ON A THEOREM OF MESTRE AND SCHOOF

JOHN E. CREMONA AND ANDREW V. SUTHERLAND

Abstract

A well known theorem of Mestre and Schoof implies that the order of an elliptic curve E over a prime field \mathbb{F}_{q} can be uniquely determined by computing the orders of points on E and its quadratic twist, provided that $q>229$. We extend this result to all finite fields with $q>49$, and all prime fields with $q>29$.

Let E be an elliptic curve over the finite field \mathbb{F}_{q} with q elements. The number of points on E / \mathbb{F}_{q}, which we simply denote $\# E$, is known to lie in the Hasse interval:

$$
\begin{equation*}
\mathcal{H}_{q}=[q+1-2 \sqrt{q}, q+1+2 \sqrt{q}] . \tag{1}
\end{equation*}
$$

Equivalently, the trace of Frobenius $t=q+1-\# E$ satisfies $|t| \leq 2 \sqrt{q}$. A common strategy to compute $\# E$ (when q is not too large ${ }^{1}$) relies on the fact that the points on E / \mathbb{F}_{q} form an abelian group $E\left(\mathbb{F}_{q}\right)$ of order $\# E$. For any $P \in E\left(\mathbb{F}_{q}\right)$, the integer $\# E$ is a multiple of the order of P, and the multiples of $|P|$ lying in \mathcal{H}_{q} can be efficiently determined using a baby-steps giant-steps search. If there is only one multiple in the interval, it must be $\# E$; if not, we may try other $P \in E\left(\mathbb{F}_{q}\right)$ in the hope of uniquely determining $\# E$. This strategy will eventually succeed if and only if the group exponent

$$
\lambda(E)=\operatorname{lcm}\left\{|P|: P \in E\left(\mathbb{F}_{q}\right)\right\}
$$

has a unique multiple in \mathcal{H}_{q}. When this condition holds we expect to determine $\# E$ quite quickly: with just two random points in $E\left(\mathbb{F}_{q}\right)$ we already succeed with probability greater than $6 / \pi^{2}$ [2, Theorem 8.1].

Unfortunately, $\lambda(E)$ need not have a unique multiple in \mathcal{H}_{q}. However, for prime q we have the following theorem of Mestre, as extended by Schoof [1, Theorem 3.2]. ${ }^{2}$
Theorem 1 (Mestre-Schoof). Let $q>229$ be prime and E an elliptic curve over \mathbb{F}_{q} with quadratic twist E^{\prime}. Either $\lambda(E)$ or $\lambda\left(E^{\prime}\right)$ has a unique multiple in \mathcal{H}_{q}.

The quadratic twist E^{\prime} is an elliptic curve defined over \mathbb{F}_{q} that is isomorphic to E over the quadratic extension $\mathbb{F}_{q^{2}}$, and is easily derived from E. The orders of the groups $E\left(\mathbb{F}_{q}\right)$ and $E^{\prime}\left(\mathbb{F}_{q}\right)$ satisfy $\# E+\# E^{\prime}=2(q+1)$. For prime fields with $q>229$, Theorem 1 implies that we may determine one of $\# E$ and $\# E^{\prime}$ by alternately computing the orders of points on E and E^{\prime}, and once we know either $\# E$ or $\# E^{\prime}$, we know both.

Note that Theorem 1 does not hold for $q=229$, or for non-prime finite fields, since there are counterexamples whenever q is a square. The argument in the proof of [1, Theorem 3.2] does not use the primality of q, but only that q is not a square, so that the Hasse bound on t cannot be attained. If $q=r^{2}$ is an even power of a

[^0]prime, then there are supersingular elliptic curves E over \mathbb{F}_{q} such that
$$
E\left(\mathbb{F}_{q}\right) \cong(\mathbb{Z} /(r-1) \mathbb{Z})^{2} \quad \text { and } \quad E^{\prime}\left(\mathbb{F}_{q}\right) \cong(\mathbb{Z} /(r+1) \mathbb{Z})^{2}
$$

One may easily check that there are at least 5 multiples of $r-1$, and at least 3 multiples of $r+1$, in \mathcal{H}_{q}; however for $r>7(q>49)$, the only pair that sum to $2(q+1)$ are $(r-1)^{2}$ and $(r+1)^{2}$. This resolves the ambiguity in these cases. ${ }^{3}$

The preceding observation led to this note, whose purpose is to extend Theorem 1 to treat all finite fields (not just prime fields) \mathbb{F}_{q} with $q>49$, and all prime fields with $q>29$. Specifically, we prove the following:
Theorem 2. Let E / \mathbb{F}_{q} be an elliptic curve with $q \notin\{3,4,5,7,9,11,16,17,23,25,29,49\}$. There is a unique integer t with $|t| \leq 2 \sqrt{q}$ such that $\lambda(E) \mid(q+1-t)$ and $\lambda\left(E^{\prime}\right) \mid(q+1+t)$.

