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0. Introduction: What is Number Theory?

Number Theory is (of course) primarily the Theory of Numbers: ordinary whole numbers
(integers). It is, arguably, the oldest branch of mathematics. Integer solutions to Pythagoras’s
equation

a2 + b2 = c2

have been found, systematically listed with all the arithmetic carried out in base 60, on ancient
Babylonian clay tablets. There are several different flavours of Number Theory, distinguished
more by the methods used than by the problems whose solutions are sought. These are

• Elementary Number Theory: using elementary methods only;
• Analytic Number Theory: using analysis (real and complex), notably to study the

distribution of primes;
• Algebraic Number Theory: using more advanced algebra, and also studying algebraic

numbers such as 1 + 3
√
2 + 17

√
17;

• Geometric Number Theory: using geometric, algebraic and analytic methods; also
known as arithmetic algebraic geometry.

Andrew Wiles used a vast array of new techniques and previously known results in arithmetic
algebraic geometry to solve Fermat’s Last Theorem, whose statement is entirely elementary
(see below). This is typical of progress in Number Theory, where there have been many
cases of entirely new mathematical theories being created to solve specific, and often quite
elementary-seeming problems.

This module is mostly elementary with some analytic and algebraic parts. The algebraic ap-
proach is pursued further in the module MA3A6 (Algebraic Number Theory). The geometric
approach is pursued further in the module MA426 (Elliptic Curves).

Number Theory starts out with simple questions about integers: simple to state, if not to
answer. Here are three types of question:

• Diophantine Equations are equations to which one seeks integers solutions (or some-
times rational solutions). For example,
(1) x2+y2 = z2 has infinitely many integral solutions (so-called Pythagorean triples);

later, we will see how to find them all.
(2) xn + yn = zn has no nonzero integer solutions when n ≥ 3. This is Fermat’s

Last Theorem, which we will certainly not be proving in these lectures, though
we will prove the case n = 4.

(3) y2 = x3 + 17 has exactly 8 integer solutions (x, y), x = −2,−1, 2, 4, 8, 43, 52
and one further value which you can find for yourselves. Proving that there are
no more solutions is harder; using Sage you can solve this as follows:

s a g e : E l l i p t i c C u r v e ( [ 0 , 1 7 ] ) . i n t e g r a l p o i n t s ( )

(4) Every positive integer n can be written as a sum of four squares (including 0),
for example

47 = 1 + 1 + 9 + 36 = 12 + 12 + 32 + 62,

but not all may be written as a sum of 2 or 3 squares. Which?

s a g e : s u m o f k s q u a r e s ( 4 , 4 7 )

We will answer the two- and four-square problems later, with a partial answer
for three squares.

• Questions about primes, for example
(1) There are infinitely many primes (an ancient result proved in Euclid.)
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(2) Is every even number (greater than 2) expressible as the sum of two primes?
This was conjectured by Goldbach in 1746 and still not proved, though it has
been verified for numbers up to 4 × 1018; the “weak form” of the conjecture,
that every odd number greater than 5 is a sum of three primes, was proved in
2013 by the Peruvian Harald Helfgott.

(3) Are all the Fermat numbers Fn = 22
n
+1 prime (as Fermat also claimed)? Cer-

tainly not: the first four are (F1 = 5, F2 = 17, F3 = 257, F4 = 65537) but then
F5 = 641×6700417, F6 = 274177×67280421310721, F7 = 59649589127497217×
5704689200685129054721, and no more prime values have been discovered in
the sequence.

s a g e : [ ( 2 ˆ 2 ˆ n +1). f a c t o r ( ) fo r n in range ( 9 ) ]

(4) How many primes end in the digit 7? Infinitely many? Of the 664579 primes less
than 10 million, the number which end in the digits 1, 3, 7 and 9 respectively
are 166104, 166230, 166211, and 166032 (that is, 24.99%, 25.01%, 25.01% and
24.98%). What does this suggest?

