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5. p-adic Numbers

5.1. Motivating examples. We all know that
√
2 is irrational, so that 2 is not a square in the

rational field Q, but that we can enlarge Q to the real field R where 2 is a square. In R, we may
represent irrational numbers by (non-terminating, non-recurring) decimal expansions:

√
2 = 1.414213562373 · · · = 1 + 4 · 10−1 + 1 · 10−2 + 4 · 10−3 + 2 · 10−4 + . . .

In general, real numbers are expressible as

x = ±
n∑

k=−∞
ak10

k,

where the digits ak ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; there are only finitely many terms with k > 0,
but may be infinitely many with k < 0; the series always converges in R; and the sequence of
digits (ak) is usually uniquely determined by x. (The exceptions are numbers x with finite decimal
expansions, where we can replace the tail . . . a000 . . . with . . . (a− 1)999 . . . .)

Another way of thinking about the decimal expansion of the irrational number
√
2 is to say that√

2 is the limit of a sequence (xk) of rational numbers: x0 = 1, x1 = 14/10, x2 = 141/100,
. . . . This is a Cauchy sequence of rational numbers, and has no limit in Q, but does have a
limit

√
2 = limk→∞ xk in the larger complete field R. The rational numbers xk are rational

approximations to
√
2, each being a better approximation than the previous one:

|
√
2− xk| ≤ 10−k.
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As a first example of a p-adic number for p = 7, we consider the quadratic congruences

x2 ≡ 2 (mod 7k)

for k = 1, 2, 3 . . . . When k = 1 there are two solutions: x = x1 ≡ ±3 (mod 7). Any
solution x2 to the congruence modulo 72 must also be a solution modulo 7, hence of the form
x2 = x1 + 7y = ±3 + 7y; choosing x1 = 3 gives x2 = 3 + 7y, which must satisfy

0 ≡ x22 − 2 ≡ (3 + 7y)2 − 2 ≡ 7(1 + 6y) (mod 72);

equivalently, 1 + 6y ≡ 0 (mod 7) with unique solution y ≡ 1 (mod 7); so x2 = 3 + 1 · 7 = 10.
Continuing in a similar way, setting x3 = x2 + 72y and substituting, we find that x23 ≡ 2

(mod 73) ⇐⇒ y ≡ 2 (mod 7), so x3 ≡ x2 + 2 · 72 ≡ 108 (mod 73). The process may be
continued indefinitely. At each stage there is a unique solution, so (after fixing the initial choice
of x1 = 3) we find, uniquely,

x1 = 3 = 3,

x2 = 10 = 3 + 1 · 7,
x3 = 108 = 3 + 1 · 7 + 2 · 72,
x4 = 2166 = 3 + 1 · 7 + 2 · 72 + 6 · 73, . . .

The general formula is xk+1 ≡ x2k + xk − 2 (mod 7k+1).
What happens “in the limit”? Does it even make sense to talk about the limit of the sequence
xk? Certainly there can be no single integer x satisfying x2 ≡ 2 (mod 7n) simultaneously for
all n ≥ 1, for then x2− 2 would be divisible by arbitrarily large powers of 7 which is only possible
when x2− 2 = 0. Also, the infinite series 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . does not converge in the
normal sense, since the successive terms do not tend to 0.
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We will define a new kind of number called a p-adic number, for each prime p. The p-adic
integers will form a ring Zp, which contains Z; there is one such ring for each prime p. In the ring
Z7 of 7-adic integers, our sequence 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . will converge to a 7-adic limit,
so that the equation x2 = 2 has a solution in Z7. The solution can be expressed as an infinite
7-adic expansion:

x = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 74 + 2 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + . . .

=

∞∑

k=0

ak7
k,

where the “digits” ak are all in the set {0, 1, 2, 3, 4, 5, 6} and are uniquely determined after fixing
x ≡ 3 (mod 7): a0 = 3, a1 = 1, a2 = 2, a3 = 6, . . . .