Our proof is entirely elementary, relying on just two properties of elliptic curves over finite fields:
(a) $\# E=q+1-t$ and $\# E^{\prime}=q+1+t$ for some integer t with $|t| \leq 2 \sqrt{q}$;
(b) $E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z} / n_{1} \mathbb{Z} \times \mathbb{Z} / n_{2} \mathbb{Z}$ with n_{1} dividing both n_{2} and $q-1$.

Proofs of (a) and (b) may be found in most standard references, including [3]. When $E\left(\mathbb{F}_{q}\right)$ is cyclic we have $n_{1}=1$, and we always have $n_{2}=\lambda(E)$.
Proof of Theorem 2. Let E be an elliptic curve over \mathbb{F}_{q}, and put $\# E=m M$ with $M=\lambda(E)$, and $\# E^{\prime}=n N$ with $N=\lambda\left(E^{\prime}\right)$. Without loss of generality, we assume $a=q+1-\# E \geq 0$. Taking $t=a$ shows existence (by (a) and (b) above), so we need only prove that $t=a$ is the unique t satisfying the conditions stated in the theorem. For any such t we have $t \equiv q+1 \bmod M$ and $t \equiv-(q+1) \bmod N$; hence t lies in an arithmetic sequence with difference $\operatorname{lcm}(M, N)$. We also have $|t| \leq 2 \sqrt{q}$; thus if $\operatorname{lcm}(M, N)>4 \sqrt{q}$, then $t=a$ is certainly unique.

We now show that $\operatorname{lcm}(M, N) \leq 4 \sqrt{q}$ can occur only for $q \leq 1024$. We start from

$$
\begin{equation*}
m M n N=(q+1-a)(q+1+a)=(q+1)^{2}-a^{2} \geq(q+1)^{2}-4 q=(q-1)^{2} \tag{2}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
m n \geq \frac{(q-1)^{2}}{M N}=\frac{(q-1)^{2}}{\operatorname{gcd}(M, N) \operatorname{lcm}(M, N)} \tag{3}
\end{equation*}
$$

Let $d=\operatorname{gcd}(m, n)$. Then d^{2} divides $m M+n N=2(q+1)$, so $d \mid(q+1)$, but also $d \mid(q-1)$, hence $d \leq 2$. This implies $2 \operatorname{lcm}(M, N) \geq 21 \mathrm{~cm}(m, n) \geq m n$. We also have $\operatorname{gcd}(M, N) \leq \operatorname{gcd}(m, n) \operatorname{gcd}(M / m, N / n) \leq 2 \operatorname{gcd}(M / m, N / n)$. From (3) we obtain

$$
\begin{equation*}
\operatorname{lcm}(M, N)^{2} \geq \frac{(q-1)^{2}}{4 \operatorname{gcd}(M / m, N / n)} \tag{4}
\end{equation*}
$$

We now suppose $\operatorname{lcm}(M, N) \leq 4 \sqrt{q}$, for otherwise the theorem holds. We have $n N=q+1+a>q$, since we assumed $a \geq 0$, and $N \leq 4 \sqrt{q}$ implies that $n>\sqrt{q} / 4$, so $N / n<16$. Applying $\operatorname{gcd}(M / m, N / n) \leq N / n<16$ to (4) yields

$$
\begin{equation*}
4 \sqrt{q} \geq \operatorname{lcm}(M, N)>(q-1) / 8 \tag{5}
\end{equation*}
$$

which implies that the prime power q is at most 1024.
The cases for $q \leq 1024$ are addressed by a simple program listed in the appendix that outputs the values of $q, M=\lambda(E)$, and $N=\lambda\left(E^{\prime}\right)$ for which exceptions can arise. This yields the set of excluded q and completes the proof.

