The elliptic curve database to 130000

John Cremona University of Nottingham, UK

ANTS 7: Berlin, 26 July 2006

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

- Background and history
- Algorithms and Implementation
- Summary of data and highlights of results (including a new result concerning the Manin Constant)

Background and history

The Antwerp tables

"Antwerp IV" := Modular function of One Variable IV, edited by Birch and Kuyk, Proceedings of an International Summer School in Antwerp, July 17 - August 3, 1972. See http://modular.math.washington.edu/scans/antwerp/.

- 1. "All" elliptic curves of conductor $N \le 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
- 2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
- 3. Hecke eigenvalues for p < 100 for the associated newforms. [Vélu, Stephens, Tingley]
- 4. All elliptic curves of conductor $N = 2^a 3^b$. [Coghlan]
- 5. Dimensions of spaces of newforms for $\Gamma_0(N)$ for $N \leq 300$. [Atkin, Tingley]
- 6. Factorized supersingular *j*-polynomials for $p \leq 307$. [Atkin]

- 1. "All" elliptic curves of conductor $N \le 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
- 2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
- 3. Hecke eigenvalues for p < 100 for the associated newforms. [Vélu, Stephens, Tingley]
- 4. All elliptic curves of conductor $N = 2^a 3^b$. [Coghlan]
- 5. Dimensions of spaces of newforms for $\Gamma_0(N)$ for $N \leq 300$. [Atkin, Tingley]
- 6. Factorized supersingular *j*-polynomials for $p \leq 307$. [Atkin]

- 1. "All" elliptic curves of conductor $N \le 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
- 2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
- 3. Hecke eigenvalues for p < 100 for the associated newforms. [Vélu, Stephens, Tingley]
- 4. All elliptic curves of conductor $N = 2^a 3^b$. [Coghlan]
- 5. Dimensions of spaces of newforms for $\Gamma_0(N)$ for $N \leq 300$. [Atkin, Tingley]
- 6. Factorized supersingular *j*-polynomials for $p \leq 307$. [Atkin]

- 1. "All" elliptic curves of conductor $N \le 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
- 2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
- 3. Hecke eigenvalues for p < 100 for the associated newforms. [Vélu, Stephens, Tingley]
- 4. All elliptic curves of conductor $N = 2^a 3^b$. [Coghlan]
- 5. Dimensions of spaces of newforms for $\Gamma_0(N)$ for $N \leq 300$. [Atkin, Tingley]
- 6. Factorized supersingular *j*-polynomials for $p \leq 307$. [Atkin]

- 1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
- 2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
- 3. Hecke eigenvalues for p < 100 for the associated newforms. [Vélu, Stephens, Tingley]
- 4. All elliptic curves of conductor $N = 2^a 3^b$. [Coghlan]
- 5. Dimensions of spaces of newforms for $\Gamma_0(N)$ for $N \leq 300$. [Atkin, Tingley]
- 6. Factorized supersingular *j*-polynomials for $p \leq 307$. [Atkin]

- 1. "All" elliptic curves of conductor $N \leq 200$, together with most ranks and generators, arranged in isogeny classes. [See below]
- 2. Generators for the (rank 1) curves in Table 1. [Stephens, Davenport]
- 3. Hecke eigenvalues for p < 100 for the associated newforms. [Vélu, Stephens, Tingley]
- 4. All elliptic curves of conductor $N = 2^a 3^b$. [Coghlan]
- 5. Dimensions of spaces of newforms for $\Gamma_0(N)$ for $N \leq 300$. [Atkin, Tingley]
- 6. Factorized supersingular *j*-polynomials for $p \leq 307$. [Atkin]

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2- and 3-isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \leq 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

78A:
$$Y^2 + XY = X^3 + X^2 - 19X + 685.$$

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2- and 3-isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \le 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

78A:
$$Y^2 + XY = X^3 + X^2 - 19X + 685.$$

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2- and 3-isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \leq 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

78A:
$$Y^2 + XY = X^3 + X^2 - 19X + 685.$$

- Swinnerton-Dyer searched for curves with small coefficients, kept those with conductor $N \leq 200$, added curves obtained via a succession of 2- and 3-isogenies.
- Higher degree isogenies checked using Vélu's method; some curves added.
- Tingley computed newforms for $N \le 300$, revealing 30 gaps, which were then filled, in some cases by computing the period lattice of the newform. For example

78A:
$$Y^2 + XY = X^3 + X^2 - 19X + 685.$$

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N = 2^a 3^b$.
- Tingley's thesis (1975) contains further curves with $200 < N \leq 320$ found via modular symbols, newforms and periods.

