Computing in component groups of elliptic curves

John Cremona
University of Warwick, UK
ANTS VIII: Banff, 9 May 2008

Plan of the talk

- What are component groups?
- What does it mean to "compute in a component group"?
- Easy cases
- The split multiplicative case
- Example and application

Component groups 1

Let K be a p-adic local field and E an elliptic curve defined over K. The component group of E is the group

$$
\Phi(E / K)=E(K) / E^{0}(K)
$$

where $E^{0}(K)$ denotes the subgroup of points of good reduction. This is:

- finite;
- cyclic if E has multiplicative reduction;
- of order at most 4 if E has additive reduction.

Aim: to compute an explicit isomorphism $E(K) / E^{0}(K) \cong \mathbb{Z} / m \mathbb{Z}$ or $E(K) / E^{0}(K) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Component groups 2

- The order of $\Phi(E / K)$ is the Tamagawa number, often denoted c.
- If E has good reduction then $\Phi(E / K)$ is trivial.

In applications we may have E defined over a number field K, and be interested in the component groups $\Phi\left(E / K_{v}\right)$ for all completions K_{v}.

For archimedean $v, E^{0}\left(K_{v}\right)$ is the connected component of the identity; so

- If v is complex: $\Phi(E / \mathbb{C})=0$;
- If v is real: $\Phi(E / \mathbb{R})=0$ if $\Delta_{v}<0$, and has order 2 if $\Delta_{v}>0$;

Component groups and reduction types 1

For p-adic local fields the component groups are as follows:

Reduction type	c	Φ
$\mathrm{I}_{m}($ split, all $m)$	m	C_{m}
I_{m} (non-split, even $\left.m\right)$	2	C_{2}
$\mathrm{I}_{m}($ non-split, odd $m)$	1	C_{1}
$\mathrm{II}, \mathrm{II}^{*}$	C_{1}	
$\mathrm{III}, \mathrm{II} \mathrm{I}^{*}$	C_{2}	
$\mathrm{IV}, \mathrm{IV}^{*}$	2	C_{2}
I_{0}^{*}	1,3	C_{1}, C_{3}
$\mathrm{I}_{m}^{*}($ even $m>0)$	$1,2,4$	$C_{1}, C_{2}, C_{2} \times C_{2}$
$\mathrm{I}_{m}^{*}($ odd $m)$	2,4	$C_{2}, C_{2} \times C_{2}$

Component groups and reduction types 2

From the table we see that identifying the component group as an abstract abelian group is easy: Tate's algorithm gives both the reduction type (Kodaira symbol) and the Tamagawa number c to distinguish between split and non-split cases.

Recall that our goal is to make the following map (isomorphism) explicit:

$$
\kappa: E(K) / E^{0}(K) \rightarrow G
$$

where $G \cong \Phi(E / K)$ and either $G=\mathbb{Z} / m \mathbb{Z}$ or $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
First we deal with some easy cases.

The easy cases

When $G=\mathbb{Z} / m \mathbb{Z}$ for small m, say $m \leq 4$, or $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ it suffices to be able to determine:

- for $P \in E(K)$, is $\kappa(P)=0$?
- for $P, Q \in E(K)$, is $\kappa(P)=\kappa(Q)$?
which is simply a matter of checking whether P or $P-Q$ has good reduction. We also need to do some book-keeping - to distinguish the two non-trivial elements of $\mathbb{Z} / 3 \mathbb{Z}$, for example.

When $G=\mathbb{Z} / m \mathbb{Z}$ for large m this would be tedious (at best), so we seek a more elegant solution.

The split multiplicative case

From now on we will assume that E has split multiplicative reduction of type I_{m}, so that $\kappa: E(K) / E^{0}(K) \cong \mathbb{Z} / m \mathbb{Z}$. Assume that E has minimal Weierstrass equation

$$
E: F(X, Y)=Y^{2}+a_{1} X Y+a_{3} Y-\left(X^{3}+a_{2} X^{2}+a_{4} X+a_{6}\right)=0
$$

with $a_{i} \in \mathcal{O}_{K}$; then $v(\Delta)=m>0$ and $v\left(c_{4}\right)=0$.
Theorem (Silverman) Let $P=(x, y) \in E(K) \backslash E^{0}(K)$. Then

$$
\kappa(P)= \pm \min \left\{v\left(2 y+a_{1} x+a_{3}\right), m / 2\right\} \quad(\bmod m) \in \mathbb{Z} / m \mathbb{Z}
$$

This result suffices to compute the local height of P (which only depends on the image of P in $\Phi(E / K)$), since it is the same for $\pm P$. But for our purposes, we need to define the sign ± 1 consistently. Since $n \mapsto-n$ is an automorphim of $\mathbb{Z} / m \mathbb{Z}$, this question only makes sense when we wish to compare the values of $\kappa(P)$ for several points P.