[^1]Application. The proof of Theorem 2 suggests an algorithm to compute $\# E$, provided that q is small enough for the orders of randomly chosen points in $E\left(\mathbb{F}_{q}\right)$ to be easily computed. It suffices to determine integers a and m for which the set $S=\{x: x \equiv a \bmod m\}$ contains $t=q+1-\# E$ but no $t^{\prime} \neq t$ with $\left|t^{\prime}\right| \leq 2 q$. Beginning with $m=1$ and $a=0$, we compute $|P|$ for random P in $E\left(\mathbb{F}_{q}\right)$ or $E^{\prime}\left(\mathbb{F}_{q}\right)$ and update a and m to reflect the fact that $t \equiv q+1 \bmod |P|\left(\right.$ when $\left.P \in E\left(\mathbb{F}_{q}\right)\right)$, or $t \equiv-(q+1) \bmod |P|$ (when $P \in E^{\prime}\left(\mathbb{F}_{q}\right)$). The new values of a and m may be determined via the extended Euclidean algorithm. When the set S contains a unique t with $|t| \leq 2 \sqrt{q}$, we can conclude that $\# E=q+1-t$ (and also that $\# E^{\prime}=q+1+t$).

The probabilistic algorithm we have described is a Las Vegas algorithm, that is, its output is always correct and its expected running time is finite. The correctness of the algorithm follows from property (a), Theorem 2 ensures that the algorithm can terminate (provided that q is not in the excluded set), and [2, Theorem 8.2] bounds its expected running time.

An examination of Table 1 reveals that in many cases an ambiguous t^{\prime} could be ruled out if $\lambda(E)$ or $\lambda\left(E^{\prime}\right)$ were known. For example, when $q=49$, the trace $t^{\prime}=-10$ yields $\# E=60$ and $\# E^{\prime}=40$, so both $\lambda(E)$ and $\lambda\left(E^{\prime}\right)$ are divisible by 5 (and are not 6 or 8). If the trace of E is -10 the algorithm above will likely discover this and terminate within a few iterations. But when the trace of E is 14 (and $\lambda(E)=6$ and $\lambda\left(E^{\prime}\right)=8$), we can never be completely certain that we have ruled out -10 as a possibility. Thus when an unconditional result is required, we must avoid $q \in\{3,4,5,7,9,11,16,17,23,25,29,49\}$.

However, when $\lambda(E)$ and $\lambda\left(E^{\prime}\right)$ are known we have the following corollary, which extends Proposition 4.19 of [3].

Corollary 1. Let E be an elliptic curve over \mathbb{F}_{q}. The integers $\lambda(E)$ and $\lambda\left(E^{\prime}\right)$ uniquely determine the isomorphism types of $E\left(\mathbb{F}_{q}\right)$ and $E^{\prime}\left(\mathbb{F}_{q}\right)$ for all $q \notin\{5,7,9,11,17,23,29\}$, and they uniquely determine the set $\left\{E\left(\mathbb{F}_{q}\right), E^{\prime}\left(\mathbb{F}_{q}\right)\right\}$ for all q.

Note that $\lambda(E)$ and $\# E$ together determine $E\left(\mathbb{F}_{q}\right)$, by property (b). To prove the corollary, apply Theorem 1 with a modified version of the algorithm in the appendix that also requires $\left(q+1-t^{\prime}\right) / M$ to divide M and $\left(q+1+t^{\prime}\right) / N$ to divide N.

As a final remark, we note that all the exceptional cases listed in Table 1 can be eliminated if the orders of the 2-torsion and 3-torsion subgroups of $E\left(\mathbb{F}_{q}\right)$ are known (these orders may be computed using the division polynomials). Alternatively, one can simply enumerate the points on E / \mathbb{F}_{q} to determine $\# E$ when $q \leq 49$.

1. Appendix

For a prime power q, we wish to enumerate all M, N, and t such that:
(i) M divides $q+1-t$ and N divides $q+1+t$, with $0 \leq t \leq 2 \sqrt{q}$.
(ii) $(q+1-t) / M$ divides M and $q-1$, and $(q+1+t) / N$ divides N and $q-1$.
(iii) M divides $q+1-t^{\prime}$ and N divides $q+1+t^{\prime}$ for some $t^{\prime} \neq t$ with $\left|t^{\prime}\right| \leq 2 \sqrt{q}$.

