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2. Congruences and modular arithmetic

The notation for congruence is an invention of Gauss. It simplifies many calculations and argu-
ments in number theory.

2.1. Definition and Basic Properties.

Definition 2.1.1. Let m be a positive integer. For a, b ∈ Z we say that a is congruent to b
modulo m and write a ≡ b (mod m) iff a− b is a multiple of m:

a ≡ b (mod m) ⇐⇒ m|(a− b).
Here m is called the modulus. If m6 |(a− b) then we write a 6≡ b (mod m).

For example, −3 ≡ 18 (mod 7) and 19 6≡ 1 (mod 4). All even integers are congruent to 0
(mod 2), while odd integers are congruent to 1 (mod 2).

Congruence may be expressed in algebraic terms: to say a ≡ b (mod m) is equivalent to saying
that the cosets a +mZ and b +mZ of mZ in Z are equal.

The basic properties of congruence are summarized in the following lemmas.

Lemma 2.1.2. For each fixed modulus m, congruence modulo m is an equivalence relation:

(i) Reflexive: a ≡ a (mod m) for all a ∈ Z;
(ii) Symmetric: a ≡ b (mod m) =⇒ b ≡ a (mod m);

(iii) Transitive: If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

Lemma 2.1.3. If a ≡ b (mod m) and c ≡ d (mod m) then a + c ≡ b + d (mod m) and
ac ≡ bd (mod m).
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The preceding result has the following interpretation. As well as mZ being a subgroup of the
additive group Z, it is also an ideal of the ring Z, and hence there is a well-defined quotient ring
Z/mZ. The lemma says that addition and multiplication in Z/mZ are well-defined. We will
return to this viewpoint in the next section.

Lemma 2.1.4. (i) If a ≡ b (mod m) then ac ≡ bc (mod mc) for all c > 0;
(ii) If a ≡ b (mod m) and n|m then a ≡ b (mod n).

Lemma 2.1.5. If ax ≡ ay (mod m), then x ≡ y (mod m/ gcd(a,m)).
Two important special cases:
If ax ≡ ay (mod m) and gcd(a,m) = 1, then x ≡ y (mod m).
If ax ≡ ay (mod m) and a|m, then x ≡ y (mod m/a).

Proposition 2.1.6. Let a, b ∈ Z. The congruence ax ≡ b (mod m) has a solution x ∈ Z if
and only if gcd(a,m)|b. If a solution exists it is unique modulo m/ gcd(a,m).

In particular, when gcd(a,m) = 1 the congruence ax ≡ b (mod m) has a solution for every b,
which is unique modulo m.

How to solve the congruence ax ≡ b (mod m): Use the EEA to find d, u, v with d =
gcd(a,m) = au + mv. Check that d|b (otherwise there are no solutions). If b = dc then
b = auc+mvc so x = uc is one solution. The general solution is x = uc+ tm/d = (ub+ tm)/d
for arbitrary t ∈ Z.

Lemma 2.1.7. Each integer a is congruent modulo m to exactly one integer in the set
{0, 1, 2, . . . ,m − 1}. More generally, let k be a fixed integer. Then every integer is congruent
modulo m to exactly one integer in the set {k, k + 1, k + 2, . . . , k +m− 1}.
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Definition 2.1.8. Taking k = 0, we obtain the system of least non-negative residues modulo m:
{0, 1, 2, . . . ,m − 1}. Taking k = −[(m − 1)/2] gives the system of least residues modulo m;
when m is odd this is {0,±1,±2, . . . ,±(m− 1)/2}, while when m is even we include m/2 but
not −m/2. Any set of m integers representing all m residue classes modulo m is called a residue
system modulo m.

For example, when m = 7 the least non-negative residues are {0, 1, 2, 3, 4, 5, 6} and the least
residues are {−3,−2,−1, 0, 1, 2, 3}; form = 8 we have least nonnegative residues {0, 1, 2, 3, 4, 5, 6, 7}
and least residues {−3,−2,−1, 0, 1, 2, 3, 4}.
2.2. The structure of Z/mZ.

