneously, handling hundred levels or more at a time.

• Processors in 512 nodes, each a V20z dual opteron with 2GB of RAM.

• Some hard levels run separately on a machine with 8GB of RAM.

• Levels 30000–130000 in only nine months!
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Milestones: pre-2005

Date Conductor reached

Mar 2001 10000
Oct 2002 15000
Apr 2003 20000
Jun 2004 25000
Feb 2005 30000
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Milestones in 2005

Date Conductor reached

22 Apr 2005 40000
27 May 2005 50000

9 Jun 2005 60000
20 Jun 2005 70000
14 Jul 2005 80000

26 Aug 2005 90000
31 Aug 2005 100000
18 Sep 2005 120000
3 Nov 2005 130000
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A typical log file (node 26)

running nfhpcurve on level 120026 at Fri Sep 23 18:26:48 BST 2005
running nfhpcurve on level 120197 at Fri Sep 23 20:12:31 BST 2005
running nfhpcurve on level 120224 at Fri Sep 23 20:58:18 BST 2005
running nfhpcurve on level 120312 at Fri Sep 23 23:35:19 BST 2005
running nfhpcurve on level 120431 at Sat Sep 24 04:19:54 BST 2005
running nfhpcurve on level 120568 at Sat Sep 24 10:42:18 BST 2005
running nfhpcurve on level 120631 at Sat Sep 24 13:56:49 BST 2005
running nfhpcurve on level 120646 at Sat Sep 24 14:48:21 BST 2005
running nfhpcurve on level 120679 at Sat Sep 24 15:59:54 BST 2005
running nfhpcurve on level 120717 at Sat Sep 24 18:11:20 BST 2005
running nfhpcurve on level 120738 at Sat Sep 24 19:13:11 BST 2005
running nfhpcurve on level 120875 at Sun Sep 25 02:20:27 BST 2005
running nfhpcurve on level 120876 at Sun Sep 25 02:20:28 BST 2005
running nfhpcurve on level 120918 at Sun Sep 25 04:58:32 BST 2005
running nfhpcurve on level 120978 at Sun Sep 25 08:08:00 BST 2005
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Summary of data and highlights of results

Availability of the data

All the tables from the Book are available online at
http://www.maths.nott.ac.uk/personal/jec/book/fulltext/ (conductors
to 1000 only).

Full raw data for conductors to 130000 is available from
http://www.maths.nott.ac.uk/personal/jec/ftp/data/ with a mirror at
http://modular.math.washington.edu/cremona/INDEX.html.

Typeset versions (similar to the book) are in preparation.

There are now several other ways of accessing and using the data. . .

• A web-based interface by Gonzalo Tornaria is at
http://www.math.utexas.edu/users/tornaria/cnt/cremona.html,
covering N < 100000. This provides an attractive interactive interface to the data;
as a bonus, information on quadratic twists is included.

http://www.maths.nott.ac.uk/personal/jec/book/fulltext/
http://www.maths.nott.ac.uk/personal/jec/ftp/data/
http://modular.math.washington.edu/cremona/INDEX.html
http://www.math.utexas.edu/users/tornaria/cnt/cremona.html
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Full raw data for conductors to 130000 is available from
http://www.maths.nott.ac.uk/personal/jec/ftp/data/ with a mirror at
http://modular.math.washington.edu/cremona/INDEX.html.

Typeset versions (similar to the book) are in preparation.

There are now several other ways of accessing and using the data. . .

• A web-based interface by Gonzalo Tornaria is at
http://www.math.utexas.edu/users/tornaria/cnt/cremona.html,
covering N < 100000. This provides an attractive interactive interface to the data;
as a bonus, information on quadratic twists is included.

http://www.maths.nott.ac.uk/personal/jec/book/fulltext/
http://www.maths.nott.ac.uk/personal/jec/ftp/data/
http://modular.math.washington.edu/cremona/INDEX.html
http://www.math.utexas.edu/users/tornaria/cnt/cremona.html
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• The free open-source number theory package pari/gp (see http://pari.math.
u-bordeaux.fr/) makes the full elliptic curve database available (though not installed
by default), thanks to Bill Allombert. For example:

(12:05) gp > ellsearch(5077)
%1 = [["5077a1", [0, 0, 1, -7, 6], [[-2, 3], [-1, 3], [0, 2]]]]
(12:05) gp > ellinit("5077a1")
%2 = [0, 0, 1, -7, 6, 0, -14, 25, -49, 336, -5400, 5077, ...
(12:05) gp > ellidentify(ellinit([1,2,3,4,5]))
%3 = [["10351a1", [1, -1, 0, 4, 3], [[2, 3]]], [1, -1, 0, -1]]

The output of ellsearch contains all matching curves with their generators, while
ellidentify locates a curve in the database.