s a g e : pc=d i c t ( [ ( d , 0 ) fo r d in range ( 1 0 ) ] )
s a g e : fo r p in p r i m e r a n g e ( 1 0 ˆ 7 ) : pc [ p%10]+=1
s a g e : [ ( d , pc [ d ] , 1 0 0 . 0∗ pc [ d ] /sum( pc . v a l u e s ( ) ) )

fo r d in [ 1 , 3 , 7 , 9 ] ]

(5) Are there infinitely many so-called prime pairs: primes which differ by only 2,
such as (3, 5), (71, 73) or (1000000007, 1000000009)?

• Efficient algorithms for basic arithmetic: many modern applications of Number Theory
are in the field of cryptography (secure communication of secrets, such as transmitting
confidential information over the Internet). These application rely on the fact that
the following two questions, which seem trivial from the theoretical points of view,
are not at all trivial when asked about very large numbers with dozens or hundreds
of digits:
(1) Primality Testing: given a positive integer n, determine whether n is prime;
(2) Factorization: given a positive integer n, determine the prime factors of n.

In this module, we will study a variety of such problems, mainly of the first two types,
while also laying the theoretical foundations to further study.

Basic Notation. Z, Q, R, C will denote, as usual, the sets of integers, rational numbers,
real numbers and complex numbers. The integers form a ring, the others sets are fields.

N = {n ∈ Z | n ≥ 1} is the set of natural numbers (positive integers).
N0 = {n ∈ Z | n ≥ 0} is the set of non-negative integers.
P will denote the set of (positive) prime numbers: integers p > 1 which have no factor-

ization p = ab with a, b > 1.
Divisibility: for a, b ∈ Z we write a|b, and say a divides b, when b is a multiple of a:

a|b ⇐⇒ ∃c ∈ Z : b = ac.

If a does not divide b we write a 6 |b. The divisibility relation gives a partial order on N with
1 as the “least” element and no “greatest element”.

Congruence: for a, b, c ∈ Z with c 6= 0 we write a ≡ b (mod c) and say that a is congruent
to b modulo c if c|(a− b):

a ≡ b (mod c) ⇐⇒ c|(a− b).
Divisibility and congruence will be studied in detail later.
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1. Factorization

1.1. Divisibility in Z.

Definition 1.1.1. Let a, b ∈ Z. Then we say that a divides b and write a|b if b = ac for
some c ∈ Z:

a|b ⇐⇒ ∃c ∈ Z : b = ac.

Alternatively, we may say that “b is a multiple of a”. If a 6= 0 this is equivalent to the
statement that the rational number b/a is an integer c. If a does not divide b we write a 6 |b.

Lemma 1.1.2. [Easy facts about divisibility] For all a, b, . . . ∈ Z:

(1) a|b =⇒ a|kb (∀k ∈ Z);
(2) a|b1, a|b2 =⇒ a|b1±b2; hence if b1 and b2 are multiples of a, then so are all integers

of the form k1b1 + k2b2.
(3) a|b, b|c =⇒ a|c;
(4) a|b, b|a ⇐⇒ a = ±b;
(5) a|b, b 6= 0 =⇒ |a| ≤ |b|; so nonzero integers have only a finite number of divisors;
(6) If k 6= 0 then a|b ⇐⇒ ka|kb;
(7) Special properties of ±1: ±1|a (∀a ∈ Z), and a| ± 1 ⇐⇒ a = ±1;
(8) Special properties of 0: a|0 (∀a ∈ Z), and 0|a ⇐⇒ a = 0.

Proposition 1.1.3 (Division Algorithm in Z). Let a, b ∈ Z with a 6= 0. There exist unique
integers q, r such that

b = aq + r with 0 ≤ r < |a|.

Proof. Either: Take r to be the least non-negative integer in the set S = {b− aq | q ∈ Z},
which certainly contains positive integers. Then r < |a|, as otherwise r − |a| would be a
smaller non-negative element of S.