Split multiplicative case (continued)

Silverman's formula $\min \left\{v\left(2 y+a_{1} x+a_{3}\right), m / 2\right\}(\bmod m)$ gives the value of $\kappa((x, y))$ up to sign. We need to determine a consistent choice of sign.
Set

$$
x_{0}=\left(18 b_{6}-b_{2} b_{4}\right) / c_{4} ; \quad y_{0}=-\left(a_{1} x_{0}+a_{3}\right) / 2
$$

Then $F\left(x_{0}, y_{0}\right) \equiv F_{X}\left(x_{0}, y_{0}\right) \equiv F_{Y}\left(x_{0}, y_{0}\right) \equiv 0\left(\bmod \pi^{m}\right)$.
Let α_{1}, α_{2} be the roots of $T^{2}+a_{1} T-\left(a_{2}+3 x_{0}\right)$; these lie in \mathcal{O}_{K} and are distinct.
Now the linear form $2 y+a_{1} x+a_{3}$ may be written as a sum of two terms:

$$
2 y+a_{1} x+a_{3}=\left[\left(y-y_{0}\right)-\alpha_{1}\left(x-x_{0}\right)\right]+\left[\left(y-y_{0}\right)-\alpha_{2}\left(x-x_{0}\right)\right] .
$$

We can now state our result.

Split multiplicative case: the formula

Theorem Let $P=(x, y) \in E(K) \backslash E^{0}(K)$. Set $e_{i}=v\left(\left(y-y_{0}\right)-\alpha_{i}\left(x-x_{0}\right)\right)$ for $i=1,2$. Then an isomorphism $\kappa: E(K) / E^{0}(K) \rightarrow \mathbb{Z} / m \mathbb{Z}$ is given by setting

$$
\kappa(P)= \begin{cases}+e_{2} & \text { if } e_{2}<e_{1} \\ -e_{1} & \text { if } e_{1}<e_{2} \\ m / 2 & \text { if } e_{1}=e_{2}\end{cases}
$$

for $P \in E(K) \backslash E^{0}(K)$.

Sketch proof: We first prove the result when E is a "Tate curve", and then work out the explicit transformation between E and a Tate curve. The first step in transforming the original Weierstrass equation to a Tate curve equation consists of making the transformation $X=X^{\prime}+x_{0}$ and $Y=Y^{\prime}+y_{0}$.

Split multiplicative case: proof

A Tate curve E_{q} has equation

$$
Y^{2}+X Y=X^{3}+a_{4} X+a_{6},
$$

where $a_{4}=a_{4}(q)$ and $a_{6}=a_{6}(q)$ are given by explicit power series in q. We have $v(\Delta)=v\left(a_{6}\right)=m$, where $m=v(q)>0$, and $v\left(a_{4}\right) \geq m$. Also, $v\left(c_{4}\right)=v\left(c_{6}\right)=0$. The Tate curve has a parametrization

$$
\varphi: K^{*} / q^{\mathbb{Z}} \mathcal{O}_{K}^{*} \cong E_{q}(K) / E_{q}^{0}(K) .
$$

The map κ is determined by $\kappa(\varphi(u))=v(u)(\bmod m)$ for $u \in K^{*}$. The x - and y-coordinates of $\varphi(u)$ are given by explicit power series, using which we can relate $v(u)$ to the valuations of x, y and $x+y$.

Example

Let $E=8025 j 1$, defined over \mathbb{Q}, with Weierstrass equation

$$
Y^{2}+Y=X^{3}+X^{2}+2242417292 X+12640098293119
$$

$E(\mathbb{Q})=\langle P\rangle$ where $P=(335021 / 4,224570633 / 8)$ has infinite order.
Over $K=\mathbb{Q}_{3}, E$ has split multiplicative reduction of type I_{31}.
We compute $x_{0}=556930682563112$ and $y_{0}=308836698141973$ modulo 3^{31}, and $\alpha_{1} \equiv-\alpha_{2} \equiv 256142918648120$. For the point P, we find

$$
\begin{aligned}
&\left(y-y_{0}\right)-\alpha_{1}\left(x-x_{0}\right) \equiv 446797736663247 \\
&\left(y-y_{0}\right)-\alpha_{2}\left(x-x_{0}\right) \equiv 325294064834346 \quad\left(\bmod 3^{31}\right)
\end{aligned}
$$

with valuations $e_{1}=12$ and $e_{2}=6$, so $\kappa(P)=+6(\bmod 31)$.

Example (continued)

As a test, we computed $\kappa(i P)$ independently for $1 \leq i \leq 30$, checking that $\kappa(i P) \equiv 6 i$ $(\bmod 31)$. The results are given in the following table:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14
e_{1}	12	19	13	7	1	10	20	14	8	2	8	20	15	9
e_{2}	6	12	18	14	2	5	11	17	16	4	4	10	16	18
$\kappa(i P)$	6	12	-13	-7	-1	5	11	-14	-8	-2	4	10	-15	-9
i	30	29	28	27	26	25	24	23	22	21	20	19	18	17
e_{1}	6	12	18	14	2	5	11	17	16	4	4	10	16	18
e_{2}	12	19	13	7	1	10	20	14	8	2	8	20	15	9
$\kappa(i P)$	-6	-12	13	7	1	-5	-11	14	8	2	-4	-10	15	9

Application

- Given E, an elliptic curve defined over \mathbb{Q}
- Given a subgroup B of $E(\mathbb{Q})$ of full rank, generated by r independent points P_{i}
- Problem: "saturate" B : find a \mathbb{Z}-basis for the full group $E(\mathbb{Q})$
- Method: determine the index in B of $B_{\text {egr }}=B \cap \bigcap_{p \leq \infty} E^{0}\left(\mathbb{Q}_{p}\right)$.

Working in $B_{\text {egr }}$ instead of B allows us to use better height bounds to carry out the saturation.
The component group maps κ for each prime p may be used for this, and are accordingly implemented in our program mwrank.