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
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• William Stein’s free open-source package SAGE (Software for Algebra and Geometry
Experimentation, see http://sage.scipy.org/sage) also has all our data available
and many ways of working with it, including a transparent interface to many other
pieces of elliptic curve (and other) software. For example:

sage: E = EllipticCurve("389a"); E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: E.rank()
2
sage: E.gens() # Cremona’s mwrank
[(-1 : 1 : 1), (0 : 0 : 1)]
sage: L = E.Lseries_dokchitser(); L(1+I) # Tim Dokchitser’s program
-0.63840993858803874 + 0.71549523920466740*I
sage: E.Lseries_zeros(4) # Mike Rubinstein’s program
[0.00000000000, 0.00000000000, 2.8760990715, 4.4168960843]

http://sage.scipy.org/sage
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• Magma (see http://magma.maths.usyd.edu.au/magma/) has the database for
conductors up to 130000 (as of version 2.13-1, released 14 July 2006); and also
(optionally) the Stein–Watkins database:

> CDB:=CremonaDatabase(); NumberOfCurves(CDB);
845960
> LargestConductor(CDB);
130000
> E:=EllipticCurve(CDB,"389a1"); Rank(E);
2
> SWDB:=SteinWatkinsDatabase(); NumberOfCurves(SWDB);
136924520
> LargestConductor(SWDB);
99999999

http://magma.maths.usyd.edu.au/magma/
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Counting curves: isogeny classes

range of N # r = 0 r = 1 r = 2 r = 3
0-9999 38042 16450 19622 1969 1

10000-19999 43175 17101 22576 3490 8
20000-29999 44141 17329 22601 4183 28
30000-39999 44324 16980 22789 4517 38
40000-49999 44519 16912 22826 4727 54
50000-59999 44301 16728 22400 5126 47
60000-69999 44361 16568 22558 5147 88
70000-79999 44449 16717 22247 5400 85
80000-89999 44861 17052 22341 5369 99
90000-99999 43651 16370 21756 5442 83

100000-109999 44274 16599 22165 5369 141
110000-119999 44071 16307 22173 5453 138
120000-129999 44655 16288 22621 5648 98

0-129999 568824 217401 288675 61840 908
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Counting curves: isomorphism classes

range of N # isogeny classes # isomorphism classes
0-9999 38042 64687

10000-19999 43175 67848
20000-29999 44141 66995
30000-39999 44324 66561
40000-49999 44519 66275
50000-59999 44301 65393
60000-69999 44361 65209
70000-79999 44449 64687
80000-89999 44861 64864
90000-99999 43651 63287

100000-109999 44274 63410
110000-119999 44071 63277
120000-129999 44655 63467

0-129999 568824 845960
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Distribution of isogeny class sizes and degrees

D Size # classes %
1 1 372191 65.43
2 2 123275 21.67
3 2 31372 5.52
4 4 27767 4.88
5 2 2925 0.51
6 4 3875 0.68
7 2 808 0.14
8 6 2388 0.42
9 3 2709 0.48

10 4 271 0.05
11 2 60 0.01
12 8 286 0.05
13 2 130 0.02

D Size # classes %
14 4 28 < 0.01
15 4 58 0.01
16 8 270 0.05
17 2 8 < 0.01
18 6 162 0.03
19 2 12 < 0.01
21 4 30 0.01
25 3 134 0.02
27 4 33 0.01
37 2 20 < 0.01
43 2 7 < 0.01
67 2 4 < 0.01

163 2 1 < 0.01
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Mordell-Weil groups I: Distribution of ranks
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Mordell-Weil groups: higher ranks?

All curves with conductor < 130000 have rank ≤ 3. The smallest known conductor of
a rank 4 curve is N = 234446.

