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0. Introduction: What is Number Theory?

Number Theory is (of course) primarily the Theory of Numbers: ordinary whole numbers (in-
tegers). It is, arguably, the oldest branch of mathematics. Integer solutions to Pythagoras’s
equation

a2 + b2 = c2

have been found, systematically listed with all the arithmetic carried out in base 60, on ancient
Babylonian clay tablets. There are several different flavours of Number Theory, distinguished more
by the methods used than by the problems whose solutions are sought. These are

• Elementary Number Theory: using elementary methods only;
• Analytic Number Theory: using analysis (real and complex), notably to study the distribution

of primes;
• Algebraic Number Theory: using more advanced algebra, and also studying algebraic numbers

such as 1 + 3
√
2 + 17
√
17;

• Geometric Number Theory: using geometric, algebraic and analytic methods; also known as
arithmetic algebraic geometry.

Andrew Wiles used a vast array of new techniques and previously known results in arithmetic
algebraic geometry to solve Fermat’s Last Theorem, whose statement is entirely elementary (see
below). This is typical of progress in Number Theory, where there have been many cases of
entirely new mathematical theories being created to solve specific, and often quite elementary-
seeming problems.
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This module is mostly elementary with some analytic and algebraic parts. The algebraic approach
is pursued further in the module MA3A6 (Algebraic Number Theory). The geometric approach is
pursued further in the module MA426 (Elliptic Curves).

Number Theory starts out with simple questions about integers: simple to state, if not to answer.
Here are three types of question:

• Diophantine Equations are equations to which one seeks integers solutions (or sometimes
rational solutions). For example,

(1) x2 + y2 = z2 has infinitely many integral solutions (so-called Pythagorean triples); later,
we will see how to find them all.

(2) xn+yn = zn has no nonzero integer solutions when n ≥ 3. This is Fermat’s Last Theorem,
which we will certainly not be proving in these lectures, though we will prove the case n = 4.

(3) y2 = x3 + 17 has exactly 8 integer solutions (x, y), x = −2,−1, 2, 4, 8, 43, 52 and one
further value which you can find for yourselves. Proving that there are no more solutions
is harder; using Sage you can solve this as follows:

sa ge : E l l i p t i c C u r v e ( [ 0 , 1 7 ] ) . i n t e g r a l p o i n t s ( )

(4) Every positive integer n can be written as a sum of four squares (including 0), for example

47 = 1 + 1 + 9 + 36 = 12 + 12 + 32 + 62,

but not all may be written as a sum of 2 or 3 squares. Which?

sa ge : s u m o f k s q u a r e s ( 4 , 4 7 )

We will answer the two- and four-square problems later, with a partial answer for three
squares.
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• Questions about primes, for example
(1) There are infinitely many primes (an ancient result proved in Euclid.)
(2) Is every even number (greater than 2) expressible as the sum of two primes? This was

conjectured by Goldbach in 1746 and still not proved, though it has been verified for
numbers up to 4×1018; the “weak form” of the conjecture, that every odd number greater
than 5 is a sum of three primes, was proved in 2013 by the Peruvian Harald Helfgott.

(3) Are all the Fermat numbers Fn = 22
n
+ 1 prime (as Fermat also claimed)? Certainly not:

the first four are (F1 = 5, F2 = 17, F3 = 257, F4 = 65537) but then F5 = 641× 6700417,
F6 = 274177 × 67280421310721, F7 = 59649589127497217 × 5704689200685129054721,
and no more prime values have been discovered in the sequence.

sa ge : [ ( 2 ˆ 2 ˆ n +1). f a c t o r ( ) for n in range ( 9 ) ]

(4) How many primes end in the digit 7? Infinitely many? Of the 664579 primes less than
10 million, the number which end in the digits 1, 3, 7 and 9 respectively are 166104,
166230, 166211, and 166032 (that is, 24.99%, 25.01%, 25.01% and 24.98%). What does
this suggest?

sa ge : pc=dict ( [ ( d , 0 ) for d in range ( 1 0 ) ] )
sa ge : for p in p r i m e r a n g e ( 1 0 ˆ 7 ) : pc [ p%10]+=1
sa ge : [ ( d , pc [ d ] , 1 0 0 . 0∗ pc [ d ] /sum( pc . v a l u e s ( ) ) )

for d in [ 1 , 3 , 7 , 9 ] ]

(5) Are there infinitely many so-called prime pairs: primes which differ by only 2, such as (3, 5),
(71, 73) or (1000000007, 1000000009)?
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• Efficient algorithms for basic arithmetic: many modern applications of Number Theory are in
the field of cryptography (secure communication of secrets, such as transmitting confidential
information over the Internet). These application rely on the fact that the following two
questions, which seem trivial from the theoretical points of view, are not at all trivial when
asked about very large numbers with dozens or hundreds of digits:

(1) Primality Testing: given a positive integer n, determine whether n is prime;
(2) Factorization: given a positive integer n, determine the prime factors of n.

In this module, we will study a variety of such problems, mainly of the first two types, while also
laying the theoretical foundations to further study.

Basic Notation. Z, Q, R, C will denote, as usual, the sets of integers, rational numbers, real
numbers and complex numbers. The integers form a ring, the others sets are fields.
N = {n ∈ Z | n ≥ 1} is the set of natural numbers (positive integers).
N0 = {n ∈ Z | n ≥ 0} is the set of non-negative integers.
P will denote the set of (positive) prime numbers: integers p > 1 which have no factorization
p = ab with a, b > 1.

Divisibility: for a, b ∈ Z we write a|b, and say a divides b, when b is a multiple of a:

a|b ⇐⇒ ∃c ∈ Z : b = ac.

If a does not divide b we write a6 |b. The divisibility relation gives a partial order on N with 1 as
the “least” element and no “greatest element”.

Congruence: for a, b, c ∈ Z with c 6= 0 we write a ≡ b (mod c) and say that a is congruent
to b modulo c if c|(a− b):

a ≡ b (mod c) ⇐⇒ c|(a− b).
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Divisibility and congruence will be studied in detail later.
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1. Factorization

1.1. Divisibility in Z.

Definition 1.1.1. Let a, b ∈ Z. Then we say that a divides b and write a|b if b = ac for some
c ∈ Z:

a|b ⇐⇒ ∃c ∈ Z : b = ac.

Alternatively, we may say that “b is a multiple of a”. If a 6= 0 this is equivalent to the statement
that the rational number b/a is an integer c. If a does not divide b we write a6 |b.
Lemma 1.1.2. [Easy facts about divisibility] For all a, b, . . . ∈ Z:
(1) a|b =⇒ a|kb (∀k ∈ Z);
(2) a|b1, a|b2 =⇒ a|b1± b2; hence if b1 and b2 are multiples of a, then so are all integers of the

form k1b1 + k2b2.
(3) a|b, b|c =⇒ a|c;
(4) a|b, b|a ⇐⇒ a = ±b;
(5) a|b, b 6= 0 =⇒ |a| ≤ |b|; so nonzero integers have only a finite number of divisors;
(6) If k 6= 0 then a|b ⇐⇒ ka|kb;
(7) Special properties of ±1: ±1|a (∀a ∈ Z), and a| ± 1 ⇐⇒ a = ±1;
(8) Special properties of 0: a|0 (∀a ∈ Z), and 0|a ⇐⇒ a = 0.

Proposition 1.1.3 (Division Algorithm in Z). Let a, b ∈ Z with a 6= 0. There exist unique
integers q, r such that

b = aq + r with 0 ≤ r < |a|.
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Notation: the set of all multiples of a fixed integer a is denoted (a) or aZ:

(a) = aZ = {ka | k ∈ Z}.
Then we have a|b ⇐⇒ b ∈ (a) ⇐⇒ (a) ⊇ (b): “to contain is to divide”. From Lemma 1.1.2(4)
we have (a) = (b) ⇐⇒ a = ±b.

An ideal in a commutative ring R is a subset I of R satisfying
(i) 0 ∈ I ;

(ii) a, b ∈ I =⇒ a± b ∈ I ;
(iii) a ∈ I , r ∈ R =⇒ ra ∈ I .
Notation: I / R. For example, the set of all multiples of a fixed element a of R is the principal
ideal denoted (a) or aR. We say that a generates the principal ideal (a). The other generators
of (a) are the associates of a: elements b = ua where u is a unit of R.

Proposition 1.1.4. Every ideal in Z is principal.

Definition 1.1.5. A Principal Ideal Domain or PID is a (nonzero) commutative ring R such that
(i) ab = 0 ⇐⇒ a = 0 or b = 0;

(ii) every ideal of R is principal.

So Z is a principal ideal domain. Every nonzero ideal of Z has a unique positive generator.

1.2. Greatest Common Divisors in Z.

Theorem 1.2.1. Let a, b ∈ Z.
(1) There exists a unique integer d satisfying

(i) d|a and d|b;
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(ii) if c|a and c|b then c|d;
(iii) d ≥ 0.

(2) The integer d can be expressed in the form d = au + bv with u, v ∈ Z.

Definition 1.2.2. For a, b ∈ Z we define the Greatest Common Divisor (or GCD) of a and b to
be the integer d with the properties given in the theorem. Notation: gcd(a, b), or sometimes just
(a, b). Integers a and b are said to be coprime (or relatively prime) if gcd(a, b) = 1.

So integers are coprime if they have no common factors other than ±1. The identity gcd(a, b) =
au + bv is sometimes called Bezout’s identity.

Corollary 1.2.3. [Basic Properties of gcd] For all a, b, k,m ∈ Z:

(1) a and b are coprime iff there exist u, v ∈ Z such that au + bv = 1;
(2) gcd(a, b) = gcd(b, a) = gcd(|a|, |b|);
(3) gcd(ka, kb) = |k| gcd(a, b);
(4) gcd(a, 0) = |a|; gcd(a, 1) = 1;
(5) gcd(a, b) = gcd(a, b + ka) for all k ∈ Z;
(6) if gcd(a,m) = gcd(b,m) = 1 then gcd(ab,m) = 1;
(7) if gcd(a, b) = 1 then gcd(ak, bl) = 1 for all k, l ∈ N.

Lemma 1.2.4. [Euler’s Lemma] If a|bc and gcd(a, b) = 1 then a|c.

If a1, a2, . . . , an is any finite sequence of integers then we similarly find that the ideal they
generate, I = (a1, a1, . . . , an) = {k1a1 + k2a2 + · · · + knan | k1, k2, . . . , kn ∈ Z} is an ideal
of Z, hence I = (d) for a unique d ≥ 0, and we define d = gcd(a1, a2, . . . , an). We say that
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a1, a2, . . . , an are coprime if gcd(a1, a2, . . . , an) = 1. This is weaker than the condition that
gcd(ai, aj) = 1 for all i 6= j: for example, gcd(6, 10, 15) = 1 since 6+ 10− 15 = 1, but no pair of
6, 10, 15 is coprime. When gcd(ai, aj) = 1 for all i 6= j, we say that the ai are pairwise coprime.

Our proofs have been non-constructive. A very important computational tool is the Euclidean
Algorithm, which computes d = gcd(a, b) given a and b ∈ Z, and its extended form which also
computes the (non-unique) u, v such that d = au + bv.

1.3. The Euclidean Algorithm in Z. The Euclidean Algorithm is an efficient method of com-
puting gcd(a, b) for any two integers a and b, without having to factorize them. It may also be
used to compute the coefficients u and v in the identity d = gcd(a, b) = au + bv.

The basic idea is this. We may assume b > a > 0 (see the Basic Properties above). Write
r = b − aq with 0 ≤ r < a; then gcd(a, b) = gcd(r, a) and we have reduced the problem to
a smaller one. After a finite number of steps we reach 0, and the last positive integer in the
sequence a, b, r, . . . is the gcd.
Example: (963, 657) = (657, 963) = (306, 657) = (45, 306) = (36, 45) = (9, 36) = (0, 9) = 9.
Here we have used 963− 657 = 306, 657− 2 · 306 = 45, 306− 6 · 45 = 36, 45− 36 = 9.

To solve 9 = 963u+657v we can back-substitute in these equations: 9 = 45−36 = 45− (306−
6 · 45) = 7 · 45− 306 = 7 · (657− 2 · 306)− 306 = 7 · 657− 15 · 306 = 7 · 657− 15(963− 657) =
22 · 657− 15 · 963, so u = −15 and v = 22.

There is a simpler way of keeping track of all these coefficients while reducing the amount which
needs to be written down, using some auxiliary variables, which leads to the Euclidean algorithm.
We give it in a form which keeps all the auxiliary variables positive which is easier to carry out in
practice.
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Extended Euclidean Algorithm: Given positive integers a and b, this algorithm computes
(d, u, v) such that d = gcd(a, b) = au + bv:

(1) Set a1 = a, a2 = b; x1 = 1, x2 = 0; y1 = 0, y2 = 1.
(2) Let q = [a1/a2].
(3) Set a3 = a1 − qa2; x3 = x1 + qx2; y3 = y1 + qy2.
(4) Set a1 = a2, a2 = a3; x1 = x2, x2 = x3; y1 = y2, y2 = y3.
(5) If a2 > 0 loop back to Step 2.
(6) If ax1 − by1 > 0 return (d, u, v) = (a1, x1,−y1), else return (d, u, v) = (a1,−x1, y1).
Example: In the previous example, the ai sequence is

963, 657, 306, 45, 36, 9, 0

using quotients
q = 1, 2, 6, 1, 4.