The ring Zp has a field of fractions Qp, which contains the rational field Q. In fact, Qp may be
constructed directly from Q by a process similar to the construction of the real numbers as the
set of limits of Cauchy sequences of rationals. R is the completion of Q, complete in the usual
analytic sense that Cauchy sequences converge in R. Just as one can define the real numbers as
(equivalence classes of) Cauchy sequences of rational numbers, we will start by defining p-adic
integers as equivalence classes of suitable sequences of ordinary integers.

5.2. Definition of Zp. Fix, once and for all, a prime number p.

Definition 5.2.1. A p-adic integer α is defined by a sequence of integers xk for k ≥ 1

α = {xk}∞k=1 = {x1, x2, x3, . . . },
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satisfying the conditions

(5.2.1) xk+1 ≡ xk (mod pk) for all k ≥ 1,

with two sequences {xk} and {yk} determining the same p-adic integer α if and only if

xk ≡ yk (mod pk) for all k ≥ 1.

The set of p-adic integers is denoted Zp.

An integer sequence satisfying (5.2.1) will be called coherent. Thus, each p-adic integer is
actually an equivalence class of coherent sequences of ordinary integers, any one of which may be
used to represent it. The representation of a p-adic integer x = {xk} will be called reduced if
0 ≤ xk < pk for all k ≥ 1. Every p-adic integer has a unique reduced representation.

The ordinary integers Z embed into Zp as constant sequences, via x 7→ {x, x, x, . . . }; this map
is injective since if x, y ∈ Z satisfy x ≡ y (mod pk) for all k ≥ 1, then x = y. So we can view
Z as a subset of Zp. We may call elements of Z rational integers to distinguish them from p-adic
integers.

Examples: Take p = 3. Here are three elements of Z3:

α = 40 = {40, 40, 40, 40, 40, . . . } = {1, 4, 13, 40, 40, . . . };
β = −1 = {−1,−1,−1,−1,−1, . . . } = {2, 8, 26, 80, 242, . . . };
γ =? = {1, 7, 16, 70, 151, . . . }.
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the last representation is reduced in each case. Later we will see that γ is actually a representation
of the rational number −7/8! In the reduced representation of −1, notice that

2 = 3− 1 = 2,

8 = 32 − 1 = 2 + 2 · 3,
26 = 33 − 1 = 2 + 2 · 3 + 2 · 32,
80 = 34 − 1 = 2 + 2 · 3 + 2 · 32 + 2 · 33,
242 = 35 − 1 = 2 + 2 · 3 + 2 · 32 + 2 · 33 + 2 · 34,

suggesting that the limiting value of the sequence xk is 2(1 + 3 + 32 + 33 + . . . ). This geometric
series does not converge in the usual sense; but if it did converge, the usual formula would give
as its sum the correct value 2/(1 − 3) = −1. We will see later that this is a perfectly valid
computation within the field Q3 of 3-adic numbers.

It follows from the coherence condition (5.2.1) that α = {x1, x2, x3, . . . } = {x2, x3, x4, . . . }!
In other words, we can shift the sequence any number of steps, or even delete any finite number
of terms without affecting the value. At first sight this seems strange, but if you think of the
value of α as being the limit of the sequence (xk) (which we will later see to be the case), then
it is natural.

We will see this index-shifting in action in proving some facts about p-adic numbers soon.

As suggested by the second example above, we now consider an alternative representation of a
p-adic integer α with reduced representation {xk}. Writing xk to base p, we have

(5.2.2) xk = a0 + a1 · p + a2 · p2 + · · · + ak−1 · pk−1
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with each “digit” ai ∈ {0, 1, 2, . . . , p− 1}. The coherency condition (5.2.1) implies that x1 = a0,
x2 = a0 + a1p, x3 = a0 + a1p + a2p

2, and so on, with the same digits ai. So each α ∈ Zp
determines a unique infinite sequence of p-adic digits (ai)

∞
i=0 with 0 ≤ ai ≤ p− 1, and conversely

every such digit sequence determines a unique p-adic integer α = {xk} via (5.2.2). In the
examples, the 3-adic digits of α = 40 = 1 + 3 + 32 + 33 are 1, 1, 1, 1, 0, 0, . . . (effectively a finite
sequence), those of β = −1 form the infinite recurring sequence 2, 2, 2, 2, 2, . . . and those of
γ = 1 + 2 · 3 + 32 + 2 · 33 + 34 + . . . are 1, 2, 1, 2, 1, . . . .