Definition 2.2.1. The ring of integers modulo m is the quotient ring Z/mZ. We will denote
the group of units of Z/mZ by Um, and its order by ϕ(m). The function ϕ : N → N is called
Euler’s totient function or Euler’s phi function.

Sometimes Z/mZ is denoted Zm; however there is a conflict of notation here, since for prime p
the notation Zp is used to denote a different ring important in number theory, the ring of p-adic
integers. We will therefore not use this abbreviation!

Informally we may identify Z/mZ with the set {0, 1, 2, . . . ,m − 1}, though the elements of
Z/mZ are not integers but “integers modulo m”: elements of the quotient ring Z/mZ. To
be strictly correct, one should use the notation a, b, . . . for integers and a, b, . . . for their
residues in Z/mZ. Then one has a = b (in Z/mZ) iff a ≡ b (mod m) (in Z), and Z/mZ =
{0, 1, 2, . . . ,m− 1}. For simplicity we will not do this but use the same notation for an integer
and its residue in Z/mZ.
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So Z/mZ is a finite ring with m elements, and its unit group Um is a finite group under the
operation of “multiplication modulo m”.

Proposition 2.2.2. Let a ∈ Z/mZ. Then a ∈ Um (that is, a is invertible modulo m) if and
only if gcd(a,m) = 1.

Remark: Note that if a ≡ a′ (mod m) then gcd(a,m) = gcd(a′,m), since a′ = a + km for
some k. Hence the quantity gcd(a,m) only depends on the residue of a modulo m.

We may use the Extended Euclidean Algorithm to detect whether or not a is invertible mod-
ulo m, and also to find its inverse a′ if so, since if (x, y) is a solution to ax + my = 1 then
ax ≡ 1 (mod m) so we may take a′ = x. For example, gcd(4, 13) = 1 with 4 · 10 − 13 · 3 =
1, so the inverse of 4 modulo 13 is 10. Here is a complete table of inverses modulo 13:
a 0 1 2 3 4 5 6 7 8 9 10 11 12
a′ - 1 7 9 10 8 11 2 5 3 4 6 12
It follows that ϕ(m), the order of Um, is equal to the number of residues modulo m of integers

which are coprime to m. This is often given as the definition of ϕ(m).

Corollary 2.2.3.

ϕ(m) = |{a | 0 ≤ a ≤ m− 1 and gcd(a,m) = 1}| .

Definition 2.2.4. A reduced residue system modulo m is a set of ϕ(m) integers covering the
residue classes in Um.
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Any set of ϕ(m) integers which are all coprime to m, and no two of which are congruent
modulo m, form a reduced residue system. The “standard” one is

{a | 0 ≤ a ≤ m− 1 and gcd(a,m) = 1}.
For example, U6 = {1, 5}, U7 = {1, 2, 3, 4, 5, 6} and U8 = {1, 3, 5, 7}, so that ϕ(6) = 2, ϕ(7) = 6

and ϕ(8) = 4. Here are the first few values of ϕ(m):
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕ(m) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8

Proposition 2.2.5. (1) ϕ(m) is even for m ≥ 3;
(2) ϕ(m) = m− 1 if and only if m is prime;
(3) Let p be a prime; then ϕ(pe) = pe−1(p− 1) for e ≥ 1.

We will use this to obtain a general formula for ϕ(m) after the Chinese Remainder Theorem
below, which will reduce the determination of ϕ(m) for general m to the case of prime powers.

Arithmetic modulo m is much simpler when m is prime, as the following result indicates.

Theorem 2.2.6. If p is a prime then Z/pZ is a field. If m is composite then Z/mZ is not a
field, and not even an integral domain.

Notation: To emphasize its field structure, Z/pZ is also denoted Fp, and the multiplicative
group Up is then denoted F∗p. It has order p− 1, and is cyclic (see Theorem 2.6.1 below).

2.3. Euler’s, Fermat’s and Wilson’s Theorems. Since Um is a finite multiplicative group of
order ϕ(m) we immediately have the following as a consequence of Lagrange’s Theorem for finite
groups.
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Theorem 2.3.1. (a) Euler’s Theorem: Let m be a positive integer and a an integer coprime
to m. Then

aϕ(m) ≡ 1 (mod m).