So the xi sequence is
1, 0, 1, 2, 13, 15, 73

and the yi sequence is
0, 1, 1, 3, 19, 22, 107.

Using the last xi and yi provides a check:

73a− 107b = 73 · 963− 107 · 657 = 0

and the preceding values give the solution:

15a− 22b = 15 · 963− 22 · 657 = −9.
So we may take u = −15, v = 22.
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1.4. Primes and unique factorization.

Definition 1.4.1. A prime number (or prime for short) is an integer p > 1 whose only divisors
are ±1 and ±p; the set of primes is denoted P:

p ∈ P ⇐⇒ p > 1 and p = ab =⇒ a = ±1 or b = ±1.

For example 2, 3, 5, 7, 11 are primes. Integers n > 1 which are not prime are called composite. If
a is any integer then either p|a, in which case gcd(p, a) = p, or p 6 |a, in which case gcd(p, a) = 1.

Lemma 1.4.2. Let p be a prime and a, b ∈ Z. If p|ab then either p|a or p|b (or both).

This property of primes is very important, and the uniqueness of prime factorization relies on it.
(It is easy to see that composite numbers do not have this property.) More generally:

Corollary 1.4.3. Let p be a prime and a1, a2, . . . , an ∈ Z. Then

p|a1a2 . . . an =⇒ p|ai for some i.

Theorem 1.4.4 (Fundamental Theorem of Arithmetic). Every positive integer n is a product of
prime numbers, and its factorization into primes is unique up to the order of the factors.

Note that this includes n = 1 which is an “empty” product, and primes themselves with only
one factor in the product. Collecting together any powers of primes which occur in a prime
factorization, we obtain
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Corollary 1.4.5. Every positive integer n may be expressed uniquely in the form

n = pe11 p
e2
2 . . . p

ek
k

where p1, . . . , pk are primes with p1 < p2 < · · · < pk and each ei ≥ 1. Alternatively, every
positive integer n may be expressed uniquely in the form

n =
∏
p∈P

pep

where the product is over all primes, each ep ≥ 0, but only a finite number of ep > 0.

The exponent ep which appears in this standard factorization of n is denoted ordp(n); it is
characterized by the following property:

e = ordp(n) ⇐⇒ pe|n and pe+1 6 |n.
For example, 700 = 22 ·52 ·7, so ord2(700) = ord5(700) = 2, ord7(700) = 1, and ordp(700) = 0 for
primes p 6= 2, 5, 7. Every positive integer n is uniquely determined by the sequence of exponents
ordp(n).

This standard factorization of positive integers into primes may be extended to negative integers
by allowing a factor ±1 in front of the product, and to nonzero rational numbers by allowing
the exponents to be negative. We may accordingly extend the function ordp to Q∗, by setting
ordp(−n) = ordp(n) and ordp(n/d) = ordp(n) − ordp(d) for nonzero rationals n/d. [You should
check that this is well-defined, independent of the representation of the fraction n/d.] Then we
have the following extension of the main theorem on unique factorization:
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Corollary 1.4.6. Every nonzero rational number x may be uniquely expressed in the form

x = ±
∏
p∈P

pordp(x).

For example, −72/91 = −23327−113−1.
Many facts about integers may easily be proved using their unique factorization into primes. For

example:

Proposition 1.4.7. Let m,n ∈ Z be nonzero. Then

m = ±n ⇐⇒ ordp(m) = ordp(n) ∀p ∈ P.

The function ordp works rather like a logarithm. The following is easy to check:

Proposition 1.4.8. Let m,n ∈ Z be nonzero. Then ordp(mn) = ordp(m) + ordp(n).

The previous result looks elementary enough, but it is sufficient to imply the uniqueness of prime
factorization: for if n =

∏
pep is any factorization of n in to primes, applying ordq to both sides

(where q is some fixed prime) and using the Proposition gives

ordq(n) =
∑

epordq(p) = eq,

since ordq(q) = 1 and ordq(p) = 0 when p 6= q. It follows that the exponents ep are uniquely
determined.
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Proposition 1.4.9. Let n ∈ Z be nonzero. Then n is a perfect square if and only if n > 0 and
ordp(n) is even for all primes p.

We end this section with a famous and ancient result of Euclid.

Theorem 1.4.10. [Euclid] The number of primes is infinite.

Note that this proof actually shows how to construct a “new” prime from any given finite set of
known primes. Variations of this proof can show that there are infinitely many primes of various
special forms: see the Exercises.

1.5. Unique Factorization Domains. Theorem 1.4.4 (extended to include negative integers)
may be expressed succinctly by the statement that Z is a Unique Factorization Domain or UFD.
Roughly speaking, a UFD is a ring in which every element has an essentially unique factorization
as a unit times a product of “prime” elements. Every PID is a UFD (but not conversely: Z[X ] is a
UFD but not a PID), and an important source of PIDs is rings which have a “division algorithm”
similar to the one for Z. Such rings are called Euclidean Domains, and we start by defining these.

Definition 1.5.1. (a) A nonzero ring R is an Integral Domain if, for a, b ∈ R,

ab = 0 ⇐⇒ (a = 0 or b = 0).

(b) A nonzero ring R is a Euclidean Domain or ED if it is an integral domain equipped with a
function λ : R − {0} → N0 such that, for a, b ∈ R with a 6= 0, there exist q, r ∈ R such
that

b = aq + r with either r = 0 or λ(r) < λ(a).
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Examples:
• Z is an ED with λ(n) = |n|: this is what Proposition 1.1.3 states (though note that the

definition of an ED does not require q and r to be unique).
• Any field F is an ED with λ(x) = 0 for all x 6= 0; this is a degenerate example since we may

always take r = 0 in division.
• If F is a field then the polynomial ring F [X ] is an ED, using the degree function λ(f (X)) =
deg(f (X)). The required division property is well-known, being just the usual long division
for polynomials.

It is important that F is a field here: for example, Z[X ] is not Euclidean (exercise).
• The ring Z[i] of Gaussian Integers is defined as

Z[i] = {a + bi | a, b ∈ Z};
it is a subring of C. We will study this in some detail as it gives another example of a Euclidean
Domain which is of interest in number theory, both for its own sake and also for proving some
properties of the ordinary or “rational” integers Z. The Euclidean function λ on Z[i] is usually
called the norm and denoted N :

N(α) = αα = a2 + b2 for α = a + bi ∈ Z[i].

Theorem 1.5.2. The ring Z[i] of Gaussian Integers is a Euclidean Domain.

Lemma 1.5.3. The norm function N on Z[i] has the following properties:
(1) Multiplicativity: for all α, β ∈ Z[i], N(αβ) = N(α)N(β);
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(2) Positivity: N(0) = 0, N(α) ≥ 1 for α 6= 0;
(3) Units: N(α) = 1 ⇐⇒ α ∈ U(Z[i]) = {±1,±i}.

Recall that for a ring R, the group of units (invertible elements) is denoted U(R). Elements of
an integral domain are called associate if one is a unit times the other, or (equivalently) if each
divides the other.
Example: Take α = 3 + 4i and β = 10 + 11i. Then

10 + 11i

3 + 4i
=

(10 + 11i)(3− 4i)

25
=

74− 7i

25
= 3 +

−1− 7i

25
,

so the quotient is 3 and remainder (10 + 11i)− 3(3 + 4i) = 1− i. Check: N(1− i) = 2 is less
than N(3 + 4i) = 25.

Just as we did for Z, we can now prove that every ED is a PID:

Theorem 1.5.4. Let R be a Euclidean Domain. Then R is a Principal Ideal Domain.

In a PID we have gcds just as in Z, and Bezout’s identity. In general we do not have uniqueness
of gcds, only uniqueness up to associates (multiplication by a unit). (In Z we avoided this non-
uniqueness by insisting that all gcds were non-negative.)

Definition 1.5.5. In a ring R, a gcd of two elements a and b is an element d satisfying

(i) d|a and d|b;
(ii) if c|a and c|b then c|d.

Lemma 1.5.6. If gcd(a, b) exists then it is unique up to associates.
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Because of this non-uniqueness we cannot talk about the gcd, only a gcd of a and b. In specific
rings, one may impose an extra condition to ensure uniqueness: in Z we insisted that gcd(a, b) ≥ 0;
in the polynomial ring F [X ] (with F a field) one usually insists that gcd(a(X), b(X)) is monic
(with leading coefficient 1).

Proposition 1.5.7. In a PID, the gcd of two elements a and b exists, and may be expressed in
the form au + bv.

So in a PID, whether Euclidean or not, the gcd always exists. However, it is only in a ED that
computing gcds is easily possible via the Euclidean Algorithm.

Example: Take α = 3 + 4i and β = 10 + 11i. Then from the previous example we have
β−3α = 1−i. Similarly, α−3i(1−i) = i, and lastly 1−i = i(−1−i) with zero remainder. The last
nonzero remainder was i which is therefore a gcd of α and β; one would normally adjust this since i
is a unit and say that gcd(α, β) = 1. Back-substitution gives i = α−3i(β−3α) = (1+9i)α−3iβ,
so finally 1 = (9− i)α− 3β.

The next step is to show that every PID is also a unique factorization domain. In the case of
Z, we used the Euclidean property again, and not just the PID property, for this step, but since
there are rings which are PIDs but not Euclidean we give a proof which works for all PIDs.

Definition 1.5.8. In an integral domain R, an element p is called irreducible if it is neither 0 nor
a unit and p = ab implies that either a or b is a unit; p is called prime if it is neither 0 nor a unit
and p|ab implies that either p|a or p|b.

Lemma 1.5.9. Every prime is irreducible. In a PID, every irreducible is prime.
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The last property will be crucial in proving the uniqueness of factorizations into irreducibles,
but for the existence we need to do some more preparation. The following lemma is called the
“ascending chain condition” or ACC for ideals in a PID.

Lemma 1.5.10. Let R be a PID. Let (ai)i∈N be a sequence of elements of R with (a1) ⊆
(a2) ⊆ (a3) ⊆ . . . . (So each ai is a multiple of the next). Then there exists k such that
(ak) = (ak+1) = (ak+2) = . . . , so the chain of ideals stabilizes. Hence any strictly ascending
chain of ideals (a1) ⊂ (a2) ⊂ (a3) ⊂ . . . must be finite.

This lemma is used to replace induction in the proof of the existence of factorizations into
irreducibles, which was used for Z.

Proposition 1.5.11. Let R be a PID. Every element of R which is neither 0 nor a unit is a
product of irreducibles.

Finally, we use the fact that in a PID irreducibles are prime to prove that the factorizations of
any given nonzero non-unit are essentially the same, up to reordering the factors and replacing
irreducibles by associates.

Definition 1.5.12. An Integral Domain R is a Unique Factorization Domain or UFD if

(i) every nonzero element may be expressed as a unit times a product of irreducibles;
(ii) the factorization in (i) is unique up to the order of the factors and replacing the irreducibles

by associates; that is, if a ∈ R is nonzero and

a = up1p2 . . . pr = vq1q2 . . . qs
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with u, v units and all pi, qj irreducibles, then r = s, and after permuting the qj if necessary,
there are units vj for 1 ≤ j ≤ r such that qj = vjpj and u = vv1v2 . . . vr.

Theorem 1.5.13. Let R be a PID. Then R is a UFD.

Example (continued): Since the ring Z[i] of Gaussian Integers is Euclidean, it is a PID and a
UFD. We have already determined that its units are the four elements ±1 and ±i, but what are
its primes/irreducibles?

(1) If π ∈ Z[i] is prime then π divides some ordinary “rational” prime p, since if n = N(π) = ππ
then π|n so by primality of π, π divides at least one prime factor p of n.

(2) If N(π) = p is prime, then π is irreducible: for if π = αβ then p = N(π) = N(α)N(β), so
one of α, β has norm 1 and is a unit. For example, 1 + i, 2 + i, 3 + 2i, 4 + i are prime since
their norms are 2, 5, 13, 17.

(3) If a rational prime p is a sum of two squares, p = a2 + b2, then setting π = a+ bi gives p =
N(π) = N(π), so π and π are both Gaussian primes. We will prove later, in Theorem 2.4.2,
that every rational prime p of the form 4k+1 can be expressed in this way; the factors π and
π are not associate (exercise).

(4) However, rational primes q of the form 4k + 3 can not be expressed as sums of two squares,
since squares all leave remainder of 0 or 1 when divided by 4, so all numbers of the form
a2 + b2 leave a remainder of 0, 1 or 2 on division by 4. Such primes q remain prime in Z[i].
For if q = αβ with neither α nor β a unit, then q2 = N(α)N(β) with both N(α), N(β) > 1,
so (by unique factorization in Z) we must have N(α) = N(β) = q, so q would be a sum of
two squares.
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We sum up this example as follows; we have proved everything stated here except for the fact
that all primes of the form 4k+1 are sums of two squares (Theorem 2.4.2), and the remark about
associates (exercise).