We will write α = {xk} =
∑∞

i=0 aip
i when the p-adic digits of α are ai, so that xk =

∑k−1
i=0 aip

i

for k ≥ 1. For now, this infinite series should be regarded as just a formal expression or shorthand.

5.3. The ring Zp. To add and multiply p-adic integers, just add and multiply the representative
sequences termwise:

{xk} + {yk} = {xk + yk};
{xk} · {yk} = {xkyk}.

One must check that the sequences on the right are coherent (in the sense of (5.2.1)), and that
replacing {xk} or {yk} by an equivalent sequence does not change the equivalence classes of the
sequences on the right: these are straightforward exercises, as are the verifications that all the
ring axioms hold. For example, the negative of α = {xk} is just −α = {−xk}. Expressing these
operations in terms of the expansions α =

∑
aip

i is not so easy: we will see examples later.
This gives Zp the structure of a commutative ring, with Z as a subring. The factorization theory

of p-adic integers turns out to be rather simple. There are no zero-divisors:

Proposition 5.3.1. Zp is an integral domain.
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Next we determine the units U(Zp):

Proposition 5.3.2. Let α = {xk} =
∑
aip

i ∈ Zp. The following are equivalent:

(i) α ∈ U(Zp);
(ii) p 6 |x1;

(iii) p 6 |xk for all k ≥ 1;
(iv) a0 6= 0;

Examples: If a ∈ Z with p 6 |a, then a is a p-adic unit. Its inverse is given by the coherent
sequence {xk} where xk satisfies axk ≡ 1 (mod pk) for k ≥ 1.

For example, 3 is a 5-adic unit, so 1/3 ∈ Z5. To find the terms xk in its defining sequence
for k ≤ 4, solve 3x4 ≡ 1 (mod 54) to get x4 = 417. Reducing this modulo lower powers of 5
then gives the start of the sequence in reduced form: 1/3 = {2, 17, 42, 417, . . . }. And since
417 = 2+ 3 · 5+ 52+3 · 53, the 5-adic digits of 1/3 start 2, 3, 1, 3, . . . . In fact the digit sequence
recurs: 2, 3, 1, 3, 1, 3, 1, 3, 1, 3 . . . . We can verify this by summing the series:

1 + (1 + 3 · 5)(1 + 52 + 54 + . . . ) = 1 + 16/(1− 25) = (24− 16)/24 = 1/3.

As another example, expanding −7/8 in Z3 gives the example denoted γ above (exercise).

It is easy to tell whether a p-adic integer is divisible by p, or by a power of p:

Proposition 5.3.3. For α = {xk} ∈ Zp:
(i) p|α ⇐⇒ α /∈ U(Zp) ⇐⇒ x1 ≡ 0 (mod p) ⇐⇒ xk ≡ 0 (mod p) (∀k ≥ 1);

(ii) for n ≥ 1, pn|α ⇐⇒ xn ≡ 0 (mod pn) ⇐⇒ xk ≡ 0 (mod pn) (∀k ≥ n).



64 J. E. CREMONA

Now we know that every p-adic integer is either a unit or a multiple of p, but never both. From
this we can show that Zp is a UFD, with p the only prime:

Theorem 5.3.4. Zp is a UFD (unique factorization domain). The only irreducible (prime) ele-
ment, up to associates, is p.

That is, every nonzero element α ∈ Zp may be uniquely expressed as α = pmε where m ∈ Z,
m ≥ 0 and ε ∈ U(Zp).

