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Abstract

Let E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil)
height on E and ĥ be the canonical height on E. Bounds for the difference h − ĥ
are of tremendous theoretical and practical importance. It is possible to decompose
h − ĥ as a weighted sum of continuous bounded functions Ψυ : E(Kυ) → R over
the set of places υ of K. A standard method for bounding h− ĥ, (due to Lang, and
previously employed by Silverman) is to bound each function Ψυ and sum these
local ‘contributions’.

In this paper we give simple formulae for the extreme values of Ψυ for non-
archimedean υ in terms of the Tamagawa index and Kodaira symbol of the curve
at υ.

For real archimedean υ a method for sharply bounding Ψυ was previously given
by Siksek (1990). We complement this by giving two methods for sharply bounding
Ψυ for complex archimedean υ.
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1 Introduction

Let K be a number field and let E be an elliptic curve defined over K. The
canonical height ĥ is a quadratic form on E(K) ⊗ R whose difference from
the logarithmic height h is bounded on E(K). It is of tremendous importance
both to the theoretical and to the explicit study of elliptic curves to have
sharp bounds for the difference h − ĥ, particularly a small upper bound for
this quantity. For example, explicit bounds on h − ĥ are essential for the
effective proof of the Mordell-Weil Theorem. Good bounds for this difference
are an important part of algorithms for determining Mordell-Weil bases of
elliptic curves, and for determining integral points on elliptic curves.

Let MK be the set of places of K. It is possible to decompose the difference
h− ĥ as

h(P )− ĥ(P ) =
1

[K : Q]

∑
υ∈MK

nυΨυ(P ), (1)

where the Ψυ are continuous bounded functions Ψυ : E(Kυ) → R. For all but
a finite set of places υ on K, the functions Ψυ vanish identically. A reasonable
approach to bounding h− ĥ, suggested by Lang in [7], is to bound each of the
functions Ψυ separately, and then to sum all of these local ‘contributions’ to
obtain a bound for h− ĥ. This approach is adopted in Silverman’s paper [13],
where he derives concise bounds for h − ĥ in terms of the coefficients and
invariants of the curve. This Lang-Silverman approach is more conceptually
attractive, and gives more precise bounds, than the earlier approach found in
the papers (say) of Zimmer [17], and Demjanenko [4]; this earlier approach
is based on estimating the difference 4h(P ) − h(2P ) and the use of Tate’s
‘telescoping’ series.

Given the importance of the problem, it is highly desirable to take the Lang-
Silverman approach to its logical extreme: rather than asking for bounds for
each function Ψυ, one should ask if the extrema of these real-valued functions
can be determined. This idea first appears in a paper of Siksek [12], where
he gives an algorithm - albeit a tedious one - for computing the suprema of
the functions Ψυ for non-archimedean υ. For archimedean υ, the functions Ψυ

are substantially more complicated and it seems hopeless to determine their
extrema. It is however possible to write Ψυ = −∑∞

i=0 4−i−1 log Φυ(2
iP ) for

some (simpler, though still complicated) real-valued function Φυ : E(Kυ) → R.
Determining the extrema of Φυ gives sharp bounds for Ψυ. Siksek does this for
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real archimedean υ, but gives a non-rigorous numerical method for estimating
the extrema for complex archimedean υ.

In this paper, using an exhaustive analysis of possible reduction types of el-
liptic curves, we give simple formulae for the extreme values of Ψυ for non-
archimedean υ. These formulae depend only on the Kodaira symbol and Tam-
agawa index of the curve at υ. We complement Siksek’s determination of the
extrema of Φυ for real archimedean υ by determining the extrema of this
function for complex archimedean places υ: the locations of the extrema are
given as simultaneous zeros of some pairs of real bivariate polynomials. Thus
the extrema can be determined by solving these pairs of polynomials using
Groebner bases. We also give a second, very fast algorithm, which is numer-
ical but completely rigorous, for computing the extrema of Φυ to arbitrary
desired accuracy (hence bounding Ψυ for complex υ).

The resulting bound for h − ĥ we obtain in this paper has all the virtues of
the bound in [12], but none of the vices. To summarize, whilst the final bound
for h− ĥ we give is numerically the same as that in [12], it has the following
advantages

• better suited for theoretical investigations,
• (unlike [12]) entirely rigorous for number fields with complex embeddings,
• and almost trivial to implement/compute.

At the end of the paper we compute some examples and carry out a comparison
between our bounds and those of Silverman.

The reader is warned at the outset that several normalizations of canonical
and local heights appear in the literature; we say more on this in due course.

We are indebted to Professor Silverman for clarifying our ideas on local height
normalizations and for useful comments on a previous version of this paper
(including some of the history behind Proposition 5), to Professor Buchberger
for useful discussions on numerical Groebner bases, and to Dr. Albaali for
suggesting to us that the method of Lagrange multipliers might be useful in
the proof of Lemma 12.

2 Statement of the Main Theorem

We fix once and for all the following notation.
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K a number field,

OK the ring of integers of K,

MK the set of all places of K,

M0
K the set of non-archimedean places of K,

M∞
K the set of archimedean places of K,

υ a place of K,

Kυ the completion of K at υ,

nυ the local degree [Kυ : Qυ].

We will use the notation υ interchangeably for a place and for the associated
normalized valuation. The following notation is relevant to places υ ∈ M0

K .

kυ the residue field at υ,

Oυ ring of integers in Kυ,

qυ the cardinality of the residue field kυ.

Let E be an elliptic curve given by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2)

where a1, . . . , a6 ∈ OK . For each place υ we denote by E0(Kυ) the connected
component of the identity in E(Kυ); for υ ∈ M0

K this consists of the points
of E(Kυ) with good reduction at υ. The Tamagawa index at υ, which is 1 for
almost all υ including those where E has good reduction, is the index cυ =
[E(Kυ) : E0(Kυ)]. The finite quotient E(Kυ)/E0(Kυ) is called the component
group of E at υ.

We define the usual associated constants (see [14, page 46]) as follows.

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

Let
f(P ) = 4x(P )3 + b2x(P )2 + 2b4x(P ) + b6,

g(P ) = x(P )4 − b4x(P )2 − 2b6x(P )− b8;
(3)
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Table 1
Values of αυ

Kodaira type of Emin
υ at υ Tamagawa index cυ αυ

any 1 0

Im, m even 2 or m m/4

Im, m odd m (m2 − 1)/4m

III 2 1/2

IV 3 2/3

I∗0 2 or 4 1

I∗m 2 1

I∗m 4 (m + 4)/4

IV∗ 3 4/3

III∗ 2 3/2

so that x(2P ) = g(P )/f(P ). Define the function Φυ : E(Kυ) → R by

Φυ(P ) =


1 if P = O,

max {|f(P )|υ, |g(P )|υ}
max {1, |x(P )|υ}4 otherwise.