Any exception to Theorem 2 must arise from an elliptic curve E / \mathbb{F}_{q} with $\lambda(E)=M$, $\lambda\left(E^{\prime}\right)=N$, and $\# E=q+1-t$ (or from its twist, but the cases are symmetric, so we restrict to $t \geq 0$). Properties (i) and (ii) follow from (a) and (b) above, and (iii) implies that t does not uniquely satisfy the requirements of the theorem.

Algorithm 1 below finds all M, N, and t satisfying (i), (ii), and (iii). For $q \leq 1024$, exceptional cases are found only for $q \in\{3,4,5,7,9,11,16,17,23,25,29,49\}$. Not
every case output by Algorithm 1 is actually realized by an elliptic curve ${ }^{4}$, but for each combination of q and t at least one is. An example of each such case is listed in Table 1, where we only list cases with $t \geq 0$: for the symmetric cases with $t<0$, change the sign of t and swap M and N.

```
Algorithm 1. Given a prime power \(q\), output all quadruples of integers \(\left(M, N, t, t^{\prime}\right)\)
satisfying (i), (ii), and (iii) above:
for all pairs of integers \((M, N)\) with \(\sqrt{q}-1 \leq M, N \leq 4 \sqrt{q}\) do
    for all integers \(t \in[0,2 \sqrt{q}]\) with \(M \mid(q+1-t)\) and \(N \mid(q+1+t)\) do
        Let \(m=(q+1-t) / M\) and \(n=(q+1+t) / N\).
        if \(m \mid M\) and \(m \mid(q-1)\) and \(n \mid N\) and \(n \mid(q-1)\) then
            for all integers \(t^{\prime} \in[-2 \sqrt{q}, 2 \sqrt{q}]\) do
                if \(M \mid\left(q+1-t^{\prime}\right)\) and \(N \mid\left(q+1+t^{\prime}\right)\) then
                    print \(M, N, t, t^{\prime}\).
                    end if
            end for
        end if
    end for
end for
```

q	M	N	t	E	t^{\prime}
3	2	2	0	$y^{2}=x^{3}-x$	$-2,2$
4	1	3	4	$y^{2}+y=x^{3}+\alpha^{2}$	$-2,1$
5	2	4	2	$y^{2}=x^{3}+x$	-2
7	2	6	4	$y^{2}=x^{3}-1$	-2
7	4	4	0	$y^{2}=x^{3}+3 x$	$-4,4$
9	2	4	6	$y^{2}=x^{3}+\alpha^{2} x$	$-6,-2,2$
11	4	8	4	$y^{2}=x^{3}+x+9$	-4
11	6	6	0	$y^{2}=x^{3}+2 x$	$-6,6$
16	3	5	8	$y^{2}+y=x^{3}$	-7
17	6	12	6	$y^{2}=x^{3}+x+7$	-6
23	8	16	8	$y^{2}=x^{3}+5 x+15$	-8
25	4	6	10	$y^{2}+y=x^{3}+\alpha^{7}$	-2
29	10	20	10	$y^{2}=x^{3}+x$	-10
49	6	8	14	$y^{2}=x^{3}+\alpha^{2} x$	-10

Table 1. Exceptional Cases with $t \geq 0$.
The coefficient α denotes a primitive element of \mathbb{F}_{q}.

References

1. René Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux 7 (1995), 219-254.
2. Andrew V. Sutherland, Order computations in generic groups, PhD thesis, M.I.T., 2007, available at http://groups.csail.mit.edu/cis/theses/sutherland-phd.pdf.
3. Lawrence C. Washington, Elliptic curves: Number theory and cryptography, 2nd ed., CRC Press, 2008.
[^2]
[^0]: ${ }^{1}$ When q is large (e.g., of cryptographic size) one uses the asymptotically faster method of Schoof.
 ${ }^{2}$ Theorem 3.2 in [1] refers to the order of a particular point P, but Theorem 1 above is equivalent.

[^1]: ${ }^{3}$ But when $q=49$ we have $100=36+64$ and also $100=60+40$.

[^2]: ${ }^{4}$ All but one of the exceptions fail the condition that $(q+1-t) / M \equiv(q+1+t) / N(\bmod 2)$.