Every rational number r = b/a with a, b ∈ Z and p 6 |a is also in Zp, since both a and b are, and a
is a p-adic unit. We have b/a = {xk} where axk ≡ b (mod pk) for k ≥ 1. The rational numbers
r which have this form are those for which ordp(r) ≥ 0, since ordp(b/a) = ordp(b) − ordp(a).
These are called p-integral rational numbers. Define

Rp =
{n
d
∈ Q : p 6 |d

}
= {x ∈ Q | ordp(x) ≥ 0}.

The set Rp of p-integral rationals is a subring both of Q and of Zp. Within Zp they may be
recognized as the p-adic integers whose digit sequence is ultimately periodic (just as the rationals
are the real numbers with ultimately periodic decimal expansions).

Proposition 5.3.5. Rp is a ring, with Z ⊂ Rp ⊂ Q, and Z ⊂ Rp ⊂ Zp. Also, Rp = Zp ∩Q.

Corollary 5.3.6. (a) Every rational number is in Zp for all but a finite number of primes p.
(b)
⋂
p∈PRp = Z.

We now extend the function ordp, which we have already defined on Z and on Q, to Zp. Since
the prime p is fixed we may sometimes write ord instead of ordp.
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Definition 5.3.7. For nonzero α ∈ Zp we define ordp(α) = m where m is the largest integer for
which pm|α (in Zp). We also set ordp(0) =∞.

So ordp(α) = m ≥ 0 is the power of p appearing in its factorization α = pmε. This definition
agrees with the old definition of ordp for rationals when α ∈ Zp ∩Q = Rp.

Proposition 5.3.8. The function ordp : Zp → N0 ∪ {∞} has the following properties:
(1) for n ∈ Z (or Q), this definition of ordp(n) agrees with the one in Chapter 1;
(2) ordp(αβ) = ordp(α) + ordp(β);
(3) α|β ⇐⇒ ordp(α) ≤ ordp(β);
(4) ordp(α + β) ≥ min{ordp(α), ordp(β)}, with equality if ordp(α) 6= ordp(β).

We can also consider congruences in Zp. The next proposition shows that these are effectively
the same as congruences in Z modulo powers of p.

Proposition 5.3.9. For each m ≥ 0, every α ∈ Zp is congruent modulo pm to a unique integer
n with 0 ≤ n < pm. Moreover there is a ring isomorphism

Zp/pmZp ∼= Z/pmZ.

5.4. The field Qp. Since the ring Zp is an integral domain we can form its field of fractions, the
field of p-adic numbers Qp:

Qp = {α/β | α, β ∈ Zp, β 6= 0}.
This forms a field under the usual rules for arithmetic of fractions, with Zp as a subring and Q as
a subfield. Since every nonzero p-adic integer has the form pnε with ε a p-adic unit, we see that
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the nonzero elements of Qp all have the form x = pmε where now the exponent m is an arbitrary
integer. We extend the order function from Zp to a function ordp : Qp → Z ∪ {∞} by setting
ordp(x) = m. So Zp = {x ∈ Qp | ordp(x) ≥ 0} (including 0 since ordp(0) = ∞.) Parts (2) and
(4) of Proposition 5.3.8 still apply.

{0} ⊂ · · · ⊂ p3Zp ⊂ p2Zp ⊂ pZp ⊂ Zp ⊂ p−1Zp ⊂ p−2Zp ⊂ p−3Zp · · · ⊂ Qp.

Let x ∈ Qp \ Zp, so ordp(x) = −m < 0 and x = p−mε with ε ∈ U(Zp). Write ε = a + pmβ
with β ∈ Zp and a ∈ Z; by Proposition 5.3.9 this is uniquely possible with 0 ≤ a < pm, and
since ε is a unit, p 6 |a. Now

x = p−mε = p−m(a + pmβ) =
a

pm
+ β;

so all p-adic numbers may be written (uniquely) as a p-adic integer plus a fractional part which is
an ordinary rational number r satisfying 0 ≤ r < 1, with denominator a power of p.