Theorem 1.5.14. The ring Z[i] of Gaussian Integers is a Euclidean Domain and hence also a
Principal Ideal Domain and a Unique Factorization Domain. Its units are the four elements ±1,
±i. Its primes are as follows (together with their associates):
(1) 1 + i, of norm 2;
(2) each rational prime p of the form 4k+1 is a sum of two squares, p = a2+ b2, and p factorizes

in Z[i] as p = ππ where π = a + bi and π = a − bi are non-associate Gaussian primes of
norm p;

(3) each rational prime q of the form 4k + 3 is also a Gaussian prime.

For example, here are some Gaussian factorizations: 123 + 456i = 3 · (1 + 2i) · (69 + 14i) (the
last factor has prime norm 4957), 2000 = (1 + i)8(1 + 2i)3(1− 2i)3.
sa ge : Qi .< i> = QQ. e x t e n s i o n ( x ˆ2+1)
sa ge : 2 0 1 8 . f a c t o r ( )
2 ∗ 1009
sa ge : Qi ( 2 0 1 8 ) . f a c t o r ( )
( i ) ∗ (15∗ i − 28) ∗ ( i + 1)ˆ2 ∗ (15∗ i + 28)
sa ge : (123+456∗ i ) . norm ( ) . f a c t o r ( )
3ˆ2 ∗ 5 ∗ 4957
sa ge : (123+456∗ i ) . f a c t o r ( )
(−1) ∗ (−14∗ i − 69) ∗ (2∗ i + 1) ∗ 3
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There are other “number rings” similar to Z[i], but not many which are known to have unique
factorization. A complete study requires more algebra, and is done in Algebraic Number Theory.
Here are some further examples.

Example: The ring R = Z[
√
−2] is also Euclidean and hence a UFD. The proof is almost identical

to the one given above for Z[i], using the norm N(α) = αα, so that N(a + b
√
−2) = a2 + 2b2.

The key fact which makes R Euclidean via the norm is that every point in the complex plane is
at distance less than 1 from the nearest element of R, as was the case with Z[i]. Factorization of
primes p now depends on p (mod 8).

Example: The ring R = Z[
√
−3] is not Euclidean, and neither a PID nor a UFD. For example,

4 = 2 · 2 = (1 +
√
−3) · (1 −

√
−3) with all factors on the right irreducible in R. Also: the

ideal (2, 1+
√
−3) is not principal; and the element 2 is irreducible but not prime (as the previous

equation shows, since neither 1±
√
−3 are divisible by 2 in R). However, if we enlarge the ring by

including numbers of the form (a+b
√
−3)/2 where a and b are both odd, we obtain the larger ring

S = Z[ω], where ω = (−1 +
√
−3)/2, satisfying ω2+ω+ 1 = 0, which is Euclidean and hence a

UFD. The norm is again N(α) = αα; with α = a+ bω one computes that N(α) = a2− ab+ b2,
and 4N(α) = (2a − b)2 + 3b2. This ring turns out to be useful in the solution of the Fermat
equation x3 + y3 = z3.

Example: As in the previous example, the ring Z[
√
−19] is not Euclidean. Enlarging it to

R = Z[ω], where now ω = (−1 +
√
−19)/2, satisfying w2 + w + 5 = 0, we find a ring which

is still not Euclidean, but is a PID and hence a UFD. This example shows that not every PID is
Euclidean. We omit the details.
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2. Congruences and modular arithmetic

The notation for congruence is an invention of Gauss. It simplifies many calculations and argu-
ments in number theory.

2.1. Definition and Basic Properties.

Definition 2.1.1. Let m be a positive integer. For a, b ∈ Z we say that a is congruent to b
modulo m and write a ≡ b (mod m) iff a− b is a multiple of m:

a ≡ b (mod m) ⇐⇒ m|(a− b).
Here m is called the modulus. If m6 |(a− b) then we write a 6≡ b (mod m).

For example, −3 ≡ 18 (mod 7) and 19 6≡ 1 (mod 4). All even integers are congruent to 0
(mod 2), while odd integers are congruent to 1 (mod 2).

Congruence may be expressed in algebraic terms: to say a ≡ b (mod m) is equivalent to saying
that the cosets a +mZ and b +mZ of mZ in Z are equal.

The basic properties of congruence are summarized in the following lemmas.

Lemma 2.1.2. For each fixed modulus m, congruence modulo m is an equivalence relation:

(i) Reflexive: a ≡ a (mod m) for all a ∈ Z;
(ii) Symmetric: a ≡ b (mod m) =⇒ b ≡ a (mod m);

(iii) Transitive: If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

Lemma 2.1.3. If a ≡ b (mod m) and c ≡ d (mod m) then a + c ≡ b + d (mod m) and
ac ≡ bd (mod m).
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The preceding result has the following interpretation. As well as mZ being a subgroup of the
additive group Z, it is also an ideal of the ring Z, and hence there is a well-defined quotient ring
Z/mZ. The lemma says that addition and multiplication in Z/mZ are well-defined. We will
return to this viewpoint in the next section.

Lemma 2.1.4. (i) If a ≡ b (mod m) then ac ≡ bc (mod mc) for all c > 0;
(ii) If a ≡ b (mod m) and n|m then a ≡ b (mod n).

Lemma 2.1.5. If ax ≡ ay (mod m), then x ≡ y (mod m/ gcd(a,m)).
Two important special cases:
If ax ≡ ay (mod m) and gcd(a,m) = 1, then x ≡ y (mod m).
If ax ≡ ay (mod m) and a|m, then x ≡ y (mod m/a).

Proposition 2.1.6. Let a, b ∈ Z. The congruence ax ≡ b (mod m) has a solution x ∈ Z if
and only if gcd(a,m)|b. If a solution exists it is unique modulo m/ gcd(a,m).

In particular, when gcd(a,m) = 1 the congruence ax ≡ b (mod m) has a solution for every b,
which is unique modulo m.

How to solve the congruence ax ≡ b (mod m): Use the EEA to find d, u, v with d =
gcd(a,m) = au + mv. Check that d|b (otherwise there are no solutions). If b = dc then
b = auc+mvc so x = uc is one solution. The general solution is x = uc+ tm/d = (ub+ tm)/d
for arbitrary t ∈ Z.

Lemma 2.1.7. Each integer a is congruent modulo m to exactly one integer in the set
{0, 1, 2, . . . ,m − 1}. More generally, let k be a fixed integer. Then every integer is congruent
modulo m to exactly one integer in the set {k, k + 1, k + 2, . . . , k +m− 1}.
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Definition 2.1.8. Taking k = 0, we obtain the system of least non-negative residues modulo m:
{0, 1, 2, . . . ,m − 1}. Taking k = −[(m − 1)/2] gives the system of least residues modulo m;
when m is odd this is {0,±1,±2, . . . ,±(m− 1)/2}, while when m is even we include m/2 but
not −m/2. Any set of m integers representing all m residue classes modulo m is called a residue
system modulo m.

For example, when m = 7 the least non-negative residues are {0, 1, 2, 3, 4, 5, 6} and the least
residues are {−3,−2,−1, 0, 1, 2, 3}; form = 8 we have least non-negative residues {0, 1, 2, 3, 4, 5, 6, 7}
and least residues {−3,−2,−1, 0, 1, 2, 3, 4}.
2.2. The structure of Z/mZ.

Definition 2.2.1. The ring of integers modulo m is the quotient ring Z/mZ. We will denote
the group of units of Z/mZ by Um, and its order by ϕ(m). The function ϕ : N → N is called
Euler’s totient function or Euler’s phi function.

Sometimes Z/mZ is denoted Zm; however there is a conflict of notation here, since for prime p
the notation Zp is used to denote a different ring important in number theory, the ring of p-adic
integers. We will therefore not use this abbreviation!

Informally we may identify Z/mZ with the set {0, 1, 2, . . . ,m − 1}, though the elements of
Z/mZ are not integers but “integers modulo m”: elements of the quotient ring Z/mZ. To
be strictly correct, one should use the notation a, b, . . . for integers and a, b, . . . for their
residues in Z/mZ. Then one has a = b (in Z/mZ) iff a ≡ b (mod m) (in Z), and Z/mZ =
{0, 1, 2, . . . ,m− 1}. For simplicity we will not do this but use the same notation for an integer
and its residue in Z/mZ.
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So Z/mZ is a finite ring with m elements, and its unit group Um is a finite group under the
operation of “multiplication modulo m”.

Proposition 2.2.2. Let a ∈ Z/mZ. Then a ∈ Um (that is, a is invertible modulo m) if and
only if gcd(a,m) = 1.

Remark: Note that if a ≡ a′ (mod m) then gcd(a,m) = gcd(a′,m), since a′ = a + km for
some k. Hence the quantity gcd(a,m) only depends on the residue of a modulo m.

We may use the Extended Euclidean Algorithm to detect whether or not a is invertible mod-
ulo m, and also to find its inverse a′ if so, since if (x, y) is a solution to ax + my = 1 then
ax ≡ 1 (mod m) so we may take a′ = x. For example, gcd(4, 13) = 1 with 4 · 10 − 13 · 3 =
1, so the inverse of 4 modulo 13 is 10. Here is a complete table of inverses modulo 13:
a 0 1 2 3 4 5 6 7 8 9 10 11 12
a′ - 1 7 9 10 8 11 2 5 3 4 6 12
It follows that ϕ(m), the order of Um, is equal to the number of residues modulo m of integers

which are coprime to m. This is often given as the definition of ϕ(m).

Corollary 2.2.3.

ϕ(m) = |{a | 0 ≤ a ≤ m− 1 and gcd(a,m) = 1}| .

Definition 2.2.4. A reduced residue system modulo m is a set of ϕ(m) integers covering the
residue classes in Um.
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Any set of ϕ(m) integers which are all coprime to m, and no two of which are congruent
modulo m, form a reduced residue system. The “standard” one is

{a | 0 ≤ a ≤ m− 1 and gcd(a,m) = 1}.
For example, U6 = {1, 5}, U7 = {1, 2, 3, 4, 5, 6} and U8 = {1, 3, 5, 7}, so that ϕ(6) = 2, ϕ(7) = 6

and ϕ(8) = 4. Here are the first few values of ϕ(m):
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕ(m) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8

Proposition 2.2.5. (1) ϕ(m) is even for m ≥ 3;
(2) ϕ(m) = m− 1 if and only if m is prime;
(3) Let p be a prime; then ϕ(pe) = pe−1(p− 1) for e ≥ 1.

We will use this to obtain a general formula for ϕ(m) after the Chinese Remainder Theorem
below, which will reduce the determination of ϕ(m) for general m to the case of prime powers.

Arithmetic modulo m is much simpler when m is prime, as the following result indicates.

Theorem 2.2.6. If p is a prime then Z/pZ is a field. If m is composite then Z/mZ is not a
field, and not even an integral domain.

Notation: To emphasize its field structure, Z/pZ is also denoted Fp, and the multiplicative
group Up is then denoted F∗p. It has order p− 1, and is cyclic (see Theorem 2.6.1 below).

2.3. Euler’s, Fermat’s and Wilson’s Theorems. Since Um is a finite multiplicative group of
order ϕ(m) we immediately have the following as a consequence of Lagrange’s Theorem for finite
groups.
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Theorem 2.3.1. (a) Euler’s Theorem: Let m be a positive integer and a an integer coprime
to m. Then

aϕ(m) ≡ 1 (mod m).

(b) Fermat’s Little Theorem: Let p be a prime and a an integer not divisible by p. Then

ap−1 ≡ 1 (mod p);

moreover, for every integer a we have

ap ≡ a (mod p).

Fermat’s Little Theorem can be used as a primality test. Let n be an odd integer which one
suspects to be a prime; if 2n−1 6≡ 1 (mod n) then n is certainly not prime. Note that this has
been proved without exhibiting a factorization of n. On the other hand, if 2n−1 ≡ 1 (mod n)
it does not prove that n is prime! For example this holds with n = 1729 = 7 · 13 · 19. Such a
number is called a pseudoprime to base 2. By using a combination of so-called bases (as here we
used the base 2) one can develop much stronger “probabilistic primality tests”.

Corollary 2.3.2. In Fp[X ] the polynomial Xp −X factorizes as a product of p linear factors:

Xp −X =
∏
a∈Fp

(X − a) in Fp[X ].
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Corollary 2.3.3. [Wilson’s Theorem] Let p be a prime. Then

(p− 1)! ≡ −1 (mod p).

Remark: The converse to Wilson’s Theorem also holds; in fact, for composite integers m
greater than 4 we have (m − 1)! ≡ 0 (mod m) (exercise). But this is not useful as a primality
test, since there is no way to compute the residue of (m− 1)! (mod m) quickly.
Example: Take p = 13. Then (p − 1)! = 12! = 479001600 = 13 · 36846277 − 1. A better way
of seeing this is to write

12! ≡ 1 · 12 · (2 · 7) · (3 · 9) · (4 · 10) · (5 · 8) · (6 · 11) ≡ 12 ≡ −1 (mod 13).

A similar trick, pairing each residue apart from ±1 with its inverse, may be used to prove Wilson’s
Theorem directly. This works because ±1 are the only residues modulo a prime which are their
own inverse:

Proposition 2.3.4. Let p be a prime. Then the only solutions to x2 ≡ 1 (mod p) are x ≡ ±1.