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N = 2^a 3^b$.
- Tingley's thesis (1975) contains further curves with $200 < N \le 320$ found via modular symbols, newforms and periods.

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N = 2^a 3^b$.
- Tingley's thesis (1975) contains further curves with $200 < N \leq 320$ found via modular symbols, newforms and periods.

- Ranks computed by James Davenport using 2-descent.
- List complete for certain N, such as $N = 2^a 3^b$.
- Tingley's thesis (1975) contains further curves with $200 < N \leq 320$ found via modular symbols, newforms and periods.

1985-1988: Implementation of modular symbols for $\Gamma_0(N)$ and $\Gamma_1(N)$ in Algo168

1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)

1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.

1990: Paper resubmitted to Math Comp: tables for $N \le 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.

1991: Contract signed with Cambridge University Press.

1985-1988: Implementation of modular symbols for $\Gamma_0(N)$ and $\Gamma_1(N)$ in Algo168 1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)

1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.

1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.

1991: Contract signed with Cambridge University Press.

1985-1988: Implementation of modular symbols for $\Gamma_0(N)$ and $\Gamma_1(N)$ in Algo168

1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)

1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.

1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.

1991: Contract signed with Cambridge University Press.

1985-1988: Implementation of modular symbols for $\Gamma_0(N)$ and $\Gamma_1(N)$ in Algo168 1988: Paper submitted to Mathematics of Computation including all elliptic curves of

conductor $N \leq 600$. (No isogenies, ranks, generators.)

1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.

1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.

1991: Contract signed with Cambridge University Press.

1985-1988: Implementation of modular symbols for $\Gamma_0(N)$ and $\Gamma_1(N)$ in Algol68

1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)

1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.

1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.

1991: Contract signed with Cambridge University Press.

1985-1988: Implementation of modular symbols for $\Gamma_0(N)$ and $\Gamma_1(N)$ in Algol68

1988: Paper submitted to Mathematics of Computation including all elliptic curves of conductor $N \leq 600$. (No isogenies, ranks, generators.)

1989: Paper rejected. Resubmission invited, to include (1) no implementation details and (2) fuller tables, including isogenies and ranks and generators.

1990: Paper resubmitted to Math Comp: tables for $N \leq 1000$ with ranks, generators, isogenies. Math Comp offered to publish tables on microfiche. Paper withdrawn.

1991: Contract signed with Cambridge University Press.

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

A revised edition of the 1992 book and tables appeared in 1997.

- Various corrections; "missing" curves of conductor 702 included;
- new table of degrees of modular parametrizations;
- links to online data for $N \leq 5077$.

- $\bullet~$ Use modular symbols modulo N
- Find newforms for $\Gamma_0(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

- $\bullet\,$ Use modular symbols modulo N
- Find newforms for $\Gamma_0(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

- Use modular symbols modulo ${\cal N}$
- Find newforms for $\Gamma_0(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

- Use modular symbols modulo ${\cal N}$
- Find newforms for $\Gamma_0(N)$ with Hecke eigenvalues
- Compute their periods and hence the associated elliptic curves
- Use any available method to find Mordell-Weil groups, isogenous curves, etc.

Finding the newforms at level ${\cal N}$

• Compute space of $\Gamma_0(N)$ -modular symbols [fast]

- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.

Finding the newforms at level ${\cal N}$

- Compute space of $\Gamma_0(N)$ -modular symbols [fast]
- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.
Finding the newforms at level ${\cal N}$

- Compute space of $\Gamma_0(N)$ -modular symbols [fast]
- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.

Finding the newforms at level ${\cal N}$

- Compute space of $\Gamma_0(N)$ -modular symbols [fast]
- Compute action of the Hecke algebra on it [quite fast]
- Find one-dimensional rational eigenspaces: each corresponds to a rational newform f [slow for large levels]

This step requires much RAM and is currently the main obstruction to extending the tables, despite the use of sparse algorithms for linear algebra.

