ON A THEOREM OF MESTRE AND SCHOOF

JOHN E. CREMONA AND ANDREW V. SUTHERLAND

ABSTRACT. A well known theorem of Mestre and Schoof implies that the order of an elliptic curve *E* over a prime field \mathbb{F}_q can be uniquely determined by computing the orders of points on *E* and its quadratic twist, provided that q > 229. We extend this result to all finite fields with q > 49, and all prime fields with q > 29.

Let *E* be an elliptic curve over the finite field \mathbb{F}_q with *q* elements. The number of points on *E*/ \mathbb{F}_q , which we simply denote #*E*, is known to lie in the Hasse interval:

(1)
$$\mathcal{H}_q = [q+1-2\sqrt{q}, q+1+2\sqrt{q}].$$

Equivalently, the trace of Frobenius t = q + 1 - #E satisfies $|t| \le 2\sqrt{q}$. A common strategy to compute #E (when q is not too large¹) relies on the fact that the points on E/\mathbb{F}_q form an abelian group $E(\mathbb{F}_q)$ of order #E. For any $P \in E(\mathbb{F}_q)$, the integer #E is a multiple of the order of P, and the multiples of |P| lying in \mathcal{H}_q can be efficiently determined using a baby-steps giant-steps search. If there is only one multiple in the interval, it must be #E; if not, we may try other $P \in E(\mathbb{F}_q)$ in the hope of uniquely determining #E. This strategy will eventually succeed if and only if the group exponent

$$\lambda(E) = \operatorname{lcm}\{|P| : P \in E(\mathbb{F}_q)\}$$

has a unique multiple in \mathcal{H}_q . When this condition holds we expect to determine #*E* quite quickly: with just two random points in $E(\mathbb{F}_q)$ we already succeed with probability greater than $6/\pi^2$ [2, Theorem 8.1].

Unfortunately, $\lambda(E)$ need not have a unique multiple in \mathcal{H}_q . However, for prime q we have the following theorem of Mestre, as extended by Schoof [1, Theorem 3.2].²

Theorem 1 (Mestre-Schoof). Let q > 229 be prime and E an elliptic curve over \mathbb{F}_q with quadratic twist E'. Either $\lambda(E)$ or $\lambda(E')$ has a unique multiple in \mathcal{H}_q .

The quadratic twist E' is an elliptic curve defined over \mathbb{F}_q that is isomorphic to E over the quadratic extension \mathbb{F}_{q^2} , and is easily derived from E. The orders of the groups $E(\mathbb{F}_q)$ and $E'(\mathbb{F}_q)$ satisfy #E + #E' = 2(q + 1). For prime fields with q > 229, Theorem 1 implies that we may determine one of #E and #E' by alternately computing the orders of points on E and E', and once we know either #E or #E', we know both.

Note that Theorem 1 does not hold for q = 229, or for non-prime finite fields, since there are counterexamples whenever q is a square. The argument in the proof of [1, Theorem 3.2] does not use the primality of q, but only that q is not a square, so that the Hasse bound on t cannot be attained. If $q = r^2$ is an even power of a

¹When *q* is large (e.g., of cryptographic size) one uses the asymptotically faster method of Schoof. ²Theorem 3.2 in [1] refers to the order of a particular point *P*, but Theorem 1 above is equivalent.

prime, then there are supersingular elliptic curves *E* over \mathbb{F}_q such that

$$E(\mathbb{F}_q) \cong (\mathbb{Z}/(r-1)\mathbb{Z})^2$$
 and $E'(\mathbb{F}_q) \cong (\mathbb{Z}/(r+1)\mathbb{Z})^2$.

One may easily check that there are at least 5 multiples of r - 1, and at least 3 multiples of r + 1, in \mathcal{H}_q ; however for r > 7 (q > 49), the only pair that sum to 2(q + 1) are $(r - 1)^2$ and $(r + 1)^2$. This resolves the ambiguity in these cases.³

The preceding observation led to this note, whose purpose is to extend Theorem 1 to treat all finite fields (not just prime fields) \mathbb{F}_q with q > 49, and all prime fields with q > 29. Specifically, we prove the following:

Theorem 2. Let E/\mathbb{F}_q be an elliptic curve with $q \notin \{3, 4, 5, 7, 9, 11, 16, 17, 23, 25, 29, 49\}$. There is a unique integer t with $|t| \le 2\sqrt{q}$ such that $\lambda(E)|(q+1-t)$ and $\lambda(E')|(q+1+t)$.

Our proof is entirely elementary, relying on just two properties of elliptic curves over finite fields:

- (a) #E = q + 1 t and #E' = q + 1 + t for some integer *t* with $|t| \le 2\sqrt{q}$;
- (b) $E(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}$ with n_1 dividing both n_2 and q-1.

Proofs of (a) and (b) may be found in most standard references, including [3]. When $E(\mathbb{F}_q)$ is cyclic we have $n_1 = 1$, and we always have $n_2 = \lambda(E)$.