In fact there are three curves with conductor 234446:

234446 a 1 [1,1,0,-696,6784] 3 1
234446 b 1 [1,-1,0,-79,289] 4 1
234446 c 1 [1,1,1,-949,-7845] 3 1

The other two both have rank 3! Data in the Stein–Watkins database shows that no
curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4
curve with smaller composite conductor does exist. One way of answering this question
would be to extend the database to fill in the range 130000 < N < 234446.
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Mordell-Weil groups II: distribution of torsion structures

Structure # curves %

C1 432622 51.14

C2 344010 40.67

C3 18512 2.19

C4 12832 1.52

C2 × C2 33070 3.91

C5 698 0.08

C6 3155 0.37

C7 50 < 0.01

C8 101 0.01

C2 × C4 793 0.09

C9 16 < 0.01

C10 28 < 0.01

C12 11 < 0.01

C2 × C6 58 < 0.01

C2 × C8 4 < 0.01

Order parity # curves %

Odd 451898 53.42

Even 394062 46.58

All 845960 100.00
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Mordell-Weil groups III: largest generator

Curve 108174c2: [1, 1, 0,−330505909530535,−2312687660697986706251] has a
generator of canonical height 1193.35: (a/c2, b/c3) where

a =−13632833703140681033503023679128670529558218420063432397971439281876168936925608099278686103768271165751

437633556213041024136275990157472508801182302454436678900455860307034813576105868447511602833327656978462

242557413116494486538310447476190358439933060717111176029723557330999410077664104893597013481236052075987

42554713521099294186837422237009896297109549762937178684101535289410605736729335307780613198224770325365111

296070756137349249522158278253743039282375024853516001988744749085116423499171358836518920399114139315005

c =113966855669333292896328833690552943933212422262287285858336471843279644076647486592460242089049033370292

485250756121056680073078113806049657487759641390843477809887412203584409641844116068236428572188929747

7694986150009319617653662693006650248126059704441347
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Finding large generators

How is such a large rational point found? When the rank is 1, it is as easy (and quick)
as this (using Magma’s Heegner Point package, implemented by Mark Watkins):

> E:=EllipticCurve([1,1,0,-330505909530535,-2312687660697986706251]);
> time HeegnerPoint(E);

true (-13632833.../12988444... : 77684538.../14802521... : 1)
Time: 26.680
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Nontrivial (analytic) orders of X

√
|X| #

22 37074
32 11512
42 4013
52 1954
62 426
72 468
82 250
92 85

102 52
112 73
122 20
132 19
142 9

√
|X| #
152 2
162 6
172 4
192 2
202 3
212 2
232 4
262 1

all> 1 55979
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The Manin Constant

The Manin constant for an elliptic curve E of conductor N is the rational number c
such that

ϕ∗(ωE) = c(2πif(z)dz),

where ωE is a Néron differential on E, f is the normalized newform for Γ0(N)
associated to E, and ϕ : X0(N) → E is the modular parametrization.

A long-standing conjecture is that c = 1 for all elliptic curves over Q which are optimal
J0(N)-quotients (“strong Weil curves”). It is known by work of Edixhoven and others
that c ∈ Z, and there are many results restricting the primes which may divide c.

In a recent paper by Agashe, Ribet and Stein these conditions have been strengthened
considerably. In an appendix to that paper, there is an account of numerical
verifications I have carried out which establish the conjecture for all the curves in the
tables.
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The Manin Constant: a new Theorem

Theorem. For all N ≤ 130000, every optimal elliptic quotient of J0(N) has Manin
constant equal to 1.
Moreover, for N < 60000 the optimal curve in each class is the one whose
identifying number in the tables is 1 (except for class 990h where the optimal curve
is 990h3).

The second part of the Theorem for all N < 130000 would follow from Stevens’
conjecture that in each isogeny class the curve with minimal Faltings height is the
optimal Γ1(N)-quotient: this can be verified in each case using Mark Watkins’s
program ec.

Verifying the second part for all N < 130000 would require more computations with
modular symbols; see

A. Agashe, K. A. Ribet and W. A. Stein, The Manin Constant, JPAM Coates Volume,
http://modular.math.washington.edu/papers/ars-manin/ (2006).

http://modular.math.washington.edu/papers/ars-manin/
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