- Compute many Hecke eigenvalues (= Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2\pi i f(z) dz$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series L(E,s) = L(f,s); finite precision!
- Compute coefficients of E (approximately, but they are integers).

- Compute many Hecke eigenvalues (= Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2\pi i f(z) dz$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series L(E,s) = L(f,s); finite precision!
- Compute coefficients of E (approximately, but they are integers).

- Compute many Hecke eigenvalues (= Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2\pi i f(z) dz$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series L(E,s) = L(f,s); finite precision!
- Compute coefficients of E (approximately, but they are integers).

- Compute many Hecke eigenvalues (= Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2\pi i f(z) dz$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series L(E,s) = L(f,s); finite precision!
- Compute coefficients of E (approximately, but they are integers).

- Compute many Hecke eigenvalues (= Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2\pi i f(z) dz$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series L(E, s) = L(f, s); finite precision!
- Compute coefficients of E (approximately, but they are integers).

- Compute many Hecke eigenvalues (= Fourier coefficients of f)
- Compute homology information from modular symbols
- Integrate $2\pi i f(z) dz$ along appropriate paths in upper half-plane
- Obtain the periods of f, and hence of associated elliptic curve E of conductor N and L-series L(E,s) = L(f,s); finite precision!
- Compute coefficients of E (approximately, but they are integers).

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |III|" computed using BSD formula.

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |III|" computed using BSD formula.

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |III|" computed using BSD formula.

- Analytic ranks computed from newform; checked with Mordell-Weil ranks found by 2-descent.
- Generators found by search, 2- and 4-descent, Heegner points, plus saturation.
- Isogenies computed via periods and division polynomials.
- "Analytic |III|" computed using BSD formula.

1980s: Algo168 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein. Most important single programming improvement: use of sparse matrices. Example: Stein–Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5-torsion, conductor 13881, then "beyond the range of Cremona's tables". Computing the four curves (up to isogeny) with N = 13881 now takes less than 2 minutes and 60MB of RAM.

1980s: Algo168 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein. Most important single programming improvement: use of sparse matrices. Example: Stein–Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5-torsion, conductor 13881, then "beyond the range of Cremona's tables". Computing the four curves (up to isogeny) with N = 13881 now takes less than 2 minutes and 60MB of RAM.

1980s: Algo168 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein. Most important single programming improvement: use of sparse matrices.

Example: Stein–Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5-torsion, conductor 13881, then "beyond the range of Cremona's tables". Computing the four curves (up to isogeny) with N = 13881 now takes less than 2 minutes and 60MB of RAM.

1980s: Algo168 (includes code from Richard Pinch).

1990s++: Rewritten in C++, using various libraries (Shoup's NTL, Buchmann's LiDIA, gmp, pari/gp).

Many algorithmic improvements developed in collaboration with William Stein. Most important single programming improvement: use of sparse matrices. Example: Stein–Watkins (ANTS V, 2002) gave an example of a curve of rank 2, rational 5-torsion, conductor 13881, then "beyond the range of Cremona's tables". Computing the four curves (up to isogeny) with N = 13881 now takes less than 2 minutes and 60MB of RAM.

Until 2005: between 0 and 3 shared machines.

Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a V20z dual opteron with 2GB of RAM.
- Some hard levels run separately on a machine with 8GB of RAM.
- Levels 30000–130000 in only nine months!

Until 2005: between 0 and 3 shared machines. Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a V20z dual opteron with 2GB of RAM.
- Some hard levels run separately on a machine with 8GB of RAM.
- Levels 30000–130000 in only nine months!

Until 2005: between 0 and 3 shared machines.

Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a V20z dual opteron with 2GB of RAM.
- Some hard levels run separately on a machine with 8GB of RAM.
- Levels 30000–130000 in only nine months!

Until 2005: between 0 and 3 shared machines.

Since spring 2005: availability of a 1024-processor cluster in Nottingham!

- Up to 250 processors simultaneously, handling hundred levels or more at a time.
- Processors in 512 nodes, each a V20z dual opteron with 2GB of RAM.
- Some hard levels run separately on a machine with 8GB of RAM.
- Levels 30000–130000 in only nine months!