Or: if a > 0, take q = [b/a], the integer part of b/a, so q ≤ b/a < q + 1, and set
r = b− aq. Then 0 ≤ r < a. If a < 0, similarly with q = −[−b/a].

Uniqueness: if b = aq1 + r1 = aq2 + r2 with 0 ≤ r1, r2 < |a| then a(q1 − q2) = r2 − r1.
Now if q1 6= q2 then |q1 − q2| ≥ 1, so |a| > |r1 − r2| = |a||q1 − q2| ≥ |a|, contradiction.
Hence q1 = q2, and then r1 = r2 also. �

Notation: the set of all multiples of a fixed integer a is denoted (a) or aZ:

(a) = aZ = {ka | k ∈ Z}.
Then we have a|b ⇐⇒ b ∈ (a) ⇐⇒ (a) ⊇ (b): “to contain is to divide”. From
Lemma 1.1.2(4) we have (a) = (b) ⇐⇒ a = ±b.

An ideal in a commutative ring R is a subset I of R satisfying

(i) 0 ∈ I;
(ii) a, b ∈ I =⇒ a± b ∈ I;

(iii) a ∈ I, r ∈ R =⇒ ra ∈ I.

Notation: I / R. For example, the set of all multiples of a fixed element a of R is the
principal ideal denoted (a) or aR. We say that a generates the principal ideal (a). The other
generators of (a) are the associates of a: elements b = ua where u is a unit of R.

Proposition 1.1.4. Every ideal in Z is principal.

Proof. Let I / Z. If I = {0} then I = (0) and so is principal. Otherwise I contains positive
integers, since a ∈ I ⇐⇒ −a ∈ I by property (iii); let a be the least positive element in I.
By property (iii) we have (a) ⊆ I. Conversely, let b ∈ I; write b = aq + r with 0 ≤ r < a,
then r = b− qa ∈ I, so by minimality of a we have r = 0, so b = qa ∈ (a). So I = (a). �
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Definition 1.1.5. A Principal Ideal Domain or PID is a (nonzero) commutative ring R such
that

(i) ab = 0 ⇐⇒ a = 0 or b = 0;
(ii) every ideal of R is principal.

So Z is a principal ideal domain. Every nonzero ideal of Z has a unique positive generator.

1.2. Greatest Common Divisors in Z.

Theorem 1.2.1. Let a, b ∈ Z.

(1) There exists a unique integer d satisfying
(i) d|a and d|b;
(ii) if c|a and c|b then c|d;

(iii) d ≥ 0.
(2) The integer d can be expressed in the form d = au+ bv with u, v ∈ Z.

Definition 1.2.2. For a, b ∈ Z we define the Greatest Common Divisor (or GCD) of a
and b to be the integer d with the properties given in the theorem. Notation: gcd(a, b),
or sometimes just (a, b). Integers a and b are said to be coprime (or relatively prime) if
gcd(a, b) = 1.

So integers are coprime if they have no common factors other than ±1. The identity
gcd(a, b) = au+ bv is sometimes called Bezout’s identity.

Proof of Theorem 1.2.1. Let I = {ax + by | x, y ∈ Z}; then I is an ideal of Z, so I = (d)
for some integer d ≥ 0. Now d has the form d = au+ bv since d ∈ I, and d|a and d|b since
a, b ∈ I = (d). Lastly, if c|a and c|b then c|au+ bv = d. �

Corollary 1.2.3. [Basic Properties of gcd] For all a, b, k,m ∈ Z:

(1) a and b are coprime iff there exist u, v ∈ Z such that au+ bv = 1;
(2) gcd(a, b) = gcd(b, a) = gcd(|a|, |b|);
(3) gcd(ka, kb) = |k| gcd(a, b);
(4) gcd(a, 0) = |a|; gcd(a, 1) = 1;
(5) gcd(a, b) = gcd(a, b+ ka) for all k ∈ Z;
(6) if gcd(a,m) = gcd(b,m) = 1 then gcd(ab,m) = 1;
(7) if gcd(a, b) = 1 then gcd(ak, bl) = 1 for all k, l ∈ N.