Example: Let x = 1
10 ∈ Q5, with ord5(x) = −1. Then 5x = 1

2 = 3 + 2 · 5 + 2 · 52 + 2 · 53 + . . .
(using the method of earlier examples), so

x = 3 · 5−1 + 2 + 2 · 5 + 2 · 52 + . . . ,

with fractional part 3
5 and 5-integral part x− 3

5 = −1
2 = 2 + 2 · 5 + 2 · 52 + . . . .

Secondly, let x = 1
100 ∈ Q5, so ord5(x) = −2 and 52x = 1

4 ∈ Z5. To find the fractional part
of x we approximate 1

4 modulo 52 by solving 4y ≡ 1 (mod 25) to get y ≡ 19 (mod 25). Then
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x− 19
25 =

1−4·19
100 = −75

100 = −3
4 ∈ Z5, so the fractional part of x is 19

25 and the 5-integral part is −3
4.

(You can also get this by squaring 1
10.)

We may use the ordp function on Qp to define a metric (distance function) and hence a topology
on Qp. Then we may talk about convergence, continuity and such like; in particular, we will be
able to justify the computations with infinite series we have seen in earlier examples. The key idea
is that of a norm on a field.

Definition 5.4.1. Let F be a field. A norm on F is a function x 7→ ‖x‖ from F to the real
numbers satisfying the following properties:

(i) Positivity: ‖x‖ ≥ 0, and ‖x‖ = 0 ⇐⇒ x = 0;
(ii) Multiplicativity: ‖xy‖ = ‖x‖ ‖y‖;

(iii) Triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖.

For example, the usual absolute value |x| is a norm on the fields Q, R and C. We sometimes
write this as |x|∞ by analogy with the p-adic norms introduced below. The trivial norm, defined
by ‖x‖ = 1 for all nonzero x, is a norm on any field. Note that the multiplicativity and positivity
always imply that ‖1‖ = ‖−1‖ = 1, so that ‖−x‖ = ‖x‖ for all x ∈ F .

Given a norm ‖·‖ on F , we may use it to define a metric or distance function on F , by setting
d(x, y) = ‖x− y‖ for x, y ∈ F . This has the following properties:

(i) Positivity: d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y;
(ii) Symmetry: d(x, y) = d(y, x);

(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).
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The field F , equipped with the metric from a norm on F , becomes a metric space, and hence
also a topological space, so that we may consider such concepts as convergence of sequences and
continuous functions on F . If F has more than one norm, this will lead to different metrics and
(in general) different topologies on F . However, if we just replace a norm ‖x‖ by ‖x‖α for a
positive real number α, then the metrics will be equivalent (in the sense of metric spaces) and the
topologies the same. We call a pair of norms which are related in this way equivalent.

We now introduce the p-adic norms on the field Q. Fix a prime number p. Recall that the
function ordp : Q→ Z ∪ {∞} has the following properties; these also hold in Qp.

Lemma 5.4.2. (1) ordp(xy) = ordp(x) + ordp(y);
(2) ordp(x + y) ≥ min{ordp(x), ordp(y)}, with equality if ordp(x) 6= ordp(y).

Definition 5.4.3. Let p be a prime. For nonzero x ∈ Qp we define the p-adic norm of x to be

|x|p = p−ordp(x),

and set |0|p = 0.

Proposition 5.4.4. For each prime p the p-adic norm is a norm on Q and on Qp. It satisfies the
following stronger form of the triangle inequality:

|x + y|p ≤ max{|x|p , |y|p}.
The associated p-adic metric d(x, y) = |x− y|p on Qp satisfies

d(x, z) ≤ max{d(x, y), d(y, z)},
with equality if d(x, y) 6= d(y, z).
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A norm or metric which satisfies this stronger form of the triangle inequality is called non-
Archimedean, in contrast to more familiar Archimedean metrics. This inequality is sometimes
known as the “isosceles triangle principle”, since it implies that in a space with a non-Archimedean
metric every triangle is isosceles!.