(4)

It is straightforward to see that Φυ is a continuous and hence bounded function
on E(Kυ) (the boundedness follows immediately from the fact that E(Kυ) is
compact with respect to the υ-adic topology). Define

ε−1
υ = inf

P∈E(Kυ)
Φυ(P ), δ−1

υ = sup
P∈E(Kυ)

Φυ(P ), (5)

where the exponents −1 have been chosen to simplify the formulae appearing
later. In [12, Lemma 2.3] it shown that ευ exists (i.e. the infimum appearing
in its definition is non-zero) and satisfies ευ ≥ 1.

For each valuation υ ∈ M0
K let Emin

υ be a minimal model for E over Kυ, and let
∆min

υ be the discriminant of Emin
υ . Thus we can take Emin

υ = E and ∆min
υ = ∆

for almost all υ ∈ M0
K , and they are always equal if the model E is globally

minimal. For υ ∈ M0
K we define the constants αυ according to the Kodaira

type of Emin
υ and the Tamagawa index cυ as in Table 1. We can now state our

main theorem:
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Theorem 1 For all P ∈ E(K),

1

3[K : Q]

∑
υ∈M∞

K

nυ log δυ ≤ h(P )− ĥ(P ) ≤ 1

3[K : Q]

∑
υ∈M∞

K

nυ log ευ

+
1

[K : Q]

∑
υ∈M0

K

(
αυ +

1

6
ordυ(∆/∆min

υ )
)

log(qυ).

The next theorem is a by-product of the proof of Theorem 1. In essence it says
that the bounds are sharper if we restrict ourselves to points that have every-
where good reduction. Although this result is less general than Theorem 1, we
suspect it may be useful for some applications.

Theorem 2 Suppose P ∈ E(K). If P ∈ E0(Kυ) for all non-archimedean
valuations υ then

1

3[K : Q]

∑
υ∈M∞

K

nυ log δυ ≤ h(P )− ĥ(P ) ≤ 1

3[K : Q]

∑
υ∈M∞

K

nυ log ευ

3 Definitions of Heights and Local Heights

In this section we review the definitions of logarithmic and canonical heights,
as well as their decompositions into local components. If P ∈ E(K) then the
naive heights of P and 2P are respectively given by

HK(P ) =
∏

υ∈MK

max {1, |x(P )|υ}nυ , HK(2P ) =
∏

υ∈MK

max {|f(P )|υ, |g(P )|υ}nυ ,

where f, g are the polynomials defined in (3).

The logarithmic height is given by

h(P ) =
1

[K : Q]
log HK(P ) =

1

[K : Q]

∑
υ∈MK

nυ log max {1, |x(P )|υ} . (6)

It is then easy to see that for P ∈ E(K) we have

h(2P )− 4h(P ) =
1

[K : Q]

∑
υ∈MK

nυ log Φυ(P ),

where Φυ is defined in (4). Using the usual ‘telescoping’ series we see that
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ĥ(P ) = lim
i→∞

1

4i
h(2iP ))

= h(P ) + (
1

4
h(2P )− h(P )) + (

1

42
h(22P )− 1

4
h(2P )) + . . .

=
1

[K : Q]

∑
υ∈Mk

nυ

(
log max {1, |x(P )|υ}+

∞∑
i=0

1

4i+1
log Φυ(2

iP )

)
.

We define the local height λυ : E(Kυ)\ {O} → R by

λυ(P ) = log max {1, |x(P )|υ}+
∞∑
i=0

1

4i+1
log Φυ(2

iP ). (7)

The canonical and local heights are then related by the formula,

ĥ(P ) =
1

[K : Q]

∑
υ∈MK

nυλυ(P ). (8)

Let Ψυ : E(Kυ) → R be given by

Ψυ(P ) =

0 if P = O,

log max {1, |x(P )|υ} − λυ(P ) otherwise.
(9)

Combining (6) and (8) we deduce the validity of the decomposition of the
height difference h− ĥ in (1).

Although the following proposition is not used later on, it is helpful to bear
in mind and does motivate our approach to bounding h− ĥ.

Proposition 3 Suppose υ ∈ MK (archimedean or non-archimedean). Ψυ is
continuous bounded function on E(Kυ). Moreover, if υ ∈ M0

K and E has good
reduction at υ then Ψυ vanishes identically on E(Kυ).

Proof: By the explicit formula for the local height (7) the function Ψυ can
be rewritten as

Ψυ(P ) = −
∞∑
i=0

1

4i+1
log Φυ(2

iP ). (10)

We recall that log Φυ is continuous and bounded on E(Kυ). For this see the
proof of [15, Lemma VI.1.2]. The continuity of Ψυ follows by the Weierstrass
M -test, and its boundedness from the compactness of E(Kυ).

Suppose that υ ∈ M0
K . If P has good reduction then its local height is simply

given by λυ(P ) = log max {1, |x(P )|υ} (see for example [15, Theorem VI.4.1]).
The proposition follows. 2
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4 An Important Warning about Canonical and Local Heights

It is crucial when comparing formulae for canonical heights and local heights
to bear in mind the different normalizations of these quantities appearing in
the literature.

We have chosen our normalization of the canonical height to agree with that
taken in Cremona’s book [2]. This has the merit of being the most natural
normalization for the conjectures of Birch and Swinnerton-Dyer (see [2, page
72]). Our canonical height is double that found in the papers and books of
Silverman that we cite ([15], [16], [13]).

The situation with local heights is more complicated. Again our local heights
agree with those in Cremona’s book. Moreover, if we denote by λSilP

υ the local
height in Silverman’s paper [16], and by λSilB

υ the local height in Silverman’s
book [15, Chapter IV], then these are related to our normalization by

λυ = 2λSilP
υ = 2λSilB

υ +
1

6
log|∆υ|. (11)

The normalizations λυ and λSilP
υ are easier to use for explicit purposes. The

normalizations λSilB
υ (and 2λSilB

υ ) are better suited for theoretical purposes.
In particular λSilB

υ has the advantage of being independent of the choice of
Weierstrass model for the curve (see [15, Theorem VI.1.1]). We would like to
record here the corresponding fact for our normalization, which can be readily
deduced from the relationship expressed in (11).

Lemma 4 Suppose that E and E ′ are different models for the same elliptic
curve, and let λυ and λ′υ be the corresponding local heights for valuation υ.
Then

λυ = λ′υ +
1

6
log|∆/∆′|υ,

where ∆ and ∆′ are respectively the discriminants of the models E and E ′.

5 The local height λυ for non-archimedean valuations

Throughout this section υ ∈ M0
K is a non-archimedean valuation. Our aim

in this section is to compile an exhaustive table of the values of local heights
at the points of bad reduction. This is the most difficult step in the proof of
Theorem 1. To do this we will need the following proposition, due to Silverman,
which gives explicit formulae for non-archimedean local heights.
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Proposition 5 (Silverman’s Explicit Formulae for Local Heights) Let
υ ∈ M0

K, and suppose that E is minimal at υ. Suppose that P ∈ E(Kυ)\ {O}.