(b) Fermat’s Little Theorem: Let p be a prime and a an integer not divisible by p. Then

ap−1 ≡ 1 (mod p);

moreover, for every integer a we have

ap ≡ a (mod p).

Fermat’s Little Theorem can be used as a primality test. Let n be an odd integer which one
suspects to be a prime; if 2n−1 6≡ 1 (mod n) then n is certainly not prime. Note that this has
been proved without exhibiting a factorization of n. On the other hand, if 2n−1 ≡ 1 (mod n)
it does not prove that n is prime! For example this holds with n = 1729 = 7 · 13 · 19. Such a
number is called a pseudoprime to base 2. By using a combination of so-called bases (as here we
used the base 2) one can develop much stronger “probabilistic primality tests”.

Corollary 2.3.2. In Fp[X ] the polynomial Xp −X factorizes as a product of p linear factors:

Xp −X =
∏

a∈Fp
(X − a) in Fp[X ].
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Corollary 2.3.3. [Wilson’s Theorem] Let p be a prime. Then

(p− 1)! ≡ −1 (mod p).

Remark: The converse to Wilson’s Theorem also holds; in fact, for composite integers m
greater than 4 we have (m − 1)! ≡ 0 (mod m) (exercise). But this is not useful as a primality
test, since there is no way to compute the residue of (m− 1)! (mod m) quickly.
Example: Take p = 13. Then (p − 1)! = 12! = 479001600 = 13 · 36846277 − 1. A better way
of seeing this is to write

12! ≡ 1 · 12 · (2 · 7) · (3 · 9) · (4 · 10) · (5 · 8) · (6 · 11) ≡ 12 ≡ −1 (mod 13).

A similar trick, pairing each residue apart from ±1 with its inverse, may be used to prove Wilson’s
Theorem directly. This works because ±1 are the only residues modulo a prime which are their
own inverse:

Proposition 2.3.4. Let p be a prime. Then the only solutions to x2 ≡ 1 (mod p) are x ≡ ±1.

Example: Let m = F5 = 232 + 1 = 4294967297. Check that x = 1366885067 satisfies x2 ≡ 1
(mod m). This proves that m is not prime. In fact, m = ab where a = 671 = gcd(m,x − 1)
and b = 6700417 = gcd(m,x + 1). Many modern factorization methods are based on this idea.
Of course, one needs efficient ways to find solutions other than ±1 to the congruence x2 ≡ 1
(mod m) where m is the (odd) composite number being factorized. There are several of these,
which collectively go by the name of “quadratic sieve” methods.
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2.4. Some Applications.

Proposition 2.4.1. Let p be an odd prime. Then the congruence x2 ≡ −1 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

There are many other ways of proving the preceding Proposition. One is to use the fact that F∗p
is cyclic (Theorem 2.6.1), hence has elements of order d for all d|(p − 1), and an element a of
order 4 satisfies a4 = 1, a2 6= 1, so a2 = −1. Alternatively, from Wilson’s Theorem one can show
that for all odd p,

(((p− 1)/2)!)2 ≡ −(−1)(p−1)/2 (mod p),

so when p ≡ 1 (mod 4) the number a = ((p− 1)/2)! satisfies a2 ≡ −1 (mod p).
As a corollary we can prove the result used earlier, that a prime of the form 4k + 1 may be

written as a sum of two squares.

Theorem 2.4.2. Let p be a prime such that p ≡ 1 (mod 4). Then there exist integers a and b
such that p = a2 + b2.

Remarks The first proof can be made constructive: given c satisfying c2 ≡ −1 (mod p), it is
not hard to show that the element a+ bi = gcd(c+ i, p) in Z[i] satisfies a2 + b2 = p, so a single
application of the Euclidean algorithm in Z[i] gives a solution.

The first proof also shows that the solution is essentially unique, up to permuting a and b and
changing their signs. This follows from the fact that the factorization of p in Z[i] as p = ππ with
π = a + bi is unique up to permuting the factors and multiplying them by units.