Example: Consider the 5-adic norm on Q. Take x = 3
10 and y = 40. Since ord5(x) = −1 and

ord5(y) = 1 we have |x|5 = 5 and |y|5 = 5−1. The third side of the “triangle” with vertices 0, x,
y has length |x− y|5. Now x− y = −397

10 so ord5(x− y) = −1, and hence |x− y|5 = 5 = |x|5.
Exercise: Prove the Product Formula: for every nonzero x ∈ Q we have

|x|∞
∏

p∈P
|x|p = 1.

The main theorem on norms on the rational field Q states that (up to equivalence) the only
norms are the ones we have seen:

Theorem 5.4.5. [Ostrowski’s Theorem] Every nontrivial norm on Q is equivalent either to the
standard absolute value |x| or to the p-adic norm |x|p for some prime p. All these norms are
inequivalent.

We omit the proof. The idea is that if ‖n‖ ≥ 1 for all nonzero n ∈ Z, then one can show that
‖x‖ = |x|α∞ for some α > 0, while if ‖n‖ < 1 for some n > 1 then the least such n must be a

prime p, and ‖x‖ = βordp(x) where β = ‖p‖.
One can prove that Qp, with the p-adic metric, is complete. In fact, an alternative construction

of Qp is to start with the p-adic metric on Q and form the completion of Q with respect to this
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metric; this is entirely analogous to the construction of the real numbers by completing Q with
respect to the usual metric. Either way we end up with a complete field Qp in which Q is dense
(we prove this below).

The theory of p-adic analysis has many counter-intuitive features, such as the fact that every
p-adic triangle is isosceles. Another one is: a series

∑∞
n=1 an with terms an ∈ Qp converges if

and only if the terms tend to zero, i.e. limn→∞ an = 0. We will prove a special case of this in the
next proposition.

Rather than continuing with this analytic theory, however, we will content ourselves with some
examples, which in particular show that the earlier computations we carried out with power series
are valid in Qp, once we have equipped it with its (p-adic) metric.

Proposition 5.4.6. (1) Let α ∈ Zp be given by a coherent sequence {xk} of integers. Then
limk→∞ xk = α, the limit being in the p-adic topology on Zp.

(2) Let (ai)
∞
i=0 be a sequence of integers with 0 ≤ ai ≤ p − 1 for all i ≥ 0. Then the series∑∞

i=0 aip
i converges in Zp to the p-adic integer α = {xk}, where xk =

∑k−1
i=0 aip

i.

Corollary 5.4.7. Every p-adic integer in Zp is the limit of a convergent sequence of rational
integers. Every p-adic number in Qp is the limit of a sequence of rational numbers.

In other words, Z is dense in Zp, and Q is dense in Qp.
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Examples:√
2 = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 74 + 2 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + · · · ∈ Z7;

40 = 1 + 3 + 9 + 27 ∈ Z3 (a finite sum);

−1 = 2(1 + 3 + 32 + 33 + . . . ) ∈ Z3;

−7
8
= 1 + 2 · 3 + 32 + 2 · 33 + 34 + · · · ∈ Z3;

1

3
= 2 + 3 · 5 + 52 + 3 · 53 + 54 + 3 · 55 + 56 + · · · ∈ Z5;

1

10
= 3 · 5−1 + 2 + 2 · 5 + 2 · 52 + · · · ∈ Q5;

5.5. Squares in Zp. The method we used in Section 5.1 to find the 7-adic approximation to
√
2

is valid more generally. The case p = 2 is harder, so we start with odd primes.

Proposition 5.5.1. Let p be an odd prime and α = {xk} ∈ U(Zp). Then there exists β ∈ Zp
with α = β2 if and only if

(
x1
p

)
= +1 (x1 is a quadratic residue modulo p). In particular, every

rational integer which is a quadratic residue modulo p is a p-adic square.