Proof of Theorem 2. Let *E* be an elliptic curve over \mathbb{F}_q , and put #E = mM with $M = \lambda(E)$, and #E' = nN with $N = \lambda(E')$. Without loss of generality, we assume $a = q + 1 - \#E \ge 0$. Taking t = a shows existence (by (a) and (b) above), so we need only prove that t = a is the unique *t* satisfying the conditions stated in the theorem. For any such *t* we have $t \equiv q + 1 \mod M$ and $t \equiv -(q + 1) \mod N$; hence *t* lies in an arithmetic sequence with difference lcm(M, N). We also have $|t| \le 2\sqrt{q}$; thus if lcm(M, N) > $4\sqrt{q}$, then t = a is certainly unique.

We now show that $lcm(M, N) \le 4\sqrt{q}$ can occur only for $q \le 1024$. We start from

(2) $mMnN = (q+1-a)(q+1+a) = (q+1)^2 - a^2 \ge (q+1)^2 - 4q = (q-1)^2$,

which implies that

(3)
$$mn \ge \frac{(q-1)^2}{MN} = \frac{(q-1)^2}{\gcd(M,N) \operatorname{lcm}(M,N)}$$

Let d = gcd(m, n). Then d^2 divides mM + nN = 2(q + 1), so d|(q + 1), but also d|(q - 1), hence $d \le 2$. This implies $2 \text{lcm}(M, N) \ge 2 \text{lcm}(m, n) \ge mn$. We also have $\text{gcd}(M, N) \le \text{gcd}(m, n) \text{gcd}(M/m, N/n) \le 2 \text{gcd}(M/m, N/n)$. From (3) we obtain

(4)
$$\operatorname{lcm}(M,N)^{2} \ge \frac{(q-1)^{2}}{4 \operatorname{gcd}(M/m,N/n)}$$

We now suppose $lcm(M, N) \le 4\sqrt{q}$, for otherwise the theorem holds. We have nN = q + 1 + a > q, since we assumed $a \ge 0$, and $N \le 4\sqrt{q}$ implies that $n > \sqrt{q}/4$, so N/n < 16. Applying $gcd(M/m, N/n) \le N/n < 16$ to (4) yields

(5)
$$4\sqrt{q} \ge \operatorname{lcm}(M,N) > (q-1)/8,$$

which implies that the prime power *q* is at most 1024.

The cases for $q \le 1024$ are addressed by a simple program listed in the appendix that outputs the values of q, $M = \lambda(E)$, and $N = \lambda(E')$ for which exceptions can arise. This yields the set of excluded q and completes the proof.

³But when q = 49 we have 100 = 36 + 64 and also 100 = 60 + 40.

Application. The proof of Theorem 2 suggests an algorithm to compute #E, provided that q is small enough for the orders of randomly chosen points in $E(\mathbb{F}_q)$ to be easily computed. It suffices to determine integers a and m for which the set $S = \{x : x \equiv a \mod m\}$ contains t = q + 1 - #E but no $t' \neq t$ with $|t'| \leq 2q$. Beginning with m = 1 and a = 0, we compute |P| for random P in $E(\mathbb{F}_q)$ or $E'(\mathbb{F}_q)$ and update a and m to reflect the fact that $t \equiv q+1 \mod |P|$ (when $P \in E(\mathbb{F}_q)$), or $t \equiv -(q+1) \mod |P|$ (when $P \in E'(\mathbb{F}_q)$). The new values of a and m may be determined via the extended Euclidean algorithm. When the set S contains a unique t with $|t| \leq 2\sqrt{q}$, we can conclude that #E = q + 1 - t (and also that #E' = q + 1 + t).

The probabilistic algorithm we have described is a *Las Vegas* algorithm, that is, its output is always correct and its expected running time is finite. The correctness of the algorithm follows from property (a), Theorem 2 ensures that the algorithm can terminate (provided that q is not in the excluded set), and [2, Theorem 8.2] bounds its expected running time.

An examination of Table 1 reveals that in many cases an ambiguous t' could be ruled out if $\lambda(E)$ or $\lambda(E')$ were known. For example, when q = 49, the trace t' = -10 yields #E = 60 and #E' = 40, so both $\lambda(E)$ and $\lambda(E')$ are divisible by 5 (and are not 6 or 8). If the trace of E is -10 the algorithm above will likely discover this and terminate within a few iterations. But when the trace of E is 14 (and $\lambda(E) = 6$ and $\lambda(E') = 8$), we can never be completely certain that we have ruled out -10as a possibility. Thus when an unconditional result is required, we must avoid $q \in \{3, 4, 5, 7, 9, 11, 16, 17, 23, 25, 29, 49\}$.

However, when $\lambda(E)$ and $\lambda(E')$ are known we have the following corollary, which extends Proposition 4.19 of [3].