Milestones: pre-2005

Date Conductor reached

Mar 200	1	10000
Oct 200	2	15000
Apr 200	3	20000
Jun 200	4	25000
Feb 200	5	30000

Milestones in 2005

Date	Conductor reached
22 Apr 2005	40000
27 May 2005	50000
9 Jun 2005	60000
20 Jun 2005	70000
14 Jul 2005	80000
26 Aug 2005	90000
31 Aug 2005	100000
18 Sep 2005	120000
3 Nov 2005	130000

A typical log file (node 26)

running nfhpcurve on level 120026 at Fri Sep 23 18:26:48 BST 2005 running nfhpcurve on level 120197 at Fri Sep 23 20:12:31 BST 2005 running nfhpcurve on level 120224 at Fri Sep 23 20:58:18 BST 2005 running nfhpcurve on level 120312 at Fri Sep 23 23:35:19 BST 2005 running nfhpcurve on level 120431 at Sat Sep 24 04:19:54 BST 2005 running nfhpcurve on level 120568 at Sat Sep 24 10:42:18 BST 2005 running nfhpcurve on level 120631 at Sat Sep 24 13:56:49 BST 2005 running nfhpcurve on level 120646 at Sat Sep 24 14:48:21 BST 2005 running nfhpcurve on level 120679 at Sat Sep 24 15:59:54 BST 2005 running nfhpcurve on level 120717 at Sat Sep 24 18:11:20 BST 2005 running nfhpcurve on level 120738 at Sat Sep 24 19:13:11 BST 2005 running nfhpcurve on level 120875 at Sun Sep 25 02:20:27 BST 2005 running nfhpcurve on level 120876 at Sun Sep 25 02:20:28 BST 2005 running nfhpcurve on level 120918 at Sun Sep 25 04:58:32 BST 2005 running nfhpcurve on level 120978 at Sun Sep 25 08:08:00 BST 2005

Summary of data and highlights of results

Availability of the data

All the tables from the Book are available online at

http://www.maths.nott.ac.uk/personal/jec/book/fulltext/ (conductors to 1000 only).

Full raw data for conductors to 130000 is available from http://www.maths.nott.ac.uk/personal/jec/ftp/data/ with a mirror at http://modular.math.washington.edu/cremona/INDEX.html.

Typeset versions (similar to the book) are in preparation.

There are now several other ways of accessing and using the data...

 A web-based interface by Gonzalo Tornaria is at http://www.math.utexas.edu/users/tornaria/cnt/cremona.html, covering N < 100000. This provides an attractive interactive interface to the data; as a bonus, information on quadratic twists is included.

Summary of data and highlights of results

Availability of the data

All the tables from the Book are available online at

http://www.maths.nott.ac.uk/personal/jec/book/fulltext/ (conductors to 1000 only).

Full raw data for conductors to 130000 is available from http://www.maths.nott.ac.uk/personal/jec/ftp/data/ with a mirror at http://modular.math.washington.edu/cremona/INDEX.html.

Typeset versions (similar to the book) are in preparation.

There are now several other ways of accessing and using the data...

 A web-based interface by Gonzalo Tornaria is at http://www.math.utexas.edu/users/tornaria/cnt/cremona.html, covering N < 100000. This provides an attractive interactive interface to the data; as a bonus, information on quadratic twists is included. The free open-source number theory package pari/gp (see http://pari.math. u-bordeaux.fr/) makes the full elliptic curve database available (though not installed by default), thanks to Bill Allombert. For example:

(12:05) gp > ellsearch(5077) %1 = [["5077a1", [0, 0, 1, -7, 6], [[-2, 3], [-1, 3], [0, 2]]]] (12:05) gp > ellinit("5077a1") %2 = [0, 0, 1, -7, 6, 0, -14, 25, -49, 336, -5400, 5077, ... (12:05) gp > ellidentify(ellinit([1,2,3,4,5])) %3 = [["10351a1", [1, -1, 0, 4, 3], [[2, 3]]], [1, -1, 0, -1]]

The output of ellsearch contains all matching curves with their generators, while ellidentify locates a curve in the database.

 The free open-source number theory package pari/gp (see http://pari.math. u-bordeaux.fr/) makes the full elliptic curve database available (though not installed by default), thanks to Bill Allombert. For example:

(12:05) gp > ellsearch(5077) %1 = [["5077a1", [0, 0, 1, -7, 6], [[-2, 3], [-1, 3], [0, 2]]]] (12:05) gp > ellinit("5077a1") %2 = [0, 0, 1, -7, 6, 0, -14, 25, -49, 336, -5400, 5077, ... (12:05) gp > ellidentify(ellinit([1,2,3,4,5])) %3 = [["10351a1", [1, -1, 0, 4, 3], [[2, 3]]], [1, -1, 0, -1]]

The output of ellsearch contains all matching curves with their generators, while ellidentify locates a curve in the database.