We finish this section with some more applications to the distribution of primes.
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Proposition 2.4.3. (a) There are infinitely many primes p ≡ 1 (mod 4).
(b) There are infinitely many primes p ≡ 3 (mod 4).

Similarly, odd prime divisors of n4 + 1 are ≡ 1 (mod 8) and there are therefore infinitely many
of those; odd prime divisors of n8+1 are ≡ 1 (mod 16) so there are infinitely many of those; and
so on. Next we have

Proposition 2.4.4. Let q be an odd prime.

(a) Let p be a prime divisor of f (n) = nq−1 + nq−2 + · · · + n + 1. Then either p = q or p ≡ 1
(mod q).

(b) There are infinitely many primes p ≡ 1 (mod q).

Using cyclotomic polynomials (for example, f (n) above) one can show that there are infinitely
many primes p ≡ 1 (mod m) for any m. More generally Dirichlet’s Theorem on primes in
arithmetic progressions states that there are infinitely many primes p ≡ a (mod m) whenever a
and m are coprime: the general proof uses complex analysis!

2.5. The Chinese Remainder Theorem or CRT.

Proposition 2.5.1. [Chinese Remainder Theorem for simultaneous congruences] Let m,n ∈ N
be coprime. Then for every pair of integers a, b the simultaneous congruences

x ≡ a (mod m)(2.5.1)

x ≡ b (mod n)

have a solution which is unique modulo mn.
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More generally, if d = gcd(m,n) then the congruences (2.5.1) have a solution if and only if
a ≡ b (mod d), and the solution (when it exists) is unique modulo lcm(m,n) = mn/d.

To find the solution in the coprime case, write 1 = mu + nv. Then we have the solution
x = mub + nva since nv ≡ 1 (mod m),≡ 0 (mod n) while mu ≡ 0 (mod m),≡ 1 (mod n).

Example: Let m = 13, n = 17. Then 1 = gcd(13, 17) = 52− 51 so the solution for general a, b
is x ≡ 52b− 51a (mod 221).

The CRT says that there is a bijection between pairs (a mod m, b mod n) and single residue
classes (c mod mn) when m,n are coprime. This bijection is in fact a ring isomorphism:

Theorem 2.5.2. [Chinese Remainder Theorem, algebraic form] Let m,n ∈ N be coprime. Then
we have the isomorphism of rings

Z/mnZ ∼= Z/mZ× Z/nZ.
Restricting to units on both sides, we have the isomorphism of groups

Umn ∼= Um × Un.

Both forms of the CRT extend to several moduli m1, m2, . . . , mk provided that they are
pairwise coprime. The second part of the proposition has the following important corollary: ϕ is
a multiplicative function.

Proposition 2.5.3. Let m,n ∈ N be coprime. Then ϕ(mn) = ϕ(m)ϕ(n).
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Corollary 2.5.4. Let m ∈ N have prime factorization

m =

k∏

i=1

peii

where the pi are distinct primes and ei ≥ 1. Then

ϕ(m) =

k∏

i=1

pei−1i (pi − 1) = m

k∏

i=1

(
1− 1

pi

)
.

Examples: (1). ϕ(168) = ϕ(8)ϕ(3)ϕ(7) (splitting 168 into prime powers) = (8− 4)(3− 1)(7−
1) = 4 · 2 · 6 = 48. Alternatively, ϕ(168) = 168 ·

(
1− 1

2

)
·
(
1− 1

3

) (
1− 1

7

)
= 168 · 12 · 23 · 67 = 48.

(2). ϕ(100) = ϕ(4)ϕ(25) = 2 · 20 = 40.

One more property of ϕ(m) will be useful later.

Proposition 2.5.5. Let m ∈ N. Then
∑

d|mϕ(d) = m.

The sum here is over all positive divisors of m. For example, when m = 12 we have

12 = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(4) + ϕ(6) + ϕ(12)

= 1 + 1 + 2 + 2 + 2 + 4.