Corollary 1. Let *E* be an elliptic curve over \mathbb{F}_q . The integers $\lambda(E)$ and $\lambda(E')$ uniquely determine the isomorphism types of $E(\mathbb{F}_q)$ and $E'(\mathbb{F}_q)$ for all $q \notin \{5,7,9,11,17,23,29\}$, and they uniquely determine the set $\{E(\mathbb{F}_q), E'(\mathbb{F}_q)\}$ for all q.

Note that $\lambda(E)$ and #E together determine $E(\mathbb{F}_q)$, by property (b). To prove the corollary, apply Theorem 1 with a modified version of the algorithm in the appendix that also requires (q + 1 - t')/M to divide M and (q + 1 + t')/N to divide N.

As a final remark, we note that all the exceptional cases listed in Table 1 can be eliminated if the orders of the 2-torsion and 3-torsion subgroups of $E(\mathbb{F}_q)$ are known (these orders may be computed using the division polynomials). Alternatively, one can simply enumerate the points on E/\mathbb{F}_q to determine #*E* when $q \le 49$.

1. Appendix

For a prime power *q*, we wish to enumerate all *M*, *N*, and *t* such that:

- (i) *M* divides q + 1 t and *N* divides q + 1 + t, with $0 \le t \le 2\sqrt{q}$.
- (ii) (q + 1 t)/M divides *M* and q 1, and (q + 1 + t)/N divides *N* and q 1.
- (iii) *M* divides q + 1 t' and *N* divides q + 1 + t' for some $t' \neq t$ with $|t'| \leq 2\sqrt{q}$.

Any exception to Theorem 2 must arise from an elliptic curve E/\mathbb{F}_q with $\lambda(E) = M$, $\lambda(E') = N$, and #E = q + 1 - t (or from its twist, but the cases are symmetric, so we restrict to $t \ge 0$). Properties (i) and (ii) follow from (a) and (b) above, and (iii) implies that *t* does not uniquely satisfy the requirements of the theorem.

Algorithm 1 below finds all M, N, and t satisfying (i), (ii), and (iii). For $q \le 1024$, exceptional cases are found only for $q \in \{3, 4, 5, 7, 9, 11, 16, 17, 23, 25, 29, 49\}$. Not

every case output by Algorithm 1 is actually realized by an elliptic curve⁴, but for each combination of q and t at least one is. An example of each such case is listed in Table 1, where we only list cases with $t \ge 0$: for the symmetric cases with t < 0, change the sign of t and swap M and N.

Algorithm 1. *Given a prime power q, output all quadruples of integers (M, N, t, t')* satisfying (*i*), (*ii*), and (*iii*) above:

```
for all pairs of integers (M, N) with \sqrt{q} - 1 \le M, N \le 4\sqrt{q} do
for all integers t \in [0, 2\sqrt{q}] with M|(q + 1 - t) and N|(q + 1 + t) do
Let m = (q + 1 - t)/M and n = (q + 1 + t)/N.
if m|M and m|(q - 1) and n|N and n|(q - 1) then
for all integers t' \in [-2\sqrt{q}, 2\sqrt{q}] do
if M|(q + 1 - t') and N|(q + 1 + t') then
print M, N, t, t'.
end if
end for
end if
end for
end for
```

q	M	Ν	t	Ε	ť
3	2	2	0	$y^2 = x^3 - x$	-2,2
4	1	3	4	$y^2 + y = x^3 + \alpha^2$	-2,1
5	2	4	2	$y^2 = x^3 + x$	-2
7	2	6	4	$y^2 = x^3 - 1$	-2
7	4	4	0	$y^2 = x^3 + 3x$	-4,4
9	2	4	6	$y^2 = x^3 + \alpha^2 x$	-6,-2,2
11	4	8	4	$y^2 = x^3 + x + 9$	-4
11	6	6	0	$y^2 = x^3 + 2x$	-6,6
16	3	5	8	$y^2 + y = x^3$	-7
17	6	12	6	$y^2 = x^3 + x + 7$	-6
23	8	16	8	$y^2 = x^3 + 5x + 15$	-8
25	4	6	10	$y^2 + y = x^3 + \alpha^7$	-2
29	10	20	10	$y^2 = x^3 + x$	-10
49	6	8	14	$y^2 = x^3 + \alpha^2 x$	-10

TABLE 1. Exceptional Cases with $t \ge 0$.

The coefficient α denotes a primitive element of \mathbb{F}_q .

References

- René Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux 7 (1995), 219–254.
- Andrew V. Sutherland, Order computations in generic groups, PhD thesis, M.I.T., 2007, available at http://groups.csail.mit.edu/cis/theses/sutherland-phd.pdf.
- 3. Lawrence C. Washington, Elliptic curves: Number theory and cryptography, 2nd ed., CRC Press, 2008.

4

⁴All but one of the exceptions fail the condition that $(q + 1 - t)/M \equiv (q + 1 + t)/N \pmod{2}$.