• William Stein's free open-source package SAGE (Software for Algebra and Geometry Experimentation, see http://sage.scipy.org/sage) also has all our data available and many ways of working with it, including a transparent interface to many other pieces of elliptic curve (and other) software. For example:

 William Stein's free open-source package SAGE (Software for Algebra and Geometry Experimentation, see http://sage.scipy.org/sage) also has all our data available and many ways of working with it, including a transparent interface to many other pieces of elliptic curve (and other) software. For example:

• MAGMA (see http://magma.maths.usyd.edu.au/magma/) has the database for conductors up to 130000 (as of version 2.13-1, released 14 July 2006); and also (optionally) the Stein–Watkins database:

```
> CDB:=CremonaDatabase(); NumberOfCurves(CDB);
845960
```

```
> LargestConductor(CDB);
```

130000

```
> E:=EllipticCurve(CDB,"389a1"); Rank(E);
```

2

```
> SWDB:=SteinWatkinsDatabase(); NumberOfCurves(SWDB);
136924520
```

```
> LargestConductor(SWDB);
99999999
```

Counting curves: isogeny classes

range of N	#	r = 0	r = 1	r=2	r = 3
0-9999	38042	16450	19622	1969	1
10000-19999	43175	17101	22576	3490	8
20000-29999	44141	17329	22601	4183	28
30000-39999	44324	16980	22789	4517	38
40000-49999	44519	16912	22826	4727	54
50000-59999	44301	16728	22400	5126	47
60000-69999	44361	16568	22558	5147	88
70000-79999	44449	16717	22247	5400	85
80000-89999	44861	17052	22341	5369	99
90000-99999	43651	16370	21756	5442	83
100000-109999	44274	16599	22165	5369	141
110000-119999	44071	16307	22173	5453	138
120000-129999	44655	16288	22621	5648	98
0-129999	568824	217401	288675	61840	908

Counting curves: isomorphism classes

range of N	# isogeny classes	# isomorphism classes
0-9999	38042	64687
10000-19999	43175	67848
20000-29999	44141	66995
30000-39999	44324	66561
40000-49999	44519	66275
50000-59999	44301	65393
60000-69999	44361	65209
70000-79999	44449	64687
80000-89999	44861	64864
90000-99999	43651	63287
100000-109999	44274	63410
110000-119999	44071	63277
120000-129999	44655	63467
0-129999	568824	845960

Distribution of isogeny class sizes and degrees

D	Size	# classes	%
1	1	372191	65.43
2	2	123275	21.67
3	2	31372	5.52
4	4	27767	4.88
5	2	2925	0.51
6	4	3875	0.68
7	2	808	0.14
8	6	2388	0.42
9	3	2709	0.48
10	4	271	0.05
11	2	60	0.01
12	8	286	0.05
13	2	130	0.02

D	Size	# classes	%
14	4	28	< 0.01
15	4	58	0.01
16	8	270	0.05
17	2	8	< 0.01
18	6	162	0.03
19	2	12	< 0.01
21	4	30	0.01
25	3	134	0.02
27	4	33	0.01
37	2	20	< 0.01
43	2	7	< 0.01
67	2	4	< 0.01
163	2	1	< 0.01

Mordell-Weil groups I: Distribution of ranks

Mordell-Weil groups: higher ranks?

All curves with conductor < 130000 have rank ≤ 3 . The smallest known conductor of a rank 4 curve is N = 234446.

In fact there are three curves with conductor 234446:

234446	а	1	[1, 1, 0, -696, 6784]	3	1
234446	b	1	[1, -1, 0, -79, 289]	4	1
234446	С	1	[1, 1, 1, -949, -7845]	3	1

The other two both have rank 3! Data in the Stein–Watkins database shows that no curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range 130000 < N < 234446.

Mordell-Weil groups: higher ranks?

All curves with conductor < 130000 have rank ≤ 3 . The smallest known conductor of a rank 4 curve is N = 234446.