An equivalent condition to

(
x1
p

)
= +1 is

(
a0
p

)
= +1 where a0 is the first p-adic digit of α,

since α ≡ x1 ≡ a0 (mod p). For α ∈ Zp we define

(
α

p

)
=

(
a0
p

)
=

(
x1
p

)
.
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Remark: A square unit in Zp must have exactly two square roots, since Zp is an integral domain,
so the polynomial x2−α cannot have more than 2 roots. In the proof of the proposition one can
see that after making an initial choice of y1 as one of two possible choices for the square root
modulo p, at all subsequent steps there is a unique choice.

An alternative approach to finding p-adic square roots is to start with a value y = y1 which is
a “first-order approximation”, meaning a solution to y2 ≡ α (mod p), and then iterate the map
y 7→ y′ = y + u(y2 − α) where u satisfies 1 + 2uy1 ≡ 0 (mod p). At each step we obtain a
better approximation, and in the limit we obtain an exact solution. To see why this works, the
computation

(y′)2 − α = (y + u(y2 − α))2 − α = (y2 − α)(1 + 2uy) + u2(y2 − α)2

shows that the valuation of y2−α strictly increases at each step, so β = lim y satisfies β2−α =
lim(y2 − α) = 0.

Examples: 1. Taking p = 7 and α = 2 we see that 2 is a 7-adic square since

(
2

7

)
= 1. One

square root is β = 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . (see the calculation done in Section 5.1) and
the other is −β = 4 + 5 · 7 + 4 · 72 + 0 · 73 . . . .

2. Take p = 3 and α = −2. Using the second approach, take y = 1 which satisfies
y2 ≡ −2 (mod 3) as a first approximation. Let u = 1 so that 1 + 2uy ≡ 0 (mod 3), and
iterate y 7→ y + u(y2 − α) = y2 + y + 2. The first few values of y are (reducing the k’th one
modulo 3k):

1, 4, 22, 22, 22, 508, 508, 2695, . . . .
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Expanding 2695 to base 3 gives the expansion√
−2 = 1 + 3 + 2 · 32 + 2 · 35 + 37 + · · · ∈ Z3

where the next nonzero term is a113
11 since 26952+2 = 311 · 41, so |

√
−2− 2695|3 = 3−11. (The

last statement should be checked carefully.)

Now we have identified the p-adic units which are squares, it is a simple matter to determine all
the squares in Zp.

Proposition 5.5.2. Let p be an odd prime. Let α = pmε be a nonzero p-adic integer with

m = ord(α) and ε ∈ U(Zp). Then α is a square in Zp if and only if m is even and

(
ε

p

)
= 1.

The case of 2-adic squares is a little different: for a 2-adic unit to be a square, it is not sufficient
to be a square modulo 2 (which is true for all 2-adic units since they are all congruent to 1
(mod 2)); they must be congruent to 1 modulo 8. This is due to the fact that odd integer squares
are all congruent to 1 modulo 8. The next result is that being congruent to 1 (mod 8) is sufficient
for a 2-adic unit to be a square in Z2.

Proposition 5.5.3. A 2-adic unit α is a square in Z2 if and only if α ≡ 1 (mod 8).

The proof shows how to find a 2-adic square root in practice: start with y = 1 and repeatedly
replace y by y′ = y + 2k−1 where k = ord2(y

2 − α).
Example: We compute

√
17 in Z2, which exists since 17 ≡ 1 (mod 8).

Start with y = 1. Then y2 − 17 = −16 = −24, so replace y by y + 23 = 9.
Now y2 − 17 = 92 − 17 = 64 = 26, so replace y by y + 25 = 41.
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Now y2 − 17 = 412 − 17 = 27 · 13, so replace y by y + 26 = 105.
Now y2 − 17 = 1052 − 17 = 28 · 43, so replace y by y + 27 = 233; and so on.
Thus we obtain a sequence 1, 9, 41, 105, 233, . . . converging to

√
17 ∈ Z2, and

√
17 = 1+ 23+

25 + 26 + 27 + . . . .
Similarly we may compute (approximations to)

√
−7 in Z2, to get

√
−7 = lim{1, 5, 21, 53, 181, . . . } = 1 + 22 + 24 + 25 + 27 + 214 + . . .

with digit sequence 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, . . . . The long block of zero digits comes
from the fact that 1812+7 = 32768 = 215, so 181 is a rather good approximation to

√
−7 in Z2.