Example: Let m = F5 = 232 + 1 = 4294967297. Check that x = 1366885067 satisfies x2 ≡ 1
(mod m). This proves that m is not prime. In fact, m = ab where a = 671 = gcd(m,x − 1)
and b = 6700417 = gcd(m,x + 1). Many modern factorization methods are based on this idea.
Of course, one needs efficient ways to find solutions other than ±1 to the congruence x2 ≡ 1
(mod m) where m is the (odd) composite number being factorized. There are several of these,
which collectively go by the name of “quadratic sieve” methods.
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2.4. Some Applications.

Proposition 2.4.1. Let p be an odd prime. Then the congruence x2 ≡ −1 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

There are many other ways of proving the preceding Proposition. One is to use the fact that F∗p
is cyclic (Theorem 2.6.1), hence has elements of order d for all d|(p − 1), and an element a of
order 4 satisfies a4 = 1, a2 6= 1, so a2 = −1. Alternatively, from Wilson’s Theorem one can show
that for all odd p,

(((p− 1)/2)!)2 ≡ −(−1)(p−1)/2 (mod p),

so when p ≡ 1 (mod 4) the number a = ((p− 1)/2)! satisfies a2 ≡ −1 (mod p).
As a corollary we can prove the result used earlier, that a prime of the form 4k + 1 may be

written as a sum of two squares.

Theorem 2.4.2. Let p be a prime such that p ≡ 1 (mod 4). Then there exist integers a and b
such that p = a2 + b2.

Remarks The first proof can be made constructive: given c satisfying c2 ≡ −1 (mod p), it is
not hard to show that the element a+ bi = gcd(c+ i, p) in Z[i] satisfies a2 + b2 = p, so a single
application of the Euclidean algorithm in Z[i] gives a solution.

The first proof also shows that the solution is essentially unique, up to permuting a and b and
changing their signs. This follows from the fact that the factorization of p in Z[i] as p = ππ with
π = a + bi is unique up to permuting the factors and multiplying them by units.

We finish this section with some more applications to the distribution of primes.
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Proposition 2.4.3. (a) There are infinitely many primes p ≡ 1 (mod 4).
(b) There are infinitely many primes p ≡ 3 (mod 4).

Similarly, odd prime divisors of n4 + 1 are ≡ 1 (mod 8) and there are therefore infinitely many
of those; odd prime divisors of n8+1 are ≡ 1 (mod 16) so there are infinitely many of those; and
so on. Next we have

Proposition 2.4.4. Let q be an odd prime.

(a) Let p be a prime divisor of f (n) = nq−1 + nq−2 + · · · + n + 1. Then either p = q or p ≡ 1
(mod q).

(b) There are infinitely many primes p ≡ 1 (mod q).

Using cyclotomic polynomials (for example, f (n) above) one can show that there are infinitely
many primes p ≡ 1 (mod m) for any m. More generally Dirichlet’s Theorem on primes in
arithmetic progressions states that there are infinitely many primes p ≡ a (mod m) whenever a
and m are coprime: the general proof uses complex analysis!

2.5. The Chinese Remainder Theorem or CRT.

Proposition 2.5.1. [Chinese Remainder Theorem for simultaneous congruences] Let m,n ∈ N
be coprime. Then for every pair of integers a, b the simultaneous congruences

x ≡ a (mod m)(2.5.1)

x ≡ b (mod n)

have a solution which is unique modulo mn.
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More generally, if d = gcd(m,n) then the congruences (2.5.1) have a solution if and only if
a ≡ b (mod d), and the solution (when it exists) is unique modulo lcm(m,n) = mn/d.

To find the solution in the coprime case, write 1 = mu + nv. Then we have the solution
x = mub + nva since nv ≡ 1 (mod m),≡ 0 (mod n) while mu ≡ 0 (mod m),≡ 1 (mod n).

Example: Let m = 13, n = 17. Then 1 = gcd(13, 17) = 52− 51 so the solution for general a, b
is x ≡ 52b− 51a (mod 221).

The CRT says that there is a bijection between pairs (a mod m, b mod n) and single residue
classes (c mod mn) when m,n are coprime. This bijection is in fact a ring isomorphism:

Theorem 2.5.2. [Chinese Remainder Theorem, algebraic form] Let m,n ∈ N be coprime. Then
we have the isomorphism of rings

Z/mnZ ∼= Z/mZ× Z/nZ.
Restricting to units on both sides, we have the isomorphism of groups

Umn ∼= Um × Un.

Both forms of the CRT extend to several moduli m1, m2, . . . , mk provided that they are
pairwise coprime. The second part of the proposition has the following important corollary: ϕ is
a multiplicative function.

Proposition 2.5.3. Let m,n ∈ N be coprime. Then ϕ(mn) = ϕ(m)ϕ(n).
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Corollary 2.5.4. Let m ∈ N have prime factorization

m =

k∏
i=1

peii

where the pi are distinct primes and ei ≥ 1. Then

ϕ(m) =

k∏
i=1

pei−1i (pi − 1) = m

k∏
i=1

(
1− 1

pi

)
.

Examples: (1). ϕ(168) = ϕ(8)ϕ(3)ϕ(7) (splitting 168 into prime powers) = (8− 4)(3− 1)(7−
1) = 4 · 2 · 6 = 48. Alternatively, ϕ(168) = 168 ·

(
1− 1

2

)
·
(
1− 1

3

) (
1− 1

7

)
= 168 · 12 ·

2
3 ·

6
7 = 48.

(2). ϕ(100) = ϕ(4)ϕ(25) = 2 · 20 = 40.

One more property of ϕ(m) will be useful later.

Proposition 2.5.5. Let m ∈ N. Then
∑

d|mϕ(d) = m.

The sum here is over all positive divisors of m. For example, when m = 12 we have

12 = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(4) + ϕ(6) + ϕ(12)

= 1 + 1 + 2 + 2 + 2 + 4.

Applications of CRT: The CRT says that congruences to two coprime moduli are, in a sense,
independent. Solving a general congruence to a general modulus reduces to solving it modulo
prime powers, and then using CRT to “glue” the separate solutions together.
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For example: solve x2 ≡ 1 (mod 91). Since 91 = 7 · 13 we first solve separately modulo 7 and
modulo 13, giving x ≡ ±1 (mod 7) and x ≡ ±1 (mod 13) by an earlier proposition since 7 and
13 are prime. This gives four possibilities modulo 91:

(+1 mod 7, +1 mod 13) ↔ (+1 mod 91)

(+1 mod 7, −1 mod 13) ↔ (−27 mod 91)

(−1 mod 7, +1 mod 13) ↔ (+27 mod 91)

(−1 mod 7, −1 mod 13) ↔ (−1 mod 91)

So the solutions are x ≡ ±1 (mod 91) and x ≡ ±27 (mod 91). To solve the second and third
we use the method given above: write 1 = 7u + 13v = 14 − 13, then (a, b) = (1,−1) maps to
mub + nva = 14b− 13a = 14(−1)− 13(1) ≡ −27 (mod 91).

Systematic study of various types of congruence now follows the following pattern. First work
modulo primes; this is easiest since Z/pZ is a field. Then somehow go from primes to prime powers.
The process here (called “Hensel lifting”) is rather like taking successive decimal approximations
to an ordinary equation, and we will come back to this at the end of the module, in Chapter 5 on
p-adic numbers. Finally, use the CRT to “glue” together the information from the separate prime
powers.

2.6. The structure of Um. The most important result here is that for prime p, the multiplicative
group Up (= F∗p) is cyclic.

Theorem 2.6.1. Let p be a prime. Then the group Up = F∗p is cyclic.
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Definition 2.6.2. An integer which generates Up = F∗p is called a primitive root modulo p. If
Um is cyclic, then a generator of Um is called a primitive root modulo m.

When g is a primitive root modulom, the powers 1, g, g2, . . . , gϕ(m)−1 are incongruent modulom,
and every integer which is coprime to m is congruent to exactly one of these. The other primitive
roots are the gk for which gcd(k, ϕ(m)) = 1. So we have the following:

Corollary 2.6.3. Let p be a prime. Then p has a primitive root, and the number of incongruent
primitive roots modulo p is ϕ(p− 1). More generally, for every d|(p− 1) there are ϕ(d) integers
(incongruent modulo p) with order d modulo p.

If m has a primitive root then there are ϕ(ϕ(m)) incongruent primitive roots modulo m.

Example: Let p = 13. Since ϕ(p−1) = ϕ(12) = 4 there are 4 primitive roots modulo 13. One is
2, since the successive powers of 2 modulo 13 are 1, 2, 4, 8, 3, 6,−1, . . . . The others are the powers
2k where gcd(k, 12) = 1: taking k = 1, 5, 7, 11 gives the primitive roots 2, 25 ≡ 6, 27 ≡ 11, 211 ≡ 7
(mod 13).

As an application of primitive roots, we may give a simple proof of a result proved earlier,
that when p ≡ 1 (mod 4) then the congruence x2 ≡ −1 (mod p) has a solution. For let g
be a primitive root modulo p, and set a = g(p−1)/4. Then a2 ≡ g(p−1)/2 6≡ 1 (mod p), but
a4 = gp−1 ≡ 1 (mod p), from which it follows that a2 ≡ −1 (mod p).

Theorem 2.6.4. Primitive roots modulo m exist if and only if m = 1, 2, 4, pe or 2pe where p is
an odd prime and e ≥ 1.

Now if m is odd, with prime factorization m =
∏k

i=1 p
ei
i , it follows that the group Um is

isomorphic to the product of cyclic groups of order pei−1i (pi − 1) for 1 ≤ i ≤ k.
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We have not determined the structure of U2e for e ≥ 3; it turns out that while not cyclic, it
is almost so: for e ≥ 3, U2e is isomorphic to the product of cyclic groups of order 2 (generated
by −1) and order 2e−2 (generated by 5).
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3. Quadratic Reciprocity

In this section we will study quadratic congruences to prime moduli. When p is an odd prime, then
any quadratic congruence ax2 + bx + c ≡ 0 (mod p) (with p 6 |a) may be reduced by completing
the square to the simpler congruence y2 ≡ d (mod p), where d = b2− 4ac and y = 2ax+ b. So
solving quadratic congruences reduces to the problem of taking square roots.

3.1. Quadratic Residues and Nonresidues.

Definition 3.1.1. Let p be an odd prime and a an integer not divisible by p. We say that a is a
quadratic residue of p when x2 ≡ a (mod p) has at least one solution, and a quadratic nonresidue
otherwise.

Note that when a is a quadratic residue with b2 ≡ a (mod p) then the congruence x2 ≡ a
(mod p) has exactly two solutions, namely x ≡ ±b. For these are both solutions; they are
incongruent modulo p since b ≡ −b =⇒ 2b ≡ 0 =⇒ b ≡ 0 =⇒ a ≡ 0. (Here we
used that p 6= 2.) Lastly, there are no more solutions since p|x2 − a =⇒ p|x2 − b2 =⇒
p|(x− b)(x + b) =⇒ p|(x− b) or p|(x + b).

We can find the quadratic residues modulo p by reducing b2 modulo p for 1 ≤ b ≤ (p − 1)/2.
The other squares will repeat these (in reverse order), since (p−b)2 ≡ b2 (mod p). It follows that
exactly half the nonzero residues are quadratic residues and the other half quadratic nonresidues.
Examples: p = 11: the quadratic residues modulo 11 are:

12, 22, 32, 42, 52 ≡ 1, 4, 9, 5, 3 ≡ 1, 4,−2, 5, 3
while the quadratic nonresidues are 2, 6, 7, 8, 10 ≡ 2,−5,−4,−3,−1.
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p = 13: the quadratic residues modulo 13 are:

12, 22, 32, 42, 52, 62 ≡ 1, 4, 9, 3, 12, 10 ≡ 1, 4,−4, 3,−1,−3
while the quadratic nonresidues are ±2, ±5, ±6.

The reason for the patterns we see here will become apparent later.
Another way to see that exactly half the nonzero residues are quadratic residues is to use primitive

roots. Let g be a primitive root modulo p. Then the nonzero residues are gk for 0 ≤ k ≤ p− 2
and every integer not divisible by p is congruent to gk for some k in this range. The quadratic
residues are the gk for even k: that is, the powers of g2.

For example when p = 13 we may take g = 2, so g2 = 4 with successive powers 1, 4, 3, 12, 9, 10
(mod 13). These are the quadratic residues; to get the quadratic nonresidues multiply them
by g = 2 to get the odd powers 2, 8, 6, 11, 5, 7 (mod 13).

3.2. Legendre Symbols and Euler’s Criterion.

Definition 3.2.1. The Legendre Symbol

(
a

p

)
is defined as follows:

(
a

p

)
=

 +1 if p 6 |a and x2 ≡ a (mod p) has a solution
−1 if p 6 |a and x2 ≡ a (mod p) does not have a solution
0 if p|a

In all cases, the number of (incongruent) solutions to x2 ≡ a (mod p) is 1 +

(
a

p

)
.

Proposition 3.2.2. Let p be an odd prime.
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(a) a ≡ b (mod p) =⇒
(
a

p

)
=

(
b

p

)
.

(b) Euler’s Criterion:

(
a

p

)
≡ a(p−1)/2 (mod p).

(c)

(
−1
p

)
= (−1)(p−1)/2 =

{
+1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

.

