
Computing in component groups of elliptic curves

John Cremona
University of Warwick, UK

ANTS VIII: Banff, 9 May 2008



1

Plan of the talk

• What are component groups?

• What does it mean to “compute in a component group”?

• Easy cases

• The split multiplicative case

• Example and application



2

Component groups 1

Let K be a p-adic local field and E an elliptic curve defined over K.

The component group of E is the group

Φ(E/K) = E(K)/E0(K),

where E0(K) denotes the subgroup of points of good reduction. This is:

• finite;

• cyclic if E has multiplicative reduction;

• of order at most 4 if E has additive reduction.

Aim: to compute an explicit isomorphism E(K)/E0(K) ∼= Z/mZ or
E(K)/E0(K) ∼= Z/2Z× Z/2Z.



3

Component groups 2

• The order of Φ(E/K) is the Tamagawa number, often denoted c.

• If E has good reduction then Φ(E/K) is trivial.

In applications we may have E defined over a number field K, and be interested in the
component groups Φ(E/Kv) for all completions Kv.

For archimedean v, E0(Kv) is the connected component of the identity; so

• If v is complex: Φ(E/C) = 0;

• If v is real: Φ(E/R) = 0 if ∆v < 0, and has order 2 if ∆v > 0;



4

Component groups and reduction types 1

For p-adic local fields the component groups are as follows:

Reduction type c Φ
Im (split, all m) m Cm
Im (non-split, even m) 2 C2

Im (non-split, odd m) 1 C1

II, II∗ 1 C1

III, III∗ 2 C2

IV, IV∗ 1, 3 C1, C3

I∗0 1, 2, 4 C1, C2, C2 × C2

I∗m (even m > 0) 2, 4 C2, C2 × C2

I∗m (odd m) 2, 4 C2, C4



5

Component groups and reduction types 2

From the table we see that identifying the component group as an abstract abelian
group is easy: Tate’s algorithm gives both the reduction type (Kodaira symbol) and the
Tamagawa number c to distinguish between split and non-split cases.

Recall that our goal is to make the following map (isomorphism) explicit:

κ : E(K)/E0(K)→ G,

where G ∼= Φ(E/K) and either G = Z/mZ or G = Z/2Z× Z/2Z.

First we deal with some easy cases.



6

The easy cases

When G = Z/mZ for small m, say m ≤ 4, or G = Z/2Z× Z/2Z it suffices to be able
to determine:

• for P ∈ E(K), is κ(P ) = 0?

• for P,Q ∈ E(K), is κ(P ) = κ(Q)?

which is simply a matter of checking whether P or P −Q has good reduction.

We also need to do some book-keeping — to distinguish the two non-trivial elements
of Z/3Z, for example.

When G = Z/mZ for large m this would be tedious (at best), so we seek a more
elegant solution.



7

The split multiplicative case

From now on we will assume that E has split multiplicative reduction of type Im, so
that κ : E(K)/E0(K) ∼= Z/mZ. Assume that E has minimal Weierstrass equation

E : F (X,Y ) = Y 2 + a1XY + a3Y − (X3 + a2X
2 + a4X + a6) = 0

with ai ∈ OK; then v(∆) = m > 0 and v(c4) = 0.

Theorem (Silverman) Let P = (x, y) ∈ E(K) \ E0(K). Then

κ(P ) = ±min{v(2y + a1x+ a3),m/2} (mod m) ∈ Z/mZ.

This result suffices to compute the local height of P (which only depends on the image
of P in Φ(E/K)), since it is the same for ±P . But for our purposes, we need to define
the sign ±1 consistently. Since n 7→ −n is an automorphim of Z/mZ, this question
only makes sense when we wish to compare the values of κ(P ) for several points P .



8

Split multiplicative case (continued)

Silverman’s formula min{v(2y + a1x+ a3),m/2} (mod m) gives the value of κ((x, y))
up to sign. We need to determine a consistent choice of sign.