(a) The value of λυ(P ) depends only on the image of P in E(Kυ)/E0(Kυ).
(b) If P ∈ E0(Kυ) then

λυ(P ) = log max {1, |x(P )|υ} .

(c) Suppose E has Kodaira type Im at υ. If P ∈ E(Kυ)\E0(Kυ) lies on the
i-th component of E(Kυ)/E0(Kυ) then

λυ(P ) = −i(m− i)

m

log(qυ)

nυ

.

(d) If E has Kodaira type IV or IV∗ then

λυ(P ) = −2

3
ordυ(2y(P ) + a1x(P ) + a3)

log(qυ)

nυ

for all P 6∈ E0(Kυ).
(e) If E has Kodaira type III, III∗, I∗0, or I∗m then

λυ(P ) = −1

4
ordυ(3x(P )4 + b2x(P )3 + 3b4x(P )2 + 3b6x(P ) + b8)

log(qυ)

nυ

for all P 6∈ E0(Kυ).

Proof: See Silverman’s paper [16, pages 351–354]. Parts (a) and (b) are
implicit in Néron’s original paper [10]; part (c) may have originally appeared in
a letter from Tate to Serre, while parts (d) and (e) are essentially in Silverman’s
thesis, subsequently published in [16]. 2

Next we use the above explicit formulae to calculate an exhaustive table of
values of local heights at points of bad reduction.

Proposition 6 Suppose that E is minimal at υ ∈ M0
K, and that the Tam-

agawa index cυ > 1. The values of λυ(P ) as P ranges over E(Kυ)\E0(Kυ)
(that is, the υ-adic points of bad reduction) are given by Table 2.

The remainder of this section is devoted to the proof of this proposition. In
the next section we use it to deduce Theorem 1.

We need separate proofs for different Kodaira types and Tamagawa indices.
In the course of the proof we will need to make unimodular changes of the
Weierstrass model for E: these are standard changes of variable of the form
x = x′ + r and y = y′ + sx′ + t where r, s, t are υ-adic integers. Note that
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Table 2
Values of λυ

Kodaira type of Emin
υ at υ Tamagawa index cυ −

(
nυ

log qυ

)
λυ

Im, m even m i(m− i)/m i = 1, . . . m− 1

Im, m even 2 m/4

Im, m odd m i(m− i)/m i = 1, . . . m− 1

III 2 1/2

IV 3 2/3

I∗0 2 or 4 1

I∗m 2 1

I∗m 4 1, (m + 4)/4

IV∗ 3 4/3

III∗ 2 3/2

such changes do not affect the minimality of E nor its discriminant, and we
deduce from Lemma 4 that the values of λυ are also unchanged by these
model changes. In other words, for the purpose of proving the proposition,
such changes are harmless.

Let π = πυ be a uniformiser for υ; write ord for ordυ. Recall our assumption
that the Tamagawa index cυ > 1.

Proof for Kodaira type Im, m odd and cυ = m: If the Kodaira type is Im
with m odd then there are in general two possibilities for the Tamagawa index
cυ: either cυ = 1 or cυ = m. Since we have excluded the former possibility,
we may assume the latter holds. Then, from Proposition 5, we know that the
possible values for λυ at the points of bad reduction are

−i(m− i)

m

log(qυ)

nυ

with i = 1, 2, . . . ,m− 1 in agreement with the table. 2

Proof for Kodaira type Im, m even, cυ = 2 or m: If the Kodaira type is
Im with m even then there are again two possibilities for the Tamagawa index
cυ; either cυ = 2 or cυ = m. For cυ = m the proof is exactly as above.

Suppose now that cυ = 2. Then the points with bad reduction have order 2
in E(Kυ)/E0(Kυ), and so lie in the m/2-th component. If P is a point of bad
reduction then λυ(P ) = −(m/4)(log qυ/nυ) as required.
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Note that here we benefit from knowing that P ∈ E(Kυ) and not just E(Kυ),
which is cyclic of order m.

2

We will henceforth suppose that the reduction is additive and that cυ > 1. We
note from the table in [15, page 365] that the assumption cυ > 1 excludes the
possibility of Kodaira types II and II∗.

Suppose that P ∈ E(Kυ) is a point of bad reduction. By making an appro-
priate translation we can suppose that P = (0, 0), and so a6 = 0. We will
follow the steps of Tate’s algorithm as in [15, pages 366–369]. Since we have
advanced beyond Kodaira types I0, Im, II, we see that

a6 = 0, π | b2, π2 | b6, π2 | b8.

As x(P ) = y(P ) = 0, Proposition 5 gives

λυ(P ) = −2

3
ord(a3)

log(qυ)

nυ

if the Kodaira type is IV or IV∗, and

λυ(P ) = −1

4
ord(b8)

log(qυ)

nυ

if the Kodaira type is III, III∗, I∗0 or I∗m. For most of the remaining cases we
content ourselves with evaluating ord(a3) and ord(b8), whichever is relevant,
and leave the rest to the reader. We note that the assumption that cυ > 1 forces
cυ = 2, 3, 3, 2 for Kodaira types III, IV, IV∗, III∗ respectively. For Kodaira
types I∗0 and I∗m, if cυ > 1 then cυ = 2 or 4. We state this to demonstrate that
we have covered all the possibilities in Table 2.

Proof of the Lemma for Kodaira type III and cυ = 2: From Tate’s
algorithm we know that π3 - b8. Hence ord(b8) = 2. 2

We resume following the steps of Tate’s algorithm. Thus suppose

a6 = 0, π2 | b6, π3 | b8.

Proof for Kodaira type IV and cυ = 3: From Tate’s algorithm we know
that π3 - b6. But b6 = a2

3 + 4a6 = a2
3. Thus ordυ(a3) = 1. 2
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Suppose now that π3 | b6. Tate’s algorithm now (Step 6) requires us to make
a certain change of variables, and since we have a6 = 0, it is sufficient to
make a translation of the form y′ = y + αx (where α ∈ Oυ is the double root
of Y 2 + a1Y − a2 ≡ 0 (mod π)). This translation does not move the point
P = (0, 0), and we get

π | a1, π | a2, π2 | a3, π2 | a4, a6 = 0.

Next we must consider the factorization of the polynomial

P (T ) = T 3 + a2,1T
2 + a4,2T,

modulo π, where by definition ai,r := π−rai.

Proof for Kodaira type I∗0 with cυ = 2 or 4: From Tate’s algorithm
we know that the Kodaira type is I∗0 if and only if P (T ) has distinct roots
modulo π. In particular π - a4,2, or equivalently ord(a4) = 2. Since a6 = 0, we
see that b8 = −a1a3a4 + a2a

2
3− a2

4. It follows from the assumptions so far that
ord(b8) = 4. 2

Now if P (T ) has a double root and a simple root modulo π then the Kodaira
type is I∗m, and if it has a triple root modulo π then the Kodaira type is IV∗

or III∗. The case I∗m is complicated and we will leave it to the end.

Thus suppose that P (T ) has a triple root modulo π. This together with pre-
vious assumptions implies that

π | a1, π2 | a2, π2 | a3, π3 | a4, a6 = 0.