(d)

(
ab

p

)
=

(
a

p

)(
b

p

)
.

Corollary 3.2.3. Let p be an odd prime.

If p ≡ 1 (mod 4) then

(
−a
p

)
=

(
a

p

)
for all a.

If p ≡ 3 (mod 4) then

(
−a
p

)
= −

(
a

p

)
for all a.

If we start to ask questions such as “for which primes p is 2 a quadratic residue?” then we are
led to one of the most famous results in elementary number theory. Experimental evidence for
small primes easily convinces one that the answer is “primes congruent to ±1 (mod 8)”:(

2

p

)
= +1 for p = 7, 17, 23, 31, 41, 47, 71, . . .(

2

p

)
= −1 for p = 3, 5, 11, 13, 19, 29, 37, 43, . . .
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More generally, the value of

(
a

p

)
for fixed a and variable p only depends on the residue of p

modulo 4a. This is one form of Gauss’s famous Law of Quadratic Reciprocity.

3.3. The Law of Quadratic Reciprocity.

Proposition 3.3.1. [Gauss’s Lemma] Let p be an odd prime and a an integer not divisible by p.

Then

(
a

p

)
= (−1)s, where s is the number of integers i with 0 < i < p/2 for which the least

residue of ai is negative.

Example: Take p = 13 and a = 11; then we reduce 11, 22, 33, 44, 55, 66 modulo 13 to
−2,−4,−6, 5, 3, 1. As expected by the proof of the Proposition, these are, up to sign, the

integers between 1 and 6. There are 3 minus signs, so

(
11

13

)
= (−1)3 = −1.

If p = 13 and a = 10 then we reduce 10, 20, 30, 40, 50, 60 to −3,−6, 4, 1,−2,−5 with four

negative values, so

(
10

13

)
= (−1)4 = 1. Indeed, 62 = 36 ≡ 10 (mod 13).

Corollary 3.3.2. Assume that a > 0, and set a′ = a if a is even, a′ = a − 1 if a is odd. Then(
a

p

)
= (−1)s where

s =

a′∑
k=1

[(kp)/(2a)] .
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Example: Take p = 13 and a = 11, so a′ = 10. Then

(
11

13

)
= (−1)s where s = [13/22] +

[26/22] + [39/22] + [52/22] + [65/22] + [78/22] + [91/22] + [104/22] + [117/22] + [130/22] ≡

0 + (1 + 1) + (2 + 2) + 3 + (4 + 4) + (5 + 5) ≡ 1 (mod 2), so

(
11

13

)
= −1.

We can use Corollary 3.3.2 to Gauss’s Lemma to evaluate

(
2

p

)
for all odd primes p.

Proposition 3.3.3. Let p be an odd prime. Then(
2

p

)
= (−1)(p2−1)/8 =

{
+1 if p ≡ ±1 (mod 8);
−1 if p ≡ ±3 (mod 8).

More generally, we can deduce that in general the value of

(
a

p

)
only depends on p (mod 4a),

our first form of quadratic reciprocity : although the definition of

(
a

p

)
is in terms of a (mod p),

it is far from obvious that it depends on p (mod 4a)!

Proposition 3.3.4. Let p and q be odd primes and a a positive integer not divisible by either p
or q. Then

p ≡ ±q (mod 4a) =⇒
(
a

p

)
=

(
a

q

)
.
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(For a < 0 a slightly modified result holds: exercise.)
The Law of Quadratic Reciprocity uses this result in the case that a is also prime to get a very

symmetric statement.

Theorem 3.3.5. [Quadratic Reciprocity] Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)(

p−1
2 )(q−12 ).

So

(
q

p

)
=

(
p

q

)
if p ≡ 1 or q ≡ 1 (mod 4), while

(
q

p

)
= −

(
p

q

)
if p ≡ q ≡ 3 (mod 4).

Since the Legendre symbol

(
a

p

)
is completely multiplicative in a for fixed p, to evaluate

(
a

p

)
for

all a we only need to know the values of

(
−1
p

)
,

(
2

p

)
and

(
q

p

)
, for odd primes q different from p.

The Law of Quadratic Reciprocity tells us how to evaluate each of these! Special cases of the
reciprocity law were conjectured by Euler on the basis of substantial calculations and knowledge,
but Gauss first proved it, and in fact gave several proofs.

Summary of Quadratic Reciprocity: If p and q are distinct odd primes then:

•
(
−1
p

)
= (−1)(p−1)/2 =

{
+1 if p ≡ 1 (mod 4);
−1 if p ≡ 3 (mod 4);

•
(
2

p

)
= (−1)(p2−1)/8 =

{
+1 if p ≡ ±1 (mod 8);
−1 if p ≡ ±3 (mod 8);
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•
(
q

p

)
=


+

(
p

q

)
if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4);

−
(
p

q

)
if both p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

Using QR we may easily answer questions of the form: Given a, for which p is

(
a

p

)
= 1? For

example: (
−2
p

)
=

(
−1
p

)(
2

p

)
=

{
+1 if p ≡ 1, 3 (mod 8);
−1 if p ≡ −1,−3 (mod 8).(

−3
p

)
=

(
−1
p

)(
3

p

)
=
(p
3

)
=

{
+1 if p ≡ 1 (mod 3);
−1 if p ≡ −1 (mod 3).(

3

p

)
=

(
−1
p

)(p
3

)
=

{
+1 if p ≡ ±1 (mod 12);
−1 if p ≡ ±5 (mod 12).

(Notice how

(
a

p

)
sometimes depends only on p modulo a rather than modulo 4a.)

Using Proposition 3.3.4 gives an alternative method of evaluating

(
a

p

)
for fixed a > 0. Take

a = 3, so we know that

(
3

p

)
only depends on ±p (mod 12); when p = 13 we have

(
3

13

)
= +1
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and when p = 5 we have

(
3

5

)
= −1; so

(
3

p

)
= +1 for all p ≡ ±1 (mod 12) and

(
3

p

)
= −1

for all p ≡ ±5 (mod 12).

When a < 0 it is also true that p ≡ q (mod 4a) =⇒
(
a

p

)
=

(
a

q

)
, but now p ≡ −q

(mod 4a) =⇒
(
a

p

)
= −

(
a

q

)
. (Apply Prop. 3.3.4 to −a to see this.) Hence we can evaluate(

a

p

)
for a < 0.

For example, take a = −5. Then

(
−5
p

)
depends on p modulo 20, giving ϕ(20) = 8 cases. Take

the primes p = 61, 3, 7, 29 which are congruent respectively to 1, 3, 7, 9 (mod 20); computing the

four Legendre symbols

(
−5
p

)
, we find that they are all +1. Hence(

−5
p

)
=

{
+1 if p ≡ 1, 3, 7, 9 (mod 20);
−1 if p ≡ 11, 13, 17, 19 (mod 20).

where the second line follows from the first by the “anti-symmetry” since −5 < 0.
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4. Diophantine Equations

A Diophantine Equation is simply an equation in one or more variables for which integer (or
sometimes rational) solutions are sought. For example:

• x2 + y2 = z2 has solutions (x, y, z) = (3, 4, 5), (5, 12, 13), . . . ;
• x3 + y3 = z3 has no solutions with x, y, z positive integers;
• x2 − 61y2 = 1 has infinitely many solutions with x, y > 0; the smallest has x = 1766319049

and y = 226153980.

We will use the techniques we have developed in earlier chapters, as well as one new one, to solve
a number of Diophantine equations all of which have had some historical interest. Their solution
has led to the development of much of modern algebra and number theory. The new technique
we will use is called the Geometry of Numbers.

4.1. Geometry of Numbers and Minkowski’s Theorem. We will use the geometry of Rn

and of certain subsets of it:

Definition 4.1.1. A lattice in Zn is a subgroup L ⊆ Zn of finite index.

The lattices we will use are all defined using congruence conditions on the coordinates of vectors
in Zn, and the index of the lattice will be determined from the moduli of these congruences
(example to follow soon). There are more general subsets of Rn called lattices, but we will not
need them.

Our general strategy will be to set up a lattice so that the coordinates give a “modular approxi-
mation” to the equation being solved; then to get an exact solution we require a second condition,
that the vector of coefficients is “small” in some sense. Minkowski’s Theorem will show that
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(under certain conditions) there are short lattice vectors, and we win. Its statement requires the
following definitions.

Definition 4.1.2. A subset S ⊆ Rn is symmetric if x ∈ S ⇐⇒ −x ∈ S, and convex if
x, y ∈ S =⇒ tx + (1− t)y ∈ S for all t with 0 ≤ t ≤ 1.

Here is the result from the geometry of numbers we will use to deduce the existence of solutions
to several Diophantine Equations:

Theorem 4.1.3. [Minkowski] Let L ≤ Zn be a lattice of index m, and let S ⊆ Rn be a bounded
convex symmetric domain. If S has volume v(S) > 2nm, then S contains a nonzero element
of L.

The same conclusion holds when v(S) = 2nm, provided that S is compact.

4.2. Sums of squares. In this section we will give an answer to the questions “which positive
integers can be expressed as a sum of 2 squares (S2S), or a sum of 3 squares (S3S), or a sum of
4 squares (S4S)”? In the 3-squares case we will only give a partial proof, since the full proof uses
concepts which we will not cover. The reason for the S3S case being harder is that the set of S3S
numbers is not closed under multiplication, while for S2S and S4S it is, which then essentially
reduces the question to the case of primes.

4.2.1. Sums of two squares. To ask whether an integer n is a sum of two squares, n = a2 + b2,
is the same as to ask whether it is the norm of a Gaussian Integer: n = a2 + b2 = N(α) where
α = a+ bi ∈ Z[i]. Using Theorem 1.5.14 on Gaussian primes, such an integer must be a product
of norms of Gaussian primes which are: 2, p for any prime p ≡ 1 (mod 4), and q2 for any
prime q ≡ 3 (mod 4). This proves the following:
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Theorem 4.2.1. The positive integer n may be expressed as a sum of two squares, n = x2+ y2,
if and only if ordq(n) is even for all primes q ≡ 3 (mod 4), or equivalently if and only if n = ab2

where a has no prime factors congruent to 3 (mod 4).

Remarks: One can similarly characterize positive integers of the form n = x2+2y2 as those such
that ordq(n) is even for all primes q ≡ 5, 7 (mod 8). Either a direct proof or one based on unique
factorization in the Euclidean Domain Z[

√
−2] is possible. A similar result holds for n = x2+3y2

(though is slightly harder to prove since Z[
√
−3] is not Euclidean). But the pattern does not

continue, and for general m it is a very hard problem to determine exactly which integers n, or
even which primes p, have the form x2 +my2. The study of this question leads on to algebraic
number theory, and in particular to the study of the arithmetic properties of quadratic number
fields.

Recall from Chapter 1 that the key to determining the Gaussian primes was a fact which we only
proved later (Theorem 2.4.2): that if p is a prime such that p ≡ 1 (mod 4) then p is a sum of
two squares. We proved this in Chapter 2 by using facts about Gaussian Integers, together with
the fact that for such primes the congruence x2 ≡ −1 (mod p) has a solution. Now we give a
different proof that p ≡ 1 (mod 4) =⇒ p = a2 + b2, as a first application of the Geometry of
Numbers.

Theorem 4.2.2. [=Theorem 2.4.2 again] Let p be a prime such that p ≡ 1 (mod 4). Then
there exist integers a and b such that p = a2 + b2.

Before applying Minkowski again to prove the four-square theorem below, we will briefly (and
incompletely) look at sums of three squares.
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4.2.2. Sums of three squares.

Proposition 4.2.3. Let n be a positive integer with n ≡ 7 (mod 8). Then n is not a sum of
three squares, and nor is any integer of the form 4kn with n ≡ 7 (mod 8).

The converse of this result is true: every positive integer not of the form 4kn with n ≡ 7
(mod 8) can be written as a sum of three squares. But this is harder to prove and we omit it.
Instead we turn to sums of four squares.

4.2.3. Sums of four squares.

Theorem 4.2.4. [Lagrange] Every positive integer may be expressed as a sum of four squares.

Note that 0 is allowed as one of the squares. The theorem will follow from the following
Lemma 4.2.5, which reduces the problem to expressing all primes as S4S, and Proposition 4.2.6
which shows that all primes are S4S.

Lemma 4.2.5. If m = a21+ a
2
2+ a

2
3+ a

2
4 and n = b21+ b

2
2+ b

2
3+ b

2
4 then mn = c21+ c

2
2+ c

2
3+ c

2
4

where

c1 = a1b1 + a2b2 + a3b3 + a4b4
c2 = a1b2 − a2b1 + a3b4 − a4b3
c3 = a1b3 − a3b1 − a2b4 + a4b2
c4 = a1b4 − a4b1 + a2b3 − a3b2.

Proposition 4.2.6. Every prime number may be expressed as a sum of four squares.
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4.3. Legendre’s Equation. Here is an example of an equation with no nontrivial solutions.