Lemma 1.2.4. [Euler’s Lemma] If a|bc and gcd(a, b) = 1 then a|c.

Proof. Write 1 = au+ bv; then c = a(uc) + (bc)v so a|c. �

If a1, a2, . . . , an is any finite sequence of integers then we similarly find that the ideal
they generate, I = (a1, a1, . . . , an) = {k1a1 + k2a2 + · · · + knan | k1, k2, . . . , kn ∈ Z} is an
ideal of Z, hence I = (d) for a unique d ≥ 0, and we define d = gcd(a1, a2, . . . , an). We say
that a1, a2, . . . , an are coprime if gcd(a1, a2, . . . , an) = 1. This is weaker than the condition
that gcd(ai, aj) = 1 for all i 6= j: for example, gcd(6, 10, 15) = 1 since 6 + 10 − 15 = 1,
but no pair of 6, 10, 15 is coprime. When gcd(ai, aj) = 1 for all i 6= j, we say that the ai are
pairwise coprime.

Our proofs have been non-constructive. A very important computational tool is the Eu-
clidean Algorithm, which computes d = gcd(a, b) given a and b ∈ Z, and its extended form
which also computes the (non-unique) u, v such that d = au+ bv.
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1.3. The Euclidean Algorithm in Z. The Euclidean Algorithm is an efficient method of
computing gcd(a, b) for any two integers a and b, without having to factorize them. It may
also be used to compute the coefficients u and v in the identity d = gcd(a, b) = au+ bv.

The basic idea is this. We may assume b > a > 0 (see the Basic Properties above). Write
r = b− aq with 0 ≤ r < a; then gcd(a, b) = gcd(r, a) and we have reduced the problem to
a smaller one. After a finite number of steps we reach 0, and the last positive integer in the
sequence a, b, r, . . . is the gcd.
Example: (963, 657) = (657, 963) = (306, 657) = (45, 306) = (36, 45) = (9, 36) =
(0, 9) = 9. Here we have used 963 − 657 = 306, 657 − 2 · 306 = 45, 306 − 6 · 45 = 36,
45− 36 = 9.

To solve 9 = 963u + 657v we can back-substitute in these equations: 9 = 45 − 36 =
45 − (306 − 6 · 45) = 7 · 45 − 306 = 7 · (657 − 2 · 306) − 306 = 7 · 657 − 15 · 306 =
7 · 657− 15(963− 657) = 22 · 657− 15 · 963, so u = −15 and v = 22.

There is a simpler way of keeping track of all these coefficients while reducing the amount
which needs to be written down, using some auxiliary variables, which leads to the Euclidean
algorithm. We give it in a form which keeps all the auxiliary variables positive which is easier
to carry out in practice.

Extended Euclidean Algorithm: Given positive integers a and b, this algorithm computes
(d, u, v) such that d = gcd(a, b) = au+ bv:

(1) Set a1 = a, a2 = b; x1 = 1, x2 = 0; y1 = 0, y2 = 1.
(2) Let q = [a1/a2].
(3) Set a3 = a1 − qa2; x3 = x1 + qx2; y3 = y1 + qy2.
(4) Set a1 = a2, a2 = a3; x1 = x2, x2 = x3; y1 = y2, y2 = y3.
(5) If a2 > 0 loop back to Step 2.
(6) If ax1− by1 > 0 return (d, u, v) = (a1, x1,−y1), else return (d, u, v) = (a1,−x1, y1).

Proof of the algorithm. It is clear that the sequence ai is just the sequence of successive
terms in the ordinary Euclidean Algorithm, starting a, b, . . . , in which the last nonzero term
is gcd(a, b). Each new term of this sequence is first called a3 and then the ai move up by
one. This shows that the algorithm terminates with the correct value of d.