We have ord(
√
−7− 181) = 14, so |

√
−7− 181|2 = 2−14.

5.6. Hensel lifting. The process we used in the previous section to find p-adic square roots for
odd p involves going from a solution of a congruence modulo pk to a solution modulo pk+1. This
process is called “Hensel lifting” after Kurt Hensel (1861–1941), the inventor of p-adic numbers.
It is the p-adic equivalent of refining an approximate real solution to an equation to a more precise
solution, correct to more decimal places.

We will prove a quite general result which generalises the p-adic square root procedure for odd
primes p, and also shows why p = 2 was different. Formally, this Hensel lifting is very similar to
the Newton-Raphson method for finding roots of equations over R.

Theorem 5.6.1. [Hensel Lifting Theorem] Let f (X) ∈ Zp[X ] be a polynomial, and let x1 ∈ Zp
satisfy f (x1) ≡ 0 (mod p) and f ′(x1) 6≡ 0 (mod p). Then there exists a unique x ∈ Zp such
that f (x) = 0 and x ≡ x1 (mod p).
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Example: Let p be odd and a ∈ Z a quadratic residue modulo p. Then a is a p-adic square:
just take f (X) = X2 − a in the theorem with x1 a solution to x2 ≡ a (mod p). The derivative
condition is that f ′(x1) = 2x1 6≡ 0 (mod p), which holds since p 6= 2.
Example: Let p be prime and take f (X) = Xp −X . We know from Fermat’s Little Theorem
that f has p roots modulo p, one in each residue class. Hensel’s Theorem says that f has p
roots in Zp also. One of these is 0; the others are (p − 1)’st roots of unity in Zp. One way of
constructing these will be in the exercises.
Remark: In this proof we have y ≡ −a/f ′(x1) ≡ −(f (xn)/pn)/f ′(x1) (mod p), so

xn+1 = xn + pny ≡ xn − f (xn)/f ′(xn) (mod pn+1).

Thus, Hensel lifting consists of starting with a “seed” x = x1 which must be a simple root of f
(mod p), and iterating the map

x 7→ x− f (x)/f ′(x),

just as in the classical Newton method. Every iteration gives one more p-adic “digit”, and the
sequence always converges! To use the iteration formula to go from a root modulo pn to a root
modulo pn+1, you can compute the inverse u of f ′(x1) (mod p) once and for all at the start, and
simply iterate x 7→ x− uf (x), as in the next example.
Example: We’ll compute an approximation to 3

√
2 ∈ Q5. An initial approximation is x1 = 3,

and since 33 ≡ 2 (mod 25) we can also take x2 = 3. Here f (X) = X3 − 2, so f ′(X) = 3X2
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and f ′(x1) = 27 ≡ 2 (mod 5) with inverse u = −2, so the recurrence is x 7→ x + 2(x3 − 2):

x3 ≡ 3 + 2(27− 2) ≡ 53 (mod 53); now 533 ≡ 127 (mod 54) =⇒
x4 ≡ 53 + 2(127− 2) ≡ 303 (mod 54); now 3033 ≡ 2502 (mod 55) =⇒
x5 ≡ 303 + 2(2502− 2) ≡ 5305 ≡ 2178 (mod 55); and so on.

We have an approximation to 3
√
2, good to five 5-adic “digits”:

3
√
2 = 3 + 2 · 52 + 2 · 53 + 3 · 54 + · · · ∈ Q5.

This statement is analogous to saying that
3
√
2 = 1.259921 · · · = 1 + 2 · 10−1 + 5 · 10−2 + 9 · 10−3 + · · · ∈ R.