Example: The equation x2 + y2 = 3z2 has no integer solutions except x = y = z = 0.
For suppose that (x, y, z) is a nonzero solution. Then we may assume that gcd(x, y) = 1 since

if both x and y were divisible by some prime p, then p2|3z2 and so p|z, so we could divide through
by p2 to get the smaller nontrivial solution (x/p, y/p, z/p). Next, neither x nor y is divisible
by 3 (since if either is then so would the other be). This implies x ≡ ±1 (mod 3) and y ≡ ±1
(mod 3), so x2 + y2 ≡ 1 + 1 = 2 6≡ 0 (mod 3), contradicting x2 + y2 = 3z2.

We have used two properties of the number 3 here: that it is square-free (so p2|3z2 =⇒ p|z)
and that x2 + y2 ≡ 0 (mod 3) =⇒ x ≡ y ≡ 0 (mod 3). So the same argument works for the
equations x2 + y2 = qz2 where q is any prime congruent to 3 (mod 4).

The general equation

(4.3.1) ax2 + by2 = cz2

with a, b, c ∈ N has been studied since the 19th century, and is known as Legendre’s Equation.
There is a simple criterion for the existence of nontrivial solutions in terms of congruences modulo
a, b and c. By a solution to (4.3.1) we will always mean a solution other than the trivial one
(x, y, z) = (0, 0, 0). By homogeneity, (x, y, z) satisfies (4.3.1) if and only if (rx, ry, rz) also does
for any r 6= 0; a solution will be called primitive if gcd(x, y, z) = 1.

First we reduce to the case where a, b, c are pairwise coprime and square-free:

• If d = gcd(a, b) > 1 then (x, y, z) satisfies (4.3.1) if and only if (dx, dy, z) satisfies the similar
equation with coefficients (a/d, b/d, cd). Similarly if gcd(a, c) > 1 or gcd(b, c) > 1. Note
that the product abc is reduced (by a factor d) in each case, so after a finite number of such
steps we may assume that a, b, c are pairwise coprime.
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• If d2|a then (x, y, z) satisfies (4.3.1) if and only if (dx, y, z) satisfies the similar equation with
coefficients (a/d2, b, c). Similarly with square factors of b or c, so we can assume that each
of a, b, c is square-free.

Theorem 4.3.1. Let a, b, c ∈ N be pairwise coprime and square-free. Then a non-trivial solution
to (4.3.1) exists if and only if each of the quadratic congruences

x2 ≡ bc (mod a), x2 ≡ ac (mod b), x2 ≡ −ab (mod c)

has a solution.

Our proof just fails to show that there always is a solution satisfying the inequalities |x| ≤
√
bc,

|y| ≤
√
ac, |z| ≤

√
ab, because of the adjustment needed at the end; however there is always

such a “small” solution (proof omitted).

To make the proof constructive, we would need to have a method for finding short vectors in
lattices. Such methods do exist (the most famous is the LLL method named after Lenstra, Lenstra
and Lovasz) and have a huge number of applications in computational number theory and crypto-
graphy. One reason that lattice-based methods are becoming popular in cryptography is that they
are “quantum-resistant”, meaning that no-one (yet!) knows how to solve problems such as the
SVP (Shortest Vector Problem) using a quantum computer, unlike the case for factorization-based
methods such as RSA.

4.4. Pythagorean Triples. A classical problem is to find all right-angled triangles all of whose
sides have integral length. Letting the sides be x, y and z this amounts (by Pythagoras’s Theorem)
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to finding positive integer solutions to the Diophantine equation

(4.4.1) x2 + y2 = z2.

A solution (x, y, z) is called a Pythagorean Triple. For example, (3, 4, 5) is a Pythagorean Triple.
Clearly if (x, y, z) is a Pythagorean Triple then so is (kx, ky, kz) for all k ≥ 1, and to avoid

this trivial repetition of solutions we will restrict to Primitive Pythagorean Triples which have the
additional property that gcd(x, y, z) = 1. From (4.4.1) it then follows that x, y, z are pairwise
coprime, since a prime divisor of any two would have to divide the third.

Finally, in any primitive Pythagorean Triple, exactly one of x and y is even, the other odd; for
they are not both even by primitivity, and cannot both be odd for then x2 + y2 ≡ 2 (mod 4), so
x2 + y2 could not be a square. By symmetry we only consider triples with x and z odd, y even.

The following result shows how to parametrize all primitive Pythagorean Triples.

Theorem 4.4.1. Let u and v be positive coprime integers with u 6≡ v (mod 2) and u > v. Set

x = u2 − v2; y = 2uv; z = u2 + v2.

Then (x, y, z) is a primitive Pythagorean Triple. Conversely, all primitive Pythagorean Triples are
obtained in this way for suitable u and v.

We will see an application of our parametrization of Pythagorean triples to the Fermat equation
x4 + y4 = z4 in the next section. This case of Fermat’s Last Theorem says that there are no
Pythagorean Triples with all three integers perfect squares.

An alternative approach to the previous Theorem is to use the Gaussian Integers Z[i]. Suppose
x2 + y2 = z2 with gcd(x, y) = 1 and z odd. Then z2 = (x+ yi)(x− yi), and the factors on the
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right are coprime: for if α|x + yi and α|x − yi for some α ∈ Z[i], then α|2x and α|2yi, from
which α|2 since gcd(x, y) = 1 and i is a unit. But gcd(z, 2) = 1 so α is a unit.

Now each of x ± yi must be a square or a unit times a square, since they are coprime and
their product is a square and Z[i] is a UFD. If x + yi = ±(u + vi)2 then x = ±(u2 − v2)
and y = ±2uv; if x + yi = ±i(u + vi)2 then x = ∓2uv and y = ±(u2 − v2). The proof that
gcd(u, v) = 1 and u 6≡ v (mod 2) is as before, or follows from the fact that u + vi and u − vi
are coprime in Z[i].

Other similar equations may be solved by the same method. For example, all primitive solutions
to x2 + 2y2 = z2 are obtained from (x, y, z) = (±(u2 − 2v2),±2uv,±(u2 + 2v2)). This can be
proved using the UFD Z[

√
−2] or by elementary means.

4.5. Fermat’s Last Theorem. After our success in finding all solutions to the equation x2+y2 =
z2, it is natural to turn to analogous equation for higher powers. So we ask for solutions in positive
integers to the equation

(4.5.1) xn + yn = zn with n ≥ 3.

Fermat claimed, in the famous marginal note to his edition of the works of Diophantus, that
there are no solutions to (4.5.1). The result is known as Fermat’s Last Theorem: it is the last of
Fermat’s unproved claims to be proved (or disproved). Since 1994 it has become possible to state
the result as a Theorem:

Theorem 4.5.1. [Fermat’s Last Theorem; Wiles and Taylor–Wiles, 1994] Let n ≥ 3. Then there
are no solutions in positive integers to the equation xn + yn = zn.
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The only case which we know that Fermat proved is n = 4, which we will prove below. Euler
proved the case n = 3, using arithmetic in the ring Z[

√
−3], though there is some doubt as to

the validity of Euler’s argument at a crucial step where he tacitly assumed that this ring had
unique factorization (which it does not). Subsequent work by Dirichlet, Legendre, Kummer and
many others settled many more exponents, at the same time creating most of modern algebraic
number theory and algebra. By 1987, the Theorem was known to be true for all n ≤ 150000. In
1986, an unexpected connection was found, by Frey, between the Fermat equation and another
class of Diophantine equation called Elliptic curves. A solution to Fermat’s equation would lead
to the existence of an elliptic curve with properties so strange that they would contradict widely-
believed, but then unproved, conjectures about elliptic curves. This connection was proved by
Ribet. Finally, Andrew Wiles, with the help of Richard Taylor, proved the elliptic curve conjecture,
firmly establishing the truth of Fermat’s Last theorem.

We will prove the case n = 4 of the theorem.

Theorem 4.5.2. [Fermat’s Last Theorem for exponent 4] The equation x4 + y4 = z4 has no
solutions in positive integers.

We will prove a stronger statement: x4 + y4 cannot be a square, let alone a 4th power:

Theorem 4.5.3. The equation x4 + y4 = z2 has no solutions in positive integers.

Corollary 4.5.4. Let n ∈ N be a multiple of 4. Then there are no solutions in positive integers
to the equation xn + yn = zn.
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Now to prove Fermat’s Last Theorem in general it suffices to show that the equation xp+yp = zp

has no positive integer solutions for each odd prime p, since every n ≥ 3 is divisible either by 4 or
by an odd prime, and impossibility for a divisor of n implies impossibility for n itself.

4.6. Proof of Minkowski’s Theorem. There are several ways to prove Minkowski’s Theo-
rem 4.1.3, all of which are based on a continuous analogue of the pigeon-hole principle. We’ll use
a preliminary result called Blichfeld’s Theorem:

Theorem 4.6.1. [Blichfeld’s theorem] Let S be a bounded subset of Rn whose volume v(S)
exists and satisfies v(S) > m for some integer m ≥ 1. Then there exist m + 1 distinct points
x0, x1, . . . , xm ∈ S such that xi − xj ∈ Zn for all i, j.
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5. p-adic Numbers

5.1. Motivating examples. We all know that
√
2 is irrational, so that 2 is not a square in the

rational field Q, but that we can enlarge Q to the real field R where 2 is a square. In R, we may
represent irrational numbers by (non-terminating, non-recurring) decimal expansions:

√
2 = 1.414213562373 · · · = 1 + 4 · 10−1 + 1 · 10−2 + 4 · 10−3 + 2 · 10−4 + . . .

In general, real numbers are expressible as

x = ±
n∑

k=−∞

ak10
k,

where the digits ak ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; there are only finitely many terms with k > 0,
but may be infinitely many with k < 0; the series always converges in R; and the sequence of
digits (ak) is usually uniquely determined by x. (The exceptions are numbers x with finite decimal
expansions, where we can replace the tail . . . a000 . . . with . . . (a− 1)999 . . . .)

Another way of thinking about the decimal expansion of the irrational number
√
2 is to say that√

2 is the limit of a sequence (xk) of rational numbers: x0 = 1, x1 = 14/10, x2 = 141/100,
. . . . This is a Cauchy sequence of rational numbers, and has no limit in Q, but does have a
limit

√
2 = limk→∞ xk in the larger complete field R. The rational numbers xk are rational

approximations to
√
2, each being a better approximation than the previous one:

|
√
2− xk| ≤ 10−k.
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As a first example of a p-adic number for p = 7, we consider the quadratic congruences

x2 ≡ 2 (mod 7k)

for k = 1, 2, 3 . . . . When k = 1 there are two solutions: x = x1 ≡ ±3 (mod 7). Any
solution x2 to the congruence modulo 72 must also be a solution modulo 7, hence of the form
x2 = x1 + 7y = ±3 + 7y; choosing x1 = 3 gives x2 = 3 + 7y, which must satisfy

0 ≡ x22 − 2 ≡ (3 + 7y)2 − 2 ≡ 7(1 + 6y) (mod 72);

equivalently, 1 + 6y ≡ 0 (mod 7) with unique solution y ≡ 1 (mod 7); so x2 = 3 + 1 · 7 = 10.
Continuing in a similar way, setting x3 = x2 + 72y and substituting, we find that x23 ≡ 2

(mod 73) ⇐⇒ y ≡ 2 (mod 7), so x3 ≡ x2 + 2 · 72 ≡ 108 (mod 73). The process may be
continued indefinitely. At each stage there is a unique solution, so (after fixing the initial choice
of x1 = 3) we find, uniquely,

x1 = 3 = 3,

x2 = 10 = 3 + 1 · 7,
x3 = 108 = 3 + 1 · 7 + 2 · 72,
x4 = 2166 = 3 + 1 · 7 + 2 · 72 + 6 · 73, . . .

The general formula is xk+1 ≡ x2k + xk − 2 (mod 7k+1).
What happens “in the limit”? Does it even make sense to talk about the limit of the sequence
xk? Certainly there can be no single integer x satisfying x2 ≡ 2 (mod 7n) simultaneously for
all n ≥ 1, for then x2− 2 would be divisible by arbitrarily large powers of 7 which is only possible
when x2− 2 = 0. Also, the infinite series 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . does not converge in the
normal sense, since the successive terms do not tend to 0.
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We will define a new kind of number called a p-adic number, for each prime p. The p-adic
integers will form a ring Zp, which contains Z; there is one such ring for each prime p. In the ring
Z7 of 7-adic integers, our sequence 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . will converge to a 7-adic limit,
so that the equation x2 = 2 has a solution in Z7. The solution can be expressed as an infinite
7-adic expansion:

x = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 74 + 2 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + . . .

=

∞∑
k=0

ak7
k,

where the “digits” ak are all in the set {0, 1, 2, 3, 4, 5, 6} and are uniquely determined after fixing
x ≡ 3 (mod 7): a0 = 3, a1 = 1, a2 = 2, a3 = 6, . . . .

The ring Zp has a field of fractions Qp, which contains the rational field Q. In fact, Qp may be
constructed directly from Q by a process similar to the construction of the real numbers as the
set of limits of Cauchy sequences of rationals. R is the completion of Q, complete in the usual
analytic sense that Cauchy sequences converge in R. Just as one can define the real numbers as
(equivalence classes of) Cauchy sequences of rational numbers, we will start by defining p-adic
integers as equivalence classes of suitable sequences of ordinary integers.