In fact there are three curves with conductor 234446:

234446	а	1	[1,1,0,-696,6784]	3	1
234446	b	1	[1,-1,0,-79,289]	4	1
234446	С	1	[1,1,1,-949,-7845]	3	1

The other two both have rank 3! Data in the Stein–Watkins database shows that no curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range 130000 < N < 234446.
Mordell-Weil groups: higher ranks?

All curves with conductor < 130000 have rank ≤ 3 . The smallest known conductor of a rank 4 curve is N = 234446.

In fact there are three curves with conductor 234446:

234446	а	1	[1,1,0,-696,6784]	3	1
234446	b	1	[1,-1,0,-79,289]	4	1
234446	С	1	[1,1,1,-949,-7845]	3	1

The other two both have rank 3! Data in the Stein–Watkins database shows that no curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range 130000 < N < 234446.

Mordell-Weil groups: higher ranks?

All curves with conductor < 130000 have rank ≤ 3 . The smallest known conductor of a rank 4 curve is N = 234446.

In fact there are three curves with conductor 234446:

234446	а	1	[1,1,0,-696,6784]	3	1
234446	b	1	[1,-1,0,-79,289]	4	1
234446	С	1	[1,1,1,-949,-7845]	3	1

The other two both have rank 3! Data in the Stein–Watkins database shows that no curve with prime conductor less than 234446 has rank 4, but it is possible that a rank 4 curve with smaller composite conductor does exist. One way of answering this question would be to extend the database to fill in the range 130000 < N < 234446.

Mordell-Weil groups II: distribution of torsion structures

Structure	# curves	%
C_1	432622	51.14
C_2	344010	40.67
C_3	18512	2.19
C_4	12832	1.52
$C_2 \times C_2$	33070	3.91
C_5	698	0.08
C_6	3155	0.37
C_7	50	< 0.01
C_8	101	0.01
$C_2 \times C_4$	793	0.09
C_9	16	< 0.01
C_{10}	28	< 0.01
C_{12}	11	< 0.01
$C_2 \times C_6$	58	< 0.01
$C_2 \times C_8$	4	< 0.01

Order parity	# curves	%
Odd	451898	53.42
Even	394062	46.58
All	845960	100.00

Mordell-Weil groups III: largest generator

Curve 108174c2: [1, 1, 0, -330505909530535, -2312687660697986706251] has a generator of canonical height 1193.35: $(a/c^2, b/c^3)$ where

a = -13632833703140681033503023679128670529558218420063432397971439281876168936925608099278686103768271165751 437633556213041024136275990157472508801182302454436678900455860307034813576105868447511602833327656978462 242557413116494486538310447476190358439933060717111176029723557330999410077664104893597013481236052075987 422554713521099294186837422237009896297109549762937178684101535289410605736729335307780613198224770325365111 296070756137349249522158278253743039282375024853516001988744749085116423499171358836518920399114139315005 c = 113966855669333292896328833690552943933212422262287285858336471843279644076647486592460242089049033370292 485250756121056680073078113806049657487759641390843477809887412203584409641844116068236428572188929747 7694986150009319617653662693006650248126059704441347

Finding large generators

How is such a large rational point found? When the rank is 1, it is as easy (and quick) as this (using MAGMA's Heegner Point package, implemented by Mark Watkins):

> E:=EllipticCurve([1,1,0,-330505909530535,-2312687660697986706251]);

> time HeegnerPoint(E);

true (-13632833.../12988444... : 77684538.../14802521... : 1) Time: 26.680

Finding large generators

How is such a large rational point found? When the rank is 1, it is as easy (and quick) as this (using MAGMA's Heegner Point package, implemented by Mark Watkins):

> E:=EllipticCurve([1,1,0,-330505909530535,-2312687660697986706251]);

> time HeegnerPoint(E);

true (-13632833.../12988444... : 77684538.../14802521... : 1) Time: 26.680

Nontrivial (analytic) orders of III

$\sqrt{ \mathrm{III} }$	#
2^{2}	37074
3^{2}	11512
4^2	4013
5^{2}	1954
6^{2}	426
7^{2}	468
8^{2}	250
9^{2}	85
10^{2}	52
11^2	73
12^2	20
13^2	19
14^2	9

$\sqrt{ \mathrm{III} }$	#
15^2	2
16^2	6
17^2	4
19^2	2
20^{2}	3
21^2	2
23^2	4
26^2	1
all > 1	55979

The Manin Constant

The Manin constant for an elliptic curve E of conductor N is the rational number c such that

$$\varphi^*(\omega_E) = c(2\pi i f(z) dz),$$

where ω_E is a Néron differential on E, f is the normalized newform for $\Gamma_0(N)$ associated to E, and $\varphi: X_0(N) \to E$ is the modular parametrization.