Initially, ax1−by1 = a1 and ax2−by2 = −a2. If at a general stage we have ax1−by1 = εa1
and ax2− by2 = −εa2 with ε = ±1, then a calculation shows that the same will hold at the
next stage with the opposite value of ε. Since the last nonzero value of a1 (when a2 = 0)
is d, at the end we have ax1 − by1 = ±d, and the sign is adjusted if necessary (which will
depend on whether the number of steps is even or odd). �

Example: In the previous example, the ai sequence is

963, 657, 306, 45, 36, 9, 0

using quotients

q = 1, 2, 6, 1, 4.

So the xi sequence is

1, 0, 1, 2, 13, 15, 73

and the yi sequence is

0, 1, 1, 3, 19, 22, 107.

Using the last xi and yi provides a check:

73a− 107b = 73 · 963− 107 · 657 = 0

and the preceding values give the solution:

15a− 22b = 15 · 963− 22 · 657 = −9.
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So we may take u = −15, v = 22.

1.4. Primes and unique factorization.

Definition 1.4.1. A prime number (or prime for short) is an integer p > 1 whose only
divisors are ±1 and ±p; the set of primes is denoted P:

p ∈ P ⇐⇒ p > 1 and p = ab =⇒ a = ±1 or b = ±1.

For example 2, 3, 5, 7, 11 are primes. Integers n > 1 which are not prime are called
composite. If a is any integer then either p|a, in which case gcd(p, a) = p, or p 6 |a, in which
case gcd(p, a) = 1.

Lemma 1.4.2. Let p be a prime and a, b ∈ Z. If p|ab then either p|a or p|b (or both).

Proof. Special case of Euler’s Lemma 1.2.4: if p|ab and p 6 |a then gcd(p, a) = 1 so p|b. �

This property of primes is very important, and the uniqueness of prime factorization relies
on it. (It is easy to see that composite numbers do not have this property.) More generally:

Corollary 1.4.3. Let p be a prime and a1, a2, . . . , an ∈ Z. Then

p|a1a2 . . . an =⇒ p|ai for some i.

Theorem 1.4.4 (Fundamental Theorem of Arithmetic). Every positive integer n is a product
of prime numbers, and its factorization into primes is unique up to the order of the factors.

Note that this includes n = 1 which is an “empty” product, and primes themselves with
only one factor in the product. Collecting together any powers of primes which occur in a
prime factorization, we obtain

Corollary 1.4.5. Every positive integer n may be expressed uniquely in the form

n = pe11 p
e2
2 . . . pekk

where p1, . . . , pk are primes with p1 < p2 < · · · < pk and each ei ≥ 1. Alternatively, every
positive integer n may be expressed uniquely in the form

n =
∏
p∈P

pep

where the product is over all primes, each ep ≥ 0, but only a finite number of ep > 0.

The exponent ep which appears in this standard factorization of n is denoted ordp(n); it
is characterized by the following property:

e = ordp(n) ⇐⇒ pe|n and pe+1 6 |n.
For example, 700 = 22 ·52 ·7, so ord2(700) = ord5(700) = 2, ord7(700) = 1, and ordp(700) =
0 for primes p 6= 2, 5, 7. Every positive integer n is uniquely determined by the sequence of
exponents ordp(n).

This standard factorization of positive integers into primes may be extended to negative
integers by allowing a factor ±1 in front of the product, and to nonzero rational numbers by
allowing the exponents to be negative. We may accordingly extend the function ordp to Q∗,
by setting ordp(−n) = ordp(n) and ordp(n/d) = ordp(n)−ordp(d) for nonzero rationals n/d.
[You should check that this is well-defined, independent of the representation of the fraction
n/d.] Then we have the following extension of the main theorem on unique factorization:

Corollary 1.4.6. Every nonzero rational number x may be uniquely expressed in the form

x = ±
∏
p∈P

pordp(x).



8 J. E. CREMONA

For