5.2. Definition of Zp. Fix, once and for all, a prime number p.

Definition 5.2.1. A p-adic integer α is defined by a sequence of integers xk for k ≥ 1

α = {xk}∞k=1 = {x1, x2, x3, . . . },
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satisfying the conditions

(5.2.1) xk+1 ≡ xk (mod pk) for all k ≥ 1,

with two sequences {xk} and {yk} determining the same p-adic integer α if and only if

xk ≡ yk (mod pk) for all k ≥ 1.

The set of p-adic integers is denoted Zp.

An integer sequence satisfying (5.2.1) will be called coherent. Thus, each p-adic integer is
actually an equivalence class of coherent sequences of ordinary integers, any one of which may be
used to represent it. The representation of a p-adic integer x = {xk} will be called reduced if
0 ≤ xk < pk for all k ≥ 1. Every p-adic integer has a unique reduced representation.

The ordinary integers Z embed into Zp as constant sequences, via x 7→ {x, x, x, . . . }; this map
is injective since if x, y ∈ Z satisfy x ≡ y (mod pk) for all k ≥ 1, then x = y. So we can view
Z as a subset of Zp. We may call elements of Z rational integers to distinguish them from p-adic
integers.

Examples: Take p = 3. Here are three elements of Z3:

α = 40 = {40, 40, 40, 40, 40, . . . } = {1, 4, 13, 40, 40, . . . };
β = −1 = {−1,−1,−1,−1,−1, . . . } = {2, 8, 26, 80, 242, . . . };
γ =? = {1, 7, 16, 70, 151, . . . }.
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the last representation is reduced in each case. Later we will see that γ is actually a representation
of the rational number −7/8! In the reduced representation of −1, notice that

2 = 3− 1 = 2,

8 = 32 − 1 = 2 + 2 · 3,
26 = 33 − 1 = 2 + 2 · 3 + 2 · 32,
80 = 34 − 1 = 2 + 2 · 3 + 2 · 32 + 2 · 33,
242 = 35 − 1 = 2 + 2 · 3 + 2 · 32 + 2 · 33 + 2 · 34,

suggesting that the limiting value of the sequence xk is 2(1 + 3 + 32 + 33 + . . . ). This geometric
series does not converge in the usual sense; but if it did converge, the usual formula would give
as its sum the correct value 2/(1 − 3) = −1. We will see later that this is a perfectly valid
computation within the field Q3 of 3-adic numbers.

It follows from the coherence condition (5.2.1) that α = {x1, x2, x3, . . . } = {x2, x3, x4, . . . }!
In other words, we can shift the sequence any number of steps, or even delete any finite number
of terms without affecting the value. At first sight this seems strange, but if you think of the
value of α as being the limit of the sequence (xk) (which we will later see to be the case), then
it is natural.

We will see this index-shifting in action in proving some facts about p-adic numbers soon.

As suggested by the second example above, we now consider an alternative representation of a
p-adic integer α with reduced representation {xk}. Writing xk to base p, we have

(5.2.2) xk = a0 + a1 · p + a2 · p2 + · · · + ak−1 · pk−1
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with each “digit” ai ∈ {0, 1, 2, . . . , p− 1}. The coherency condition (5.2.1) implies that x1 = a0,
x2 = a0 + a1p, x3 = a0 + a1p + a2p

2, and so on, with the same digits ai. So each α ∈ Zp
determines a unique infinite sequence of p-adic digits (ai)

∞
i=0 with 0 ≤ ai ≤ p− 1, and conversely

every such digit sequence determines a unique p-adic integer α = {xk} via (5.2.2). In the
examples, the 3-adic digits of α = 40 = 1 + 3 + 32 + 33 are 1, 1, 1, 1, 0, 0, . . . (effectively a finite
sequence), those of β = −1 form the infinite recurring sequence 2, 2, 2, 2, 2, . . . and those of
γ = 1 + 2 · 3 + 32 + 2 · 33 + 34 + . . . are 1, 2, 1, 2, 1, . . . .

We will write α = {xk} =
∑∞

i=0 aip
i when the p-adic digits of α are ai, so that xk =

∑k−1
i=0 aip

i

for k ≥ 1. For now, this infinite series should be regarded as just a formal expression or shorthand.

5.3. The ring Zp. To add and multiply p-adic integers, just add and multiply the representative
sequences termwise:

{xk} + {yk} = {xk + yk};
{xk} · {yk} = {xkyk}.

One must check that the sequences on the right are coherent (in the sense of (5.2.1)), and that
replacing {xk} or {yk} by an equivalent sequence does not change the equivalence classes of the
sequences on the right: these are straightforward exercises, as are the verifications that all the
ring axioms hold. For example, the negative of α = {xk} is just −α = {−xk}. Expressing these
operations in terms of the expansions α =

∑
aip

i is not so easy: we will see examples later.
This gives Zp the structure of a commutative ring, with Z as a subring. The factorization theory

of p-adic integers turns out to be rather simple. There are no zero-divisors:

Proposition 5.3.1. Zp is an integral domain.
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Next we determine the units U(Zp):

Proposition 5.3.2. Let α = {xk} =
∑
aip

i ∈ Zp. The following are equivalent:

(i) α ∈ U(Zp);
(ii) p 6 |x1;

(iii) p 6 |xk for all k ≥ 1;
(iv) a0 6= 0;

Examples: If a ∈ Z with p 6 |a, then a is a p-adic unit. Its inverse is given by the coherent
sequence {xk} where xk satisfies axk ≡ 1 (mod pk) for k ≥ 1.

For example, 3 is a 5-adic unit, so 1/3 ∈ Z5. To find the terms xk in its defining sequence
for k ≤ 4, solve 3x4 ≡ 1 (mod 54) to get x4 = 417. Reducing this modulo lower powers of 5
then gives the start of the sequence in reduced form: 1/3 = {2, 17, 42, 417, . . . }. And since
417 = 2+ 3 · 5+ 52+3 · 53, the 5-adic digits of 1/3 start 2, 3, 1, 3, . . . . In fact the digit sequence
recurs: 2, 3, 1, 3, 1, 3, 1, 3, 1, 3 . . . . We can verify this by summing the series:

1 + (1 + 3 · 5)(1 + 52 + 54 + . . . ) = 1 + 16/(1− 25) = (24− 16)/24 = 1/3.

As another example, expanding −7/8 in Z3 gives the example denoted γ above (exercise).

It is easy to tell whether a p-adic integer is divisible by p, or by a power of p:

Proposition 5.3.3. For α = {xk} ∈ Zp:
(i) p|α ⇐⇒ α /∈ U(Zp) ⇐⇒ x1 ≡ 0 (mod p) ⇐⇒ xk ≡ 0 (mod p) (∀k ≥ 1);

(ii) for n ≥ 1, pn|α ⇐⇒ xn ≡ 0 (mod pn) ⇐⇒ xk ≡ 0 (mod pn) (∀k ≥ n).
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Now we know that every p-adic integer is either a unit or a multiple of p, but never both. From
this we can show that Zp is a UFD, with p the only prime:

Theorem 5.3.4. Zp is a UFD (unique factorization domain). The only irreducible (prime) ele-
ment, up to associates, is p.

That is, every nonzero element α ∈ Zp may be uniquely expressed as α = pmε where m ∈ Z,
m ≥ 0 and ε ∈ U(Zp).

Every rational number r = b/a with a, b ∈ Z and p 6 |a is also in Zp, since both a and b are, and a
is a p-adic unit. We have b/a = {xk} where axk ≡ b (mod pk) for k ≥ 1. The rational numbers
r which have this form are those for which ordp(r) ≥ 0, since ordp(b/a) = ordp(b) − ordp(a).
These are called p-integral rational numbers. Define

Rp =
{n
d
∈ Q : p 6 |d

}
= {x ∈ Q | ordp(x) ≥ 0}.

The set Rp of p-integral rationals is a subring both of Q and of Zp. Within Zp they may be
recognized as the p-adic integers whose digit sequence is ultimately periodic (just as the rationals
are the real numbers with ultimately periodic decimal expansions).

Proposition 5.3.5. Rp is a ring, with Z ⊂ Rp ⊂ Q, and Z ⊂ Rp ⊂ Zp. Also, Rp = Zp ∩Q.

Corollary 5.3.6. (a) Every rational number is in Zp for all but a finite number of primes p.
(b)
⋂
p∈PRp = Z.

We now extend the function ordp, which we have already defined on Z and on Q, to Zp. Since
the prime p is fixed we may sometimes write ord instead of ordp.



64 J. E. CREMONA

Definition 5.3.7. For nonzero α ∈ Zp we define ordp(α) = m where m is the largest integer for
which pm|α (in Zp). We also set ordp(0) =∞.

So ordp(α) = m ≥ 0 is the power of p appearing in its factorization α = pmε. This definition
agrees with the old definition of ordp for rationals when α ∈ Zp ∩Q = Rp.

Proposition 5.3.8. The function ordp : Zp → N0 ∪ {∞} has the following properties:
(1) for n ∈ Z (or Q), this definition of ordp(n) agrees with the one in Chapter 1;
(2) ordp(αβ) = ordp(α) + ordp(β);
(3) α|β ⇐⇒ ordp(α) ≤ ordp(β);
(4) ordp(α + β) ≥ min{ordp(α), ordp(β)}, with equality if ordp(α) 6= ordp(β).

We can also consider congruences in Zp. The next proposition shows that these are effectively
the same as congruences in Z modulo powers of p.

Proposition 5.3.9. For each m ≥ 0, every α ∈ Zp is congruent modulo pm to a unique integer
n with 0 ≤ n < pm. Moreover there is a ring isomorphism

Zp/pmZp ∼= Z/pmZ.

5.4. The field Qp. Since the ring Zp is an integral domain we can form its field of fractions, the
field of p-adic numbers Qp:

Qp = {α/β | α, β ∈ Zp, β 6= 0}.
This forms a field under the usual rules for arithmetic of fractions, with Zp as a subring and Q as
a subfield. Since every nonzero p-adic integer has the form pnε with ε a p-adic unit, we see that
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the nonzero elements of Qp all have the form x = pmε where now the exponent m is an arbitrary
integer. We extend the order function from Zp to a function ordp : Qp → Z ∪ {∞} by setting
ordp(x) = m. So Zp = {x ∈ Qp | ordp(x) ≥ 0} (including 0 since ordp(0) = ∞.) Parts (2) and
(4) of Proposition 5.3.8 still apply.

{0} ⊂ · · · ⊂ p3Zp ⊂ p2Zp ⊂ pZp ⊂ Zp ⊂ p−1Zp ⊂ p−2Zp ⊂ p−3Zp · · · ⊂ Qp.

Let x ∈ Qp \ Zp, so ordp(x) = −m < 0 and x = p−mε with ε ∈ U(Zp). Write ε = a + pmβ
with β ∈ Zp and a ∈ Z; by Proposition 5.3.9 this is uniquely possible with 0 ≤ a < pm, and
since ε is a unit, p 6 |a. Now

x = p−mε = p−m(a + pmβ) =
a

pm
+ β;

so all p-adic numbers may be written (uniquely) as a p-adic integer plus a fractional part which is
an ordinary rational number r satisfying 0 ≤ r < 1, with denominator a power of p.

Example: Let x = 1
10 ∈ Q5, with ord5(x) = −1. Then 5x = 1

2 = 3 + 2 · 5 + 2 · 52 + 2 · 53 + . . .
(using the method of earlier examples), so

x = 3 · 5−1 + 2 + 2 · 5 + 2 · 52 + . . . ,

with fractional part 3
5 and 5-integral part x− 3

5 = −
1
2 = 2 + 2 · 5 + 2 · 52 + . . . .

Secondly, let x = 1
100 ∈ Q5, so ord5(x) = −2 and 52x = 1

4 ∈ Z5. To find the fractional part
of x we approximate 1

4 modulo 52 by solving 4y ≡ 1 (mod 25) to get y ≡ 19 (mod 25). Then
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x− 19
25 =

1−4·19
100 = −75

100 = −3
4 ∈ Z5, so the fractional part of x is 19

25 and the 5-integral part is −3
4.

(You can also get this by squaring 1
10.)

We may use the ordp function on Qp to define a metric (distance function) and hence a topology
on Qp. Then we may talk about convergence, continuity and such like; in particular, we will be
able to justify the computations with infinite series we have seen in earlier examples. The key idea
is that of a norm on a field.

Definition 5.4.1. Let F be a field. A norm on F is a function x 7→ ‖x‖ from F to the real
numbers satisfying the following properties:

(i) Positivity: ‖x‖ ≥ 0, and ‖x‖ = 0 ⇐⇒ x = 0;
(ii) Multiplicativity: ‖xy‖ = ‖x‖ ‖y‖;

(iii) Triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖.

For example, the usual absolute value |x| is a norm on the fields Q, R and C. We sometimes
write this as |x|∞ by analogy with the p-adic norms introduced below. The trivial norm, defined
by ‖x‖ = 1 for all nonzero x, is a norm on any field. Note that the multiplicativity and positivity
always imply that ‖1‖ = ‖−1‖ = 1, so that ‖−x‖ = ‖x‖ for all x ∈ F .