Proof for Kodaira type IV∗ and cυ = 3: From Tate’s algorithm we know
that this type occurs when Y 2 + a3,2Y has distinct roots modulo π. Thus
ord(a3) = 2. 2

Now we suppose that Y 2 + a3,2Y has a double root modulo π; so π3 | a3.

Proof for Kodaira type III∗ and cυ = 2: From Tate’s algorithm, this case
is equivalent to ord(a4) = 3, which implies that ord(b8) = 6. 2

We are now left with proving the proposition for Kodaira type I∗m.
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Proof for Kodaira type I∗m, m even, and cυ = 2 or 4: We have already
dealt with I∗0, so we may suppose that m ≥ 2. By step 7 of Tate’s algorithm
in [15, pages 367–368] and its proof in [15, pages 373-374] we can make a
translation such that

π | a1, π || a2, π
m+4

2 | a3, π
m+4

2 | a4, πm+3 | a6.

(It is no longer convenient to maintain the assumption a6 = 0). Note that
−a2,1 is a simple root, modulo π, of the polynomial X3 +a2,1X

2 +a4,2X +a6,3.
Hence, by Hensel’s Lemma, this polynomial has a (unit) root α ∈ O∗

υ such
that α ≡ −a2,1 (mod π). Then P1 = (πα, 0) ∈ E(Kυ) has bad reduction.

We want to evaluate λυ(P1) using the formula in Proposition 5. Now x(P1) =
πα ≡ −a2 (mod π2). We also have π3 | b4, π5 | b6 and π6 | b8. Hence it follows
for x = x(P1) that

3x4 + b2x
3 + 3b4x

2 + 3b6x + b8 ≡ (πα)3(3πα + a2
1 + 4a2) + 3b4(πα)2

≡ −(πα)4 (mod π5),

which has valuation 4. Thus λυ(P1) = − log(qυ)/nυ, using Proposition 5.

Part (a) of Proposition 5 tells us that λυ factors through E(Kυ)/E0(Kυ). If
cυ = 2, then the only value λυ takes at points of bad reduction is − log(qυ)/nυ.
This proves the proposition when cυ = 2 (and Kodaira type is I∗m with m even).

Suppose that cυ = 4. There are now three nontrivial cosets of E0(Kυ) in E(Kυ)
to be considered, including the point P1 = (πα, 0) defined above. We make a
further translation that simplifies our model for E, taking a point representing
either of the two extra cosets to (0, 0). The special fiber of the Néron model
in our case is defined by

a2,1x
2
µ + a4,µ+1xµ + a6,2µ+1 ≡ 0 (mod π)

where m = 2µ− 2 and xµ = xπ−µ (see [15, page 374]). The fact that cυ = 4 is
equivalent to saying that the polynomial on the left has distinct roots modulo
π, so these lift to roots in Oυ. The corresponding lifted values of x are the
x-coordinates of the points representing the other two cosets in the component
group.

Hence, making a suitable translation of x modulo πµ, we may move either of
these two roots to 0, so that P2 = (0, 0) is a new point of bad reduction. Note
that this extra translation has not changed P1 essentially, since x(P1) was only
determined modulo π2. After the extra translation, we have

π | a1, π || a2, π
m+4

2 | a3, π
m+4

2 || a4, a6 = 0.
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It is straightforward to verify that ord(b8) = m+4, so the corresponding value
in our table is (m + 4)/4.

Since P1, P2 are points of bad reduction that have differing local heights they
must belong to different non-trivial cosets of E(Kυ)/E0(Kυ). Hence we know
all of the values of λυ at the points of bad reduction. 2

Proof for Kodaira type I∗m, m odd, and cυ = 2 or 4: This case is similar
to the previous case. We can make a translation such that

π | a1, π || a2, π
m+3

2 | a3, π
m+5

2 | a4, πm+3 | a6.

Again we have a point P1 ∈ E(Kυ) (of order 2) such that P1 ≡ (−a2, 0)
(mod π2) and again λυ(P1) = − log(qυ)/nυ. So if cυ = 2 then we are finished.

Suppose that cυ = 4. Now for m odd Tate’s algorithm tells us that the compo-
nent group is cyclic (of order 4). Let P2 ∈ E(Kυ) represent the element of exact
order 4 in E(Kυ)/E0(Kυ). Thankfully, Silverman has determined ([16, page
353]) that λυ(P2) = −(m+4) log qυ/4nυ. The three non-trivial elements of the
component group are represented by P1 and ±P2. Since λυ(−P2) = λυ(P2),
we see that the nonzero values for λυ are precisely

− log(qυ)

nυ

, −(m + 4)

4

log(qυ)

nυ

.

This completes the proof of the proposition in this case. 2

6 Proof of Theorem 1

In this section we deduce Theorem 1 from two propositions.

Proof of Theorem 1: Recall the decomposition of the height difference
h− ĥ in (1) in terms of the functions Ψυ. Theorem 1 follows immediately from
Propositions 7, 8 below. 2

Proposition 7 Let υ ∈ MK (archimedean or non-archimedean), and define
ευ and δυ by (5). Then for all P ∈ E(Kυ) we have

log(δυ)

3
≤ Ψυ(P ) ≤ log(ευ)

3
.
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Proof: The proposition follows immediately from the expansion of Ψυ in
terms of Φυ given in (10) and the definitions of ευ and δυ in (5). 2

Proposition 8 Suppose υ ∈ M0
K. Then

inf
P∈E(Kυ)

Ψυ(P ) = 0,

and

sup
P∈E(Kυ)

Ψυ(P ) =
(
αυ +

1

6
ordυ(∆/∆min

υ )
)

log(qυ)

nυ

= αυ
log(qυ)

nυ

− 1

6
log

∣∣∣∆/∆min
∣∣∣
υ
,

where αυ is given by Table 1, and ∆min is the discriminant of a minimal model
for E at υ.

Proof: First we make two claims.

Claim I.

Ψυ(P ) =

 0 if P ∈ E0(Kυ)

−λυ(P ) otherwise.
(12)

To see this, recall that

λυ(P ) = log max {1, |x(P )|υ}

for all P ∈ E0(Kυ)\ {O}, by Proposition 5(a). It is then immediate from (9)
that Ψυ(P ) = 0 for all P ∈ E0(Kυ). Suppose that P 6∈ E0(Kυ). Then
|x(P )|υ ≤ 1 (since all the points with |x(P )|υ > 1 have good reduction). From
the definition of Ψυ in (9) we deduce that Ψυ(P ) = −λυ(P ). This proves our
claim.

Claim II. The proposition is true under the assumption that E is minimal
at υ. In fact a little more is true: if E is minimal at non-archimedean place υ,
then

inf
P∈E(Kυ)

Ψυ(P ) = 0,

with the infimum attained at all points P ∈ E0(Kυ). Moreover,

sup
P∈E(Kυ)

Ψυ(P ) = αυ
log(qυ)

nυ

,

where αυ is given by Table 1, with the supremum attained at some point P ∈
E(Kv) of bad reduction.

15



To see this, recall that Proposition 6 gives us all the values of λυ(P ) for points
of bad reduction. From this and (12), we are able to write down for each
Tamagawa index and reduction type a complete list of values of Ψυ(P ) for
P ∈ E(Kυ), and so verify the claimed infima and suprema. We leave the
details to the reader. This proves our second claim.

Since we have already covered the minimal case, we may suppose that the
model E is non-minimal. Thus there is a change of variable

x = u2x′ + r, y = u3y′ + sx′ + t,

with u, r, s, t ∈ Oυ and ordυ(u) ≥ 1, such that the resulting model Emin

is minimal. Denote by Ψ′
υ the function corresponding to Ψυ on Emin, and by

∆min the discriminant of Emin, so that ∆ = u12∆min. Then, from Lemma 4
and the definition of Ψυ in (9),

Ψυ(P ) = Ψ′
υ(P ) + log

(
max{1, |u2x′(P ) + r|υ}

max{1, |x′(P )|υ}

)
− 1

6
log

∣∣∣∆/∆min
∣∣∣
υ
.

It is helpful to take a closer look at the middle term of the right-hand side of
the above equation. It is a straightforward exercise to show that

inf
P∈E(Kυ)

log

(
max{1, |u2x′(P ) + r|υ}

max{1, |x′(P )|υ}

)
= log|u2|υ,

with the infimum attained for large x′(P ), and also

sup
P∈E(Kυ)

log

(
max{1, |u2x′(P ) + r|υ}

max{1, |x′(P )|υ}

)
= 0,

with the supremum attained whenever |x′(P )|υ ≤ 1.

Now the infimum of Ψ′
υ, which is 0 by the case already proved, is attained for

points with large |x′(P )|υ (since these have good reduction); and the supremum
of Ψ′

υ, which is αυ log(qυ)/nυ, is attained at some point P with |x′(P )|υ ≤ 1.
We deduce that

inf
P∈E(Kυ)

Ψυ(P ) = log|u2|υ −
1

6
log

∣∣∣∆/∆min
∣∣∣
υ

= −1

6
log

∣∣∣(u−12∆/∆min)
∣∣∣
υ

= 0,

and

sup
P∈E(Kυ)

Ψυ(P ) = αυ
log(qυ)

nυ

− 1

6
log

∣∣∣∆/∆min
∣∣∣
υ

as required. 2
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7 The Real Contributions

To be able to compute the bounds in our Theorem 1 we need a method for
determining δυ and ευ for archimedean places υ. In this section we give such a
method for real places υ. Thus suppose that υ is a real place; in other words,
there is an embedding σ : K ↪→ R such that |a|υ = |σ(a)| for all a ∈ K. To
ease the notation, we will henceforth identify K with its image in R under σ,
and thus view elements of K as real numbers.

Write

f(x) = 4x3 + b2x
2 + 2b4x + b6,

g(x) = x4 − b4x
2 − 2b6x− b8.

and let
F (x) = x4f(1/x), G(x) = x4g(1/x).

Define

D = {x ∈ [−1, 1] : f(x) ≥ 0} ,

D′ = {x ∈ [−1, 1] : F (x) ≥ 0} .

The following lemma is elementary.

Lemma 9 Define constants e, e′ by

e = infx∈D max {|f(x)|, |g(x)|} ,

e′ = infx∈D′ max {|F (x)|, |G(x)|} ,

and constants d, d′ by

d = supx∈D max {|f(x)|, |g(x)|} ,

d′ = supx∈D′ max {|F (x)|, |G(x)|} .

Then ευ = min(e, e′)−1 and δυ = max(d, d′)−1.

Proof: The lemma follows from the definitions of ευ and δυ made in (5) and
the fact that (x, y) ∈ E(R) if and only if f(x) = (2y + a1x + a3)

2. 2
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It is clear that D, D′ are finite unions of closed intervals. Moreover the problem
of determining δυ and ευ has been reduced to the problem of determining
d, d′, e, e′. This is straightforward by the following lemma.

Lemma 10 If P , Q are continuous real functions and I ⊂ R is a closed
interval, then the extrema of the continuous function max {|P (X)|, |Q(X)|}
over the interval I are attained at one of the following points:

(i) an end point of I;
(ii) one of the roots of P + Q, P −Q in the interval I;
(iii) a turning point of one of the functions P , Q.

Proof: We simply note that at any point in I not listed in (i) or (ii), the
function max {|P (X)|, |Q(X)|} is equal to one of ±P , ±Q and its supremum
or infimum must be a local supremum or infimum of P , or Q. 2

It is easy to turn this lemma into an algorithm. To compute e, for example,
let S be the set of zeros of f , g, f ′, g′, and f ± g, together with {±1}. Then
e is the minimum of max {|f(x)|, |g(x)|} over those x ∈ S for which |x| ≤ 1
and f(x) ≥ 0.

8 The Complex Contributions I. Groebner Approach

In this and the next section we consider the determination of δυ and ευ for
complex archimedean places υ. As in the previous section, we regard all ele-
ments of K as lying in C via a suitable embedding.

Let f, g, F, G be as in the previous section, and D = {z ∈ C : |z| ≤ 1} be
the unit disc. If P , Q are polynomials with complex coefficients, we define

α(P, Q) = infz∈D max {|P (z)|, |Q(z)|} ,

β(P, Q) = supz∈D max {|P (z)|, |Q(z)|} .

We note in passing that since D is compact, the infimum and supremum exist
and are attained at some points of D.

The following lemma is elementary.

Lemma 11 With notation as above

ευ = min(α(f, g), α(F, G))−1, δυ = max(β(f, g), β(F, G))−1.
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In this section we give a method for computing α(P, Q), β(P, Q) for polyno-
mials P , Q with complex coefficients that do not vanish simultaneously (it is
noted that this condition is satisfied by both of our pairs f , g and F , G). The
method is based on real multivariate calculus and Groebner bases. In the next
section we give an alternative method for computing the complex contribu-
tions using a fairly simple numerical method based on repeated quadrisection
of the unit disc D (with fast convergence).

So let P , Q ∈ C[z] be polynomials with complex coefficients that do not vanish
simultaneously. Write z = x + iy and P = P1 + iP2, Q = Q1 + iQ2 where Pj,
Qj are real polynomials in x, y.

Lemma 12 The supremum of the function max {|P (z)|, |Q(z)|} on the region
D is attained at a point z0 = x0 + iy0 that satisfies one of the following pairs
of simultaneous equations:

(i) y
∂(P 2

1 + P 2
2 )

∂x
− x

∂(P 2
1 + P 2

2 )

∂y
= 0, x2 + y2 = 1,

(ii) y
∂(Q2

1 + Q2
2)

∂x
− x

∂(Q2
1 + Q2

2)

∂y
= 0, x2 + y2 = 1.

The infimum of the function max {|P (z)|, |Q(z)|} on D is attained at a point
z0 = x0 + iy0 such that one of the following holds:

(a) the point z0 satisfies one of the above pairs of simultaneous equations (i)
or (ii),

(b) the point z0 satisfies the simultaneous equations

P 2
1 + P 2

2 = Q2
1 + Q2

2, x2 + y2 = 1,

(c) the point z0 belongs to the interior x2 + y2 < 1 and satisfies these two
simultaneous equations:

P 2
1 +P 2

2 = Q2
1+Q2

2,
∂(P 2

1 + P 2
2 )

∂x

∂(Q2
1 + Q2

2)

∂y
−∂(P 2

1 + P 2
2 )

∂y

∂(Q2
1 + Q2

2)

∂x
= 0.

Proof: Note that

sup max {|P (z)|, |Q(z)|} = max {sup|P (z)|, sup|Q(z)|} ,

and, by the maximum modulus theorem [1, page 134], the suprema of |P (z)|
and |Q(z)| are attained at the boundary x2 + y2 = 1. Suppose that the
supremum is attained at some point z0 = x0 + iy0. Then z0 must be a lo-
cal supremum for either |P (z)| or |Q(z)| restricted to the unit circle. Let us
suppose that it is a local supremum for |P (z)| restricted to the unit circle.
Then (x0, y0) represents a local maximum for the function P 2

1 + P 2
2 on the
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(analytic) curve x2 + y2 = 1. By the method of Lagrange multipliers, the
two vectors ∇(P 2

1 + P 2
2 ), ∇(x2 + y2 − 1) must be linearly dependent when

evaluated at (x0, y0). It is then easy to verify that (x0, y0) satisfies

y
∂(P 2

1 + P 2
2 )

∂x
− x

∂(P 2
1 + P 2

2 )

∂y
= 0.

Thus (x0, y0) satisfies (i). Similarly, if z0 is a local supremum for |Q(z)| re-
stricted to the unit circle then (x0, y0) satisfies (ii). This proves the first part
of the Lemma.

For the second part, again suppose that the infimum is attained at some point
z0 = x0+iy0. Suppose first that z0 belongs to the boundary. If |P (z0)| = |Q(z0)|
then (b) is satisfied. Suppose that |P (z0)| > |Q(z0)|. Then in some small
neighbourhood of z0, we see that max {|P (z)|, |Q(z)|} = |P (z)| and so z0

must be a local infimum of the function |P (z)| restricted to the unit circle.
By a trivial modification of the above argument we show that z0 = x0 + iy0

satisfies (i). Similarly if |P (z0)|< |Q(z0)| then (ii) is satisfied. Thus either (a)
or (b) is satisfied if z0 belongs to the boundary.

We are now left to consider the case where z0 belongs to the interior of
D. We want to first show that |P (z0)| = |Q(z0)|. Suppose not; without
loss of generality we may suppose that |P (z0)| > |Q(z0)|. Then for some
small disc around z0 and contained in D we have |P (z)| > |Q(z)| implying
max {|P (z)|, |Q(z)|} = |P (z)|. Thus the holomorphic function P attains a non-
zero infimum that is in the interior of this small disc. Applying the maximum
modulus theorem to P−1 immediately gives a contradiction.

Hence |P (z0)| = |Q(z0)|. Consider the (analytic) curve in R2 defined by the
equation P 2

1 +P 2
2 = Q2

1 +Q2
2. Then we are saying that (x0, y0) is on this curve

and moreover is a point where the infimum of the function

max
{
P 2

1 + P 2
2 , Q2

1 + Q2
2

}
= P 2

1 + P 2
2

is attained. The proof can now be completed using Lagrange multipliers as
before. 2

Thus from the lemma, to compute α(P, Q), β(P, Q), we need to solve a few
pairs of polynomial equations in two variables. In theory these can be solved
using elimination theory. There are two alternatives here:

(1) The first is to recall that our coefficients are contained in a number field
and do the elimination using Groebner bases algorithms over this field,
to obtain the points in some extension field, and then specialize using the
complex embeddings. We have found this (exact arithmetic) approach
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extremely slow in practice. Note that while P, Q ∈ K[z], their real and
imaginary parts Pj, Qj are in general defined over a larger field K(i).

(2) The second approach is to use numerical (that is floating-point) Groebner
basis packages available in some computer algebra systems. To the best
of our knowledge, the theory behind these floating-point packages is not
documented and they may not be entirely rigorous. Thus there is perhaps
a risk of missing a solution.

Fortunately, there is now a rigorous numerical Groebner basis algorithm due
to Aleksey Kondratyev [6] which could be used for our purpose.

9 The Complex Contributions II. The Repeated Quadrisection Ap-
proach

Recall that our objective is to compute log(ευ) and log(δυ) to a certain desired
accuracy. Suppose µ > 0 is given. We give an algorithm to compute, for
any pair of polynomials P, Q with complex coefficients that do not vanish
simultaneously, constants α∗(P, Q), β∗(P, Q) such that

α∗(P, Q)e−µ ≤ α(P, Q) ≤ α∗(P, Q). (13)

and
β∗(P, Q) ≤ β(P, Q) ≤ β∗(P, Q)eµ. (14)

Thus if f, g, F, G are as before then

− log min(α∗(f, g), α∗(F, G)) ≤ log ευ ≤ − log min(α∗(f, g), α∗(F, G)) + µ,

and

− log max(β∗(f, g), β∗(F, G))− µ ≤ log δυ ≤ − log max(β∗(f, g), β∗(F, G));

meaning that we can compute the contribution at complex places to arbitrary
accuracy µ.

Now fix complex polynomials P , Q that do not vanish simultaneously. To ease
notation, let

h(z) = max {|P (z)|, |Q(z)|} .

Thus
α(P, Q) = inf

z∈D
h(z), β(P, Q) = sup

z∈D
h(z). (15)

Given η > 0 we define

E(z, η) = max


d1∑

n=1

ηn

n!
|P (n)(z)|,

d2∑
n=1

ηn

n!
|Q(n)(z)|

 ,
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where d1, d2 are the degrees of P , Q respectively.

We naturally identify R2 and C.

Lemma 13 Let S be the square S = [a, a + r]× [b, b + r]. Then

h(u)− E(u, η) ≤ h(z) ≤ h(u) + E(u, η),

for all z ∈ S, where either

• u is the centre of S and η = r/
√

2, or
• u is a corner of S and η = r

√
2.

Proof: This follows from Taylor’s Theorem applied to the polynomials P ,
Q. 2

Now we give a method of computing α∗(P, Q), β∗(P, Q). Let H be the set

H =
{
h
(

m + ni

10

)
: m, n ∈ Z, m2 + n2 ≤ 100

}
.

We start with S = [−1, 1]× [−1, 1] and the initial values

α∗ = min H, β∗ = max H.

This gives (fairly crude) upper and lower bounds for α(P, Q) and β(P, Q); we
repeatedly refine these until we obtain values α∗(P, Q) and β∗(P, Q) satisfy-
ing (13) and (14) respectively. To do this for α∗ we use the following recursive
procedure, starting with S and α∗ as above. When the procedure returns (pos-
sibly after many recursive function calls), we will have a value of α∗ that we
can take as α∗(P, Q).

RefineAlphaBound(P, Q, µ, S, α∗)

INPUT: P, Q ∈ C[z], µ > 0, square S = [a, a + r]× [b, b + r] ⊂ C, α∗

OUTPUT: α∗ (possibly modified)

1. BEGIN

2. IF S ∩D = ∅ THEN RETURN(α∗); ENDIF;

3. IF a + r/2 + (b + r/2)i ∈ D THEN u = a + r/2 + (b + r/2)i AND η = r/
√

2;

ELSE u is any corner of S in D AND η = r
√

2; ENDIF.

4. IF h(u)− E(u, η) > α∗e−µ THEN RETURN(α∗); ENDIF;

5. LET α∗ = min(α∗, h(u));
6. LET S1 = [a, a + r/2]× [b, b + r/2], S2 = [a, a + r/2]× [b + r/2, b + r],

S3 = [a + r/2, a + r]× [b, b + r/2], S4 = [a + r/2, a + r]× [b + r/2, b + r];
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7. LET α∗ = RefineAlphaBound(P, Q, µ, S1, α
∗);

8. LET α∗ = RefineAlphaBound(P, Q, µ, S2, α
∗);

9. LET α∗ = RefineAlphaBound(P, Q, µ, S3, α
∗);

10. LET α∗ = RefineAlphaBound(P, Q, µ, S4, α
∗);

11. RETURN(α∗);
12. END

The procedure for calculating β∗(P, Q) is slightly different since by Lemma 12
the supremum of h(z) is attained on the boundary of D. Thus let ∂D be the
boundary of D (that is the circle x2 + y2 = 1). To obtain β∗(P, Q) apply the
following procedure to the value of β∗ above with S = [−1, 1]× [−1, 1] again.

RefineBetaBound(P, Q, µ, S, β∗)

INPUT: P, Q ∈ C[z], µ > 0, square S = [a, a + r]× [b, b + r] ⊂ C, β∗

OUTPUT: β∗ (possibly modified)

1. BEGIN

2. IF S ∩ ∂D = ∅ THEN RETURN(β∗); ENDIF;

3. IF a + r/2 + (b + r/2)i ∈ D THEN u = a + r/2 + (b + r/2)i AND η = r/
√

2;

ELSE u is any corner of S in D AND η = r
√

2; ENDIF.

4. IF h(u)− E(u, η) < β∗eµ THEN RETURN(β∗); ENDIF;

5. LET β∗ = max(β∗, h(u));
6. LET S1 = [a, a + r/2]× [b, b + r/2], S2 = [a, a + r/2]× [b + r/2, b + r],

S3 = [a + r/2, a + r]× [b, b + r/2], S4 = [a + r/2, a + r]× [b + r/2, b + r];
7. LET β∗ = RefineBetaBound(P, Q, µ, S1, β

∗);
8. LET β∗ = RefineBetaBound(P, Q, µ, S2, β

∗);
9. LET β∗ = RefineBetaBound(P, Q, µ, S3, β

∗);
10. LET β∗ = RefineBetaBound(P, Q, µ, S4, β

∗);
11. RETURN(β∗);
12. END

Remark. For Step 2 in the procedure RefineAlphaBound we need a method
of deciding if S ∩ D = ∅. Of course our initial square S is [−1, 1] × [−1, 1]
for which we know that the intersection is not empty. All other squares S will
be contained in one of the four quadrants, and then all we need to check is
whether the corner closest to the origin is in D.

For Step 2 in the procedure RefineBetaBound, if S is a square contained in
the four quadrants then S ∩ ∂D = ∅ if and only if all its corners are outside
D, or all its corners are strictly inside D.
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The reader might be surprised to find that we are using a two-dimensional
method for estimating the infimum β, when we have shown that the infimum
is attained on the boundary. It is true that the boundary x2 + y2 = 1 can
be parametrized by trigonometric (or algebraic) functions of one parameter,
and so it should be possible to find the infimum using repeated bisection of an
interval rather than repeated quadrisection of the unit disc. But it is then much
harder to obtain an error term E that is simultaneously rigorous and small.
The reader will note that our error term E(z, η) (which follows from Taylor’s
Theorem) is the maximum of finite sums; this is because all sufficiently high
derivatives of the polynomials P , Q vanish. The same would not be true for
trigonometric or rational functions.

Proposition 14 The above algorithms terminate giving values α∗(P, Q) β∗(P, Q)
that satisfy the inequalities (13) and (14) respectively.

Proof: We prove the proposition for α∗(P, Q); the proof for β∗(P, Q) is
similar. Recall that

α(P, Q) = inf
z∈D

h(z).

We note that the initial value of α∗ is obtained by taking the minimum of
values of h at some points in D, and throughout the algorithm α∗ is only
changed in Step 5, where we replace α∗ with min(α∗, h(u)) with u being some
point in D. Clearly the resulting value of α∗(P, Q) satisfies

α∗(P, Q) ≥ inf
z∈D

h(z) = α(P, Q).

Moreover, when we leave any square S without quadrisecting it, either it is
outside D completely (and there is nothing to prove), or

h(u)− E(u, η) > α∗e−µ.

But for all z ∈ S ∩D we know that h(z) ≥ h(u)−E(u, η). Moreover, the final
value α∗(P, Q) satisfies α∗(P, Q) ≤ α∗. Thus

h(z) > α∗(P, Q)e−µ

for all z belonging to S ∩ D. If the algorithm terminates then we will have
covered D with squares S so that this inequality is satisfied for all points on
the overlaps S ∩D; thus this inequality is satisfied for all z ∈ D.

All that remains to prove now is that the algorithm terminates. Suppose oth-
erwise; then there is a convergent sequence {un}∞n=1 ⊂ D, and a sequence of
real numbers {ηn} converging to zero, such that

h(un)− E(un, ηn) ≤ α∗ne
−µ,
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where

α∗n = min(h(ui) : i = 1, . . . , n).

From the formula for E we see that lim E(un, ηn) = 0. Thus

lim α∗n ≤ lim h(un) ≤ lim α∗ne
−µ.

Since µ > 0 we deduce that lim α∗n = lim h(un) = 0. This is impossible since
then P , Q will have a common zero. 2

10 Silverman’s Archimedean Contributions

In [13, page 737] Silverman gives an estimate for the archimedean contributions
that is proved using the complex parameterization of the curve. We give this
here as it is occasionally better than our own archimedean estimates, and is
indeed simpler to calculate for complex places.