Applications of CRT: The CRT says that congruences to two coprime moduli are, in a sense,
independent. Solving a general congruence to a general modulus reduces to solving it modulo
prime powers, and then using CRT to “glue” the separate solutions together.
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For example: solve x2 ≡ 1 (mod 91). Since 91 = 7 · 13 we first solve separately modulo 7 and
modulo 13, giving x ≡ ±1 (mod 7) and x ≡ ±1 (mod 13) by an earlier proposition since 7 and
13 are prime. This gives four possibilities modulo 91:

(+1 mod 7, +1 mod 13) ↔ (+1 mod 91)

(+1 mod 7, −1 mod 13) ↔ (−27 mod 91)

(−1 mod 7, +1 mod 13) ↔ (+27 mod 91)

(−1 mod 7, −1 mod 13) ↔ (−1 mod 91)

So the solutions are x ≡ ±1 (mod 91) and x ≡ ±27 (mod 91). To solve the second and third
we use the method given above: write 1 = 7u + 13v = 14 − 13, then (a, b) = (1,−1) maps to
mub + nva = 14b− 13a = 14(−1)− 13(1) ≡ −27 (mod 91).

Systematic study of various types of congruence now follows the following pattern. First work
modulo primes; this is easiest since Z/pZ is a field. Then somehow go from primes to prime powers.
The process here (called “Hensel lifting”) is rather like taking successive decimal approximations
to an ordinary equation, and we will come back to this at the end of the module, in Chapter 5 on
p-adic numbers. Finally, use the CRT to “glue” together the information from the separate prime
powers.

2.6. The structure of Um. The most important result here is that for prime p, the multiplicative
group Up (= F∗p) is cyclic.

Theorem 2.6.1. Let p be a prime. Then the group Up = F∗p is cyclic.
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Definition 2.6.2. An integer which generates Up = F∗p is called a primitive root modulo p. If
Um is cyclic, then a generator of Um is called a primitive root modulo m.

When g is a primitive root modulom, the powers 1, g, g2, . . . , gϕ(m)−1 are incongruent modulom,
and every integer which is coprime to m is congruent to exactly one of these. The other primitive
roots are the gk for which gcd(k, ϕ(m)) = 1. So we have the following:

Corollary 2.6.3. Let p be a prime. Then p has a primitive root, and the number of incongruent
primitive roots modulo p is ϕ(p− 1). More generally, for every d|(p− 1) there are ϕ(d) integers
(incongruent modulo p) with order d modulo p.

If m has a primitive root then there are ϕ(ϕ(m)) incongruent primitive roots modulo m.

Example: Let p = 13. Since ϕ(p−1) = ϕ(12) = 4 there are 4 primitive roots modulo 13. One is
2, since the successive powers of 2 modulo 13 are 1, 2, 4, 8, 3, 6,−1, . . . . The others are the powers
2k where gcd(k, 12) = 1: taking k = 1, 5, 7, 11 gives the primitive roots 2, 25 ≡ 6, 27 ≡ 11, 211 ≡ 7
(mod 13).

As an application of primitive roots, we may give a simple proof of a result proved earlier,
that when p ≡ 1 (mod 4) then the congruence x2 ≡ −1 (mod p) has a solution. For let g
be a primitive root modulo p, and set a = g(p−1)/4. Then a2 ≡ g(p−1)/2 6≡ 1 (mod p), but
a4 = gp−1 ≡ 1 (mod p), from which it follows that a2 ≡ −1 (mod p).

Theorem 2.6.4. Primitive roots modulo m exist if and only if m = 1, 2, 4, pe or 2pe where p is
an odd prime and e ≥ 1.

Now if m is odd, with prime factorization m =
∏k

i=1 p
ei
i , it follows that the group Um is

isomorphic to the product of cyclic groups of order pei−1i (pi − 1) for 1 ≤ i ≤ k.



MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 37

We have not determined the structure of U2e for e ≥ 3; it turns out that while not cyclic, it
is almost so: for e ≥ 3, U2e is isomorphic to the product of cyclic groups of order 2 (generated
by −1) and order 2e−2 (generated by 5).