Given a norm ‖·‖ on F , we may use it to define a metric or distance function on F , by setting
d(x, y) = ‖x− y‖ for x, y ∈ F . This has the following properties:

(i) Positivity: d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y;
(ii) Symmetry: d(x, y) = d(y, x);

(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).
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The field F , equipped with the metric from a norm on F , becomes a metric space, and hence
also a topological space, so that we may consider such concepts as convergence of sequences and
continuous functions on F . If F has more than one norm, this will lead to different metrics and
(in general) different topologies on F . However, if we just replace a norm ‖x‖ by ‖x‖α for a
positive real number α, then the metrics will be equivalent (in the sense of metric spaces) and the
topologies the same. We call a pair of norms which are related in this way equivalent.

We now introduce the p-adic norms on the field Q. Fix a prime number p. Recall that the
function ordp : Q→ Z ∪ {∞} has the following properties; these also hold in Qp.

Lemma 5.4.2. (1) ordp(xy) = ordp(x) + ordp(y);
(2) ordp(x + y) ≥ min{ordp(x), ordp(y)}, with equality if ordp(x) 6= ordp(y).

Definition 5.4.3. Let p be a prime. For nonzero x ∈ Qp we define the p-adic norm of x to be

|x|p = p−ordp(x),

and set |0|p = 0.

Proposition 5.4.4. For each prime p the p-adic norm is a norm on Q and on Qp. It satisfies the
following stronger form of the triangle inequality:

|x + y|p ≤ max{|x|p , |y|p}.
The associated p-adic metric d(x, y) = |x− y|p on Qp satisfies

d(x, z) ≤ max{d(x, y), d(y, z)},
with equality if d(x, y) 6= d(y, z).
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A norm or metric which satisfies this stronger form of the triangle inequality is called non-
Archimedean, in contrast to more familiar Archimedean metrics. This inequality is sometimes
known as the “isosceles triangle principle”, since it implies that in a space with a non-Archimedean
metric every triangle is isosceles!.

Example: Consider the 5-adic norm on Q. Take x = 3
10 and y = 40. Since ord5(x) = −1 and

ord5(y) = 1 we have |x|5 = 5 and |y|5 = 5−1. The third side of the “triangle” with vertices 0, x,
y has length |x− y|5. Now x− y = −397

10 so ord5(x− y) = −1, and hence |x− y|5 = 5 = |x|5.
Exercise: Prove the Product Formula: for every nonzero x ∈ Q we have

|x|∞
∏
p∈P

|x|p = 1.

The main theorem on norms on the rational field Q states that (up to equivalence) the only
norms are the ones we have seen:

Theorem 5.4.5. [Ostrowski’s Theorem] Every nontrivial norm on Q is equivalent either to the
standard absolute value |x| or to the p-adic norm |x|p for some prime p. All these norms are
inequivalent.

We omit the proof. The idea is that if ‖n‖ ≥ 1 for all nonzero n ∈ Z, then one can show that
‖x‖ = |x|α∞ for some α > 0, while if ‖n‖ < 1 for some n > 1 then the least such n must be a

prime p, and ‖x‖ = βordp(x) where β = ‖p‖.
One can prove that Qp, with the p-adic metric, is complete. In fact, an alternative construction

of Qp is to start with the p-adic metric on Q and form the completion of Q with respect to this



MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 69

metric; this is entirely analogous to the construction of the real numbers by completing Q with
respect to the usual metric. Either way we end up with a complete field Qp in which Q is dense
(we prove this below).

The theory of p-adic analysis has many counter-intuitive features, such as the fact that every
p-adic triangle is isosceles. Another one is: a series

∑∞
n=1 an with terms an ∈ Qp converges if

and only if the terms tend to zero, i.e. limn→∞ an = 0. We will prove a special case of this in the
next proposition.

Rather than continuing with this analytic theory, however, we will content ourselves with some
examples, which in particular show that the earlier computations we carried out with power series
are valid in Qp, once we have equipped it with its (p-adic) metric.

Proposition 5.4.6. (1) Let α ∈ Zp be given by a coherent sequence {xk} of integers. Then
limk→∞ xk = α, the limit being in the p-adic topology on Zp.

(2) Let (ai)
∞
i=0 be a sequence of integers with 0 ≤ ai ≤ p − 1 for all i ≥ 0. Then the series∑∞

i=0 aip
i converges in Zp to the p-adic integer α = {xk}, where xk =

∑k−1
i=0 aip

i.

Corollary 5.4.7. Every p-adic integer in Zp is the limit of a convergent sequence of rational
integers. Every p-adic number in Qp is the limit of a sequence of rational numbers.

In other words, Z is dense in Zp, and Q is dense in Qp.
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Examples:
√
2 = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 74 + 2 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + · · · ∈ Z7;

40 = 1 + 3 + 9 + 27 ∈ Z3 (a finite sum);

−1 = 2(1 + 3 + 32 + 33 + . . . ) ∈ Z3;

−7
8
= 1 + 2 · 3 + 32 + 2 · 33 + 34 + · · · ∈ Z3;

1

3
= 2 + 3 · 5 + 52 + 3 · 53 + 54 + 3 · 55 + 56 + · · · ∈ Z5;

1

10
= 3 · 5−1 + 2 + 2 · 5 + 2 · 52 + · · · ∈ Q5;

5.5. Squares in Zp. The method we used in Section 5.1 to find the 7-adic approximation to
√
2

is valid more generally. The case p = 2 is harder, so we start with odd primes.

Proposition 5.5.1. Let p be an odd prime and α = {xk} ∈ U(Zp). Then there exists β ∈ Zp
with α = β2 if and only if

(
x1
p

)
= +1 (x1 is a quadratic residue modulo p). In particular, every

rational integer which is a quadratic residue modulo p is a p-adic square.

An equivalent condition to

(
x1
p

)
= +1 is

(
a0
p

)
= +1 where a0 is the first p-adic digit of α,

since α ≡ x1 ≡ a0 (mod p). For α ∈ Zp we define

(
α

p

)
=

(
a0
p

)
=

(
x1
p

)
.
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Remark: A square unit in Zp must have exactly two square roots, since Zp is an integral domain,
so the polynomial x2−α cannot have more than 2 roots. In the proof of the proposition one can
see that after making an initial choice of y1 as one of two possible choices for the square root
modulo p, at all subsequent steps there is a unique choice.

An alternative approach to finding p-adic square roots is to start with a value y = y1 which is
a “first-order approximation”, meaning a solution to y2 ≡ α (mod p), and then iterate the map
y 7→ y′ = y + u(y2 − α) where u satisfies 1 + 2uy1 ≡ 0 (mod p). At each step we obtain a
better approximation, and in the limit we obtain an exact solution. To see why this works, the
computation

(y′)2 − α = (y + u(y2 − α))2 − α = (y2 − α)(1 + 2uy) + u2(y2 − α)2

shows that the valuation of y2−α strictly increases at each step, so β = lim y satisfies β2−α =
lim(y2 − α) = 0.

Examples: 1. Taking p = 7 and α = 2 we see that 2 is a 7-adic square since

(
2

7

)
= 1. One

square root is β = 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . (see the calculation done in Section 5.1) and
the other is −β = 4 + 5 · 7 + 4 · 72 + 0 · 73 . . . .

2. Take p = 3 and α = −2. Using the second approach, take y = 1 which satisfies
y2 ≡ −2 (mod 3) as a first approximation. Let u = 1 so that 1 + 2uy ≡ 0 (mod 3), and
iterate y 7→ y + u(y2 − α) = y2 + y + 2. The first few values of y are (reducing the k’th one
modulo 3k):

1, 4, 22, 22, 22, 508, 508, 2695, . . . .
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Expanding 2695 to base 3 gives the expansion√
−2 = 1 + 3 + 2 · 32 + 2 · 35 + 37 + · · · ∈ Z3

where the next nonzero term is a113
11 since 26952+2 = 311 · 41, so |

√
−2− 2695|3 = 3−11. (The

last statement should be checked carefully.)

Now we have identified the p-adic units which are squares, it is a simple matter to determine all
the squares in Zp.

Proposition 5.5.2. Let p be an odd prime. Let α = pmε be a nonzero p-adic integer with

m = ord(α) and ε ∈ U(Zp). Then α is a square in Zp if and only if m is even and

(
ε

p

)
= 1.

The case of 2-adic squares is a little different: for a 2-adic unit to be a square, it is not sufficient
to be a square modulo 2 (which is true for all 2-adic units since they are all congruent to 1
(mod 2)); they must be congruent to 1 modulo 8. This is due to the fact that odd integer squares
are all congruent to 1 modulo 8. The next result is that being congruent to 1 (mod 8) is sufficient
for a 2-adic unit to be a square in Z2.

Proposition 5.5.3. A 2-adic unit α is a square in Z2 if and only if α ≡ 1 (mod 8).

The proof shows how to find a 2-adic square root in practice: start with y = 1 and repeatedly
replace y by y′ = y + 2k−1 where k = ord2(y

2 − α).
Example: We compute

√
17 in Z2, which exists since 17 ≡ 1 (mod 8).

Start with y = 1. Then y2 − 17 = −16 = −24, so replace y by y + 23 = 9.
Now y2 − 17 = 92 − 17 = 64 = 26, so replace y by y + 25 = 41.
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Now y2 − 17 = 412 − 17 = 27 · 13, so replace y by y + 26 = 105.
Now y2 − 17 = 1052 − 17 = 28 · 43, so replace y by y + 27 = 233; and so on.
Thus we obtain a sequence 1, 9, 41, 105, 233, . . . converging to

√
17 ∈ Z2, and

√
17 = 1+ 23+

25 + 26 + 27 + . . . .
Similarly we may compute (approximations to)

√
−7 in Z2, to get

√
−7 = lim{1, 5, 21, 53, 181, . . . } = 1 + 22 + 24 + 25 + 27 + 214 + . . .

with digit sequence 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, . . . . The long block of zero digits comes
from the fact that 1812+7 = 32768 = 215, so 181 is a rather good approximation to

√
−7 in Z2.

We have ord(
√
−7− 181) = 14, so |

√
−7− 181|2 = 2−14.

5.6. Hensel lifting. The process we used in the previous section to find p-adic square roots for
odd p involves going from a solution of a congruence modulo pk to a solution modulo pk+1. This
process is called “Hensel lifting” after Kurt Hensel (1861–1941), the inventor of p-adic numbers.
It is the p-adic equivalent of refining an approximate real solution to an equation to a more precise
solution, correct to more decimal places.

We will prove a quite general result which generalises the p-adic square root procedure for odd
primes p, and also shows why p = 2 was different. Formally, this Hensel lifting is very similar to
the Newton-Raphson method for finding roots of equations over R.

Theorem 5.6.1. [Hensel Lifting Theorem] Let f (X) ∈ Zp[X ] be a polynomial, and let x1 ∈ Zp
satisfy f (x1) ≡ 0 (mod p) and f ′(x1) 6≡ 0 (mod p). Then there exists a unique x ∈ Zp such
that f (x) = 0 and x ≡ x1 (mod p).
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Example: Let p be odd and a ∈ Z a quadratic residue modulo p. Then a is a p-adic square:
just take f (X) = X2 − a in the theorem with x1 a solution to x2 ≡ a (mod p). The derivative
condition is that f ′(x1) = 2x1 6≡ 0 (mod p), which holds since p 6= 2.
Example: Let p be prime and take f (X) = Xp −X . We know from Fermat’s Little Theorem
that f has p roots modulo p, one in each residue class. Hensel’s Theorem says that f has p
roots in Zp also. One of these is 0; the others are (p − 1)’st roots of unity in Zp. One way of
constructing these will be in the exercises.
Remark: In this proof we have y ≡ −a/f ′(x1) ≡ −(f (xn)/pn)/f ′(x1) (mod p), so

xn+1 = xn + pny ≡ xn − f (xn)/f ′(xn) (mod pn+1).

Thus, Hensel lifting consists of starting with a “seed” x = x1 which must be a simple root of f
(mod p), and iterating the map

x 7→ x− f (x)/f ′(x),

just as in the classical Newton method. Every iteration gives one more p-adic “digit”, and the
sequence always converges! To use the iteration formula to go from a root modulo pn to a root
modulo pn+1, you can compute the inverse u of f ′(x1) (mod p) once and for all at the start, and
simply iterate x 7→ x− uf (x), as in the next example.
Example: We’ll compute an approximation to 3

√
2 ∈ Q5. An initial approximation is x1 = 3,

and since 33 ≡ 2 (mod 25) we can also take x2 = 3. Here f (X) = X3 − 2, so f ′(X) = 3X2
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and f ′(x1) = 27 ≡ 2 (mod 5) with inverse u = −2, so the recurrence is x 7→ x + 2(x3 − 2):

x3 ≡ 3 + 2(27− 2) ≡ 53 (mod 53); now 533 ≡ 127 (mod 54) =⇒
x4 ≡ 53 + 2(127− 2) ≡ 303 (mod 54); now 3033 ≡ 2502 (mod 55) =⇒
x5 ≡ 303 + 2(2502− 2) ≡ 5305 ≡ 2178 (mod 55); and so on.

We have an approximation to 3
√
2, good to five 5-adic “digits”:

3
√
2 = 3 + 2 · 52 + 2 · 53 + 3 · 54 + · · · ∈ Q5.

This statement is analogous to saying that
3
√
2 = 1.259921 · · · = 1 + 2 · 10−1 + 5 · 10−2 + 9 · 10−3 + · · · ∈ R.
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