Theorem 15 (Silverman) Let E/C be an elliptic curve given by a Weier-
strass equation (2), and let λ : E(C)\ {O} → R be the complex local height
function. Then for all P ∈ E(C),

− 1

6
log+|∆| − 1

6
log+|j| − log+| b2

12
| − log 2∗ − 2.14

≤ log max {1, x(P )} − λ(P )

≤ 1

6
log+|∆−1|+ 1

4
log+|j|+ log+| b2

12
|+ log 2∗ + 1.946,

where log+ x = log max {1, x} and

2∗ =

 2 if b2 6= 0,

1 if b2 = 0.

11 Examples and Numerical Comparisons

In this section we give some examples based on our implementations of the
height bound formula in Theorem 1. In the case K = Q we have implemen-
tations in PARI/GP (see [11]), MAGMA (see [8]) and C++, the latter being
part of the first-named author’s package of elliptic curve programs includ-
ing the 2-descent program mwrank. For general number fields, the algorithms
were implemented in MAGMA by the second-named author, and by the third-
named author in Mathematica (see [9]), using the floating-point Groebner
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basis method which is implemented in that package for computation of the
complex contributions.

Example 1. Consider the curve

E : y2 = x3 + (1 + 5i)x + (3 + i)

over the field K = Q(i). Using our Mathematica program we get the bound

−1.37727 ≤ Ψ∞ ≤ 0.114857

for the complex contribution. In comparison, Silverman’s theorem gives

−4.89012 ≤ Ψ∞ ≤ 3.96119.

We now complete the computation of the bound for h−ĥ using our Theorem 1.
The discriminant of the curve is

1280 + 4448i = −i(1 + i)10(40 + 139i)

where the last factor is prime. Since the discriminant is not divisible by any
12–th powers we see that the curve is globally minimal. The Tamagawa indices
at the two bad primes are both 1. From Theorem 1 it follows that

−1.37727 ≤ h(P )− ĥ(P ) ≤ 0.114857

for all P ∈ E(K). Silverman’s bounds for the same curve are

−4.89012 ≤ h(P )− ĥ(P ) ≤ 5.75838.

We also programmed our repeated quadrisection method for computing the
complex contributions in PARI/GP. Taking µ = 0.01 we find that

0.34456246612 . . . . . . ≤ log ευ ≤ 0.34556246612 . . .

Thus we know log(ευ) to three decimal places (the computation took 1.03
seconds). Thus the complex contribution

nυ

3[K : Q]
log ευ ≤ 0.1151.

Example 2. This example comes from the paper [5] of Halberstadt and Kraus.
Let K = Q(θ) be the degree 5 number field generated by a root θ of the
polynomial x5 +5x3 +5x−1. Let E be the curve defined over K with equation
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y2 = x3 + (−30θ3 − 100θ + 30)x2 + (500θ4 − 600θ3 + 500θ2 − 1700θ + 300)x

+ (4000θ4 − 28000θ3 − 57000θ + 11000).

K has one real embedding and two (pairs of) complex embeddings. The associ-
ated values of ευ are (approximately) 2.21, 25.11 and 20.52 respectively, giving
a total contribution of 0.8856 for the archimedean contribution to the upper
bound. Similarly the values of δυ are 0.01808, 0.0000000358 and 0.000000167,
giving a lower bound of −4.634.

There are three primes of bad reduction:

• one of norm 2, Kodaira type II, discriminant valuation 16 for the given
model and 4 for the minimal model; this contributes 2

5
log(2) to the upper

bound;
• one of norm 16, Kodaira type II, discriminant valuation 16 for the given

model and 4 for the minimal model; this contributes 8
5
log(2) to the upper

bound;
• one of norm 5, Kodaira type III*, discriminant valuation 45 for the given

model and 9 for the minimal model; this contributes 3
2
log(5) to the upper

bound;

giving a total contribution from the non-archimedean valuations of 3.800.

Putting these together we find that the height bounds for this curve are

−4.634 ≤ h(P )− ĥ(P ) ≤ 4.686.

This computation took about 6 minutes, most of the time being spent com-
puting the complex contributions to the bounds.

For the same curve, the Silverman bounds are

−11.01053 ≤ h(P )− ĥ(P ) ≤ 11.42791.

Example 3.

As a comprehensive test of our bounds, we considered the 33355 isomorphism
classes of elliptic curves defined over Q with conductors N in the range 20000 ≤
N ≤ 25000 (see [3]). For each curve we computed the height bounds given
by our Theorem 1, and the height bounds given by Silverman’s paper [13].
Our average lower and upper bounds for the difference h− ĥ are −3.483 and
5.218, whereas the respective averages for Silverman bounds are −9.011 and
11.251. Indeed we found that both our upper and lower bounds are better
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than Silverman’s bounds for all curves in the given range except the following
two:

• For the curve 20449G3 our bounds are −12.594 ≤ h− ĥ ≤ 17.251 whereas
Silverman’s bounds are −14.214 ≤ h− ĥ ≤ 17.205.

• For the curve 23622G1 our bounds are −20.056 ≤ h− ĥ ≤ 23.525 whereas
Silverman’s bounds are −19.811 ≤ h− ĥ ≤ 28.082.

Since our non-archimedean contributions are best possible (in the sense ex-
plained in the introduction), it is sensible to compare our archimedean con-
tributions with those given by Silverman’s Theorem 15. For the curves in the
above range our average archimedean contributions to the lower and upper
bounds are respectively −3.483 and 1.029, whereas the corresponding average
contributions to Silverman’s bounds are −9.011 and 5.048. Our archimedean
contributions are better than Silverman’s for all except 28 curves in the above
range.

Example 4.

It is reasonable to ask how our bounds compare with actual values of the differ-
ence h−ĥ on rational points. We recall that we have decomposed the difference
h− ĥ as a weighted sum of continuous bounded functions Ψυ, with υ running
over the set of places of MK . For non-archimedean υ the value of Ψυ depends
only on the image of the point in the component group E(Kυ)/E0(Kυ). Thus
one does not expect our bounds to be sharp unless the map

E(K) →
∏

υ∈M0
K

E(Kυ)/E0(Kυ)

is surjective. One the other hand, if the map is surjective, then the total non-
archimedean contribution is attained at some rational point, and the only
discrepancy that can arise comes from the archimedean contributions which
in general are rather small.

Consider for example the elliptic curve E/Q given by

E : y2 = x3 − 459x2 − 3478x + 169057.

Here all the component groups are trivial, and so we are trivially in the case
where the above map is surjective. Our bounds give

−6.5319247238 . . . ≤ h(P )− ĥ(P ) ≤ 0.4620981203 . . .

The elliptic curve E has rank 4; its Mordell-Weil group has basis

P1 = [16,−1], P2 = [−4,−419], P3 = [−22,−113], P4 = [566,−5699].
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We computed that values of h(P )− ĥ(P ) on points P =
∑

miPi with |mi| ≤ 3;
the maximum and minimum values for h(P ) − ĥ(P ) for these points are as
follows:

P = 2P1, h(P )− ĥ(P ) = 0.4620980788 . . . ,

P = P1 − 3P2 + P3 + 3P4, h(P )− ĥ(P ) = −4.9001533427 . . . .

We leave it to the reader to draw their own conclusions.
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