A long-standing conjecture is that c = 1 for all elliptic curves over \mathbb{Q} which are optimal $J_0(N)$ -quotients ("strong Weil curves"). It is known by work of Edixhoven and others that $c \in \mathbb{Z}$, and there are many results restricting the primes which may divide c.

In a recent paper by Agashe, Ribet and Stein these conditions have been strengthened considerably. In an appendix to that paper, there is an account of numerical verifications I have carried out which establish the conjecture for **all** the curves in the tables.

The Manin Constant

The Manin constant for an elliptic curve E of conductor N is the rational number c such that

$$\varphi^*(\omega_E) = c(2\pi i f(z) dz),$$

where ω_E is a Néron differential on E, f is the normalized newform for $\Gamma_0(N)$ associated to E, and $\varphi: X_0(N) \to E$ is the modular parametrization.

A long-standing conjecture is that c = 1 for all elliptic curves over \mathbb{Q} which are optimal $J_0(N)$ -quotients ("strong Weil curves"). It is known by work of Edixhoven and others that $c \in \mathbb{Z}$, and there are many results restricting the primes which may divide c.

In a recent paper by Agashe, Ribet and Stein these conditions have been strengthened considerably. In an appendix to that paper, there is an account of numerical verifications I have carried out which establish the conjecture for **all** the curves in the tables.

The Manin Constant

The Manin constant for an elliptic curve E of conductor N is the rational number c such that

$$\varphi^*(\omega_E) = c(2\pi i f(z) dz),$$

where ω_E is a Néron differential on E, f is the normalized newform for $\Gamma_0(N)$ associated to E, and $\varphi: X_0(N) \to E$ is the modular parametrization.

A long-standing conjecture is that c = 1 for all elliptic curves over \mathbb{Q} which are optimal $J_0(N)$ -quotients ("strong Weil curves"). It is known by work of Edixhoven and others that $c \in \mathbb{Z}$, and there are many results restricting the primes which may divide c.

In a recent paper by Agashe, Ribet and Stein these conditions have been strengthened considerably. In an appendix to that paper, there is an account of numerical verifications I have carried out which establish the conjecture for **all** the curves in the tables.

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_0(N)$ has Manin constant equal to 1.

Moreover, for N < 60000 the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).

The second part of the Theorem for all N < 130000 would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_1(N)$ -quotient: this can be verified in each case using Mark Watkins's program ec.

Verifying the second part for all $N<130000\ {\rm would}\ {\rm require}\ {\rm more}\ {\rm computations}\ {\rm with}\ {\rm modular}\ {\rm symbols};\ {\rm see}$

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_0(N)$ has Manin constant equal to 1.

Moreover, for N < 60000 the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).

The second part of the Theorem for all N < 130000 would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_1(N)$ -quotient: this can be verified in each case using Mark Watkins's program ec.

Verifying the second part for all N < 130000 would require more computations with modular symbols; see

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_0(N)$ has Manin constant equal to 1.

Moreover, for N < 60000 the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).

The second part of the Theorem for all N < 130000 would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_1(N)$ -quotient: this can be verified in each case using Mark Watkins's program ec.

Verifying the second part for all N < 130000 would require more computations with modular symbols; see

Theorem. For all $N \leq 130000$, every optimal elliptic quotient of $J_0(N)$ has Manin constant equal to 1.

Moreover, for N < 60000 the optimal curve in each class is the one whose identifying number in the tables is 1 (except for class 990h where the optimal curve is 990h3).

The second part of the Theorem for all N < 130000 would follow from Stevens' conjecture that in each isogeny class the curve with minimal Faltings height is the optimal $\Gamma_1(N)$ -quotient: this can be verified in each case using Mark Watkins's program ec.

Verifying the second part for all N < 130000 would require more computations with modular symbols; see