Set
x0 = (18b6 − b2b4)/c4; y0 = −(a1x0 + a3)/2.

Then F (x0, y0) ≡ FX(x0, y0) ≡ FY (x0, y0) ≡ 0 (mod πm).

Let α1, α2 be the roots of T 2 + a1T − (a2 + 3x0); these lie in OK and are distinct.

Now the linear form 2y + a1x+ a3 may be written as a sum of two terms:

2y + a1x+ a3 = [(y − y0)− α1(x− x0)] + [(y − y0)− α2(x− x0)].

We can now state our result.



9

Split multiplicative case: the formula

Theorem Let P = (x, y) ∈ E(K) \ E0(K). Set ei = v((y − y0)− αi(x− x0)) for
i = 1, 2. Then an isomorphism κ : E(K)/E0(K)→ Z/mZ is given by setting

κ(P ) =


+e2 if e2 < e1;

−e1 if e1 < e2;

m/2 if e1 = e2

for P ∈ E(K) \ E0(K).

Sketch proof: We first prove the result when E is a “Tate curve”, and then work out
the explicit transformation between E and a Tate curve. The first step in transforming
the original Weierstrass equation to a Tate curve equation consists of making the
transformation X = X ′ + x0 and Y = Y ′ + y0.



10

Split multiplicative case: proof

A Tate curve Eq has equation

Y 2 +XY = X3 + a4X + a6,

where a4 = a4(q) and a6 = a6(q) are given by explicit power series in q. We have
v(∆) = v(a6) = m, where m = v(q) > 0, and v(a4) ≥ m. Also, v(c4) = v(c6) = 0.

The Tate curve has a parametrization

ϕ : K∗/qZO∗K ∼= Eq(K)/E0
q(K).

The map κ is determined by κ(ϕ(u)) = v(u) (mod m) for u ∈ K∗. The x- and
y-coordinates of ϕ(u) are given by explicit power series, using which we can relate v(u)
to the valuations of x, y and x+ y.



11

Example

Let E = 8025j1, defined over Q, with Weierstrass equation

Y 2 + Y = X3 +X2 + 2242417292X + 12640098293119.

E(Q) = 〈P 〉 where P = (335021/4, 224570633/8) has infinite order.

Over K = Q3, E has split multiplicative reduction of type I31.

We compute x0 = 556930682563112 and y0 = 308836698141973 modulo 331, and
α1 ≡ −α2 ≡ 256142918648120. For the point P , we find

(y − y0)− α1(x− x0) ≡ 446797736663247 (mod 331),

(y − y0)− α2(x− x0) ≡ 325294064834346 (mod 331),

with valuations e1 = 12 and e2 = 6, so κ(P ) = +6 (mod 31).



12

Example (continued)

As a test, we computed κ(iP ) independently for 1 ≤ i ≤ 30, checking that κ(iP ) ≡ 6i
(mod 31). The results are given in the following table:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e1 12 19 13 7 1 10 20 14 8 2 8 20 15 9 3
e2 6 12 18 14 2 5 11 17 16 4 4 10 16 18 6

κ(iP ) 6 12 −13 −7 −1 5 11 −14 −8 −2 4 10 −15 −9 −3

i 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

e1 6 12 18 14 2 5 11 17 16 4 4 10 16 18 6
e2 12 19 13 7 1 10 20 14 8 2 8 20 15 9 3

κ(iP ) −6 −12 13 7 1 −5 −11 14 8 2 −4 −10 15 9 3



13

Application

• Given E, an elliptic curve defined over Q

• Given a subgroup B of E(Q) of full rank, generated by r independent points Pi

• Problem: “saturate” B: find a Z-basis for the full group E(Q)

• Method: determine the index in B of Begr = B ∩
⋂
p≤∞E

0(Qp).

Working in Begr instead of B allows us to use better height bounds to carry out the
saturation.

The component group maps κ for each prime p may be used for this, and are
accordingly implemented in our program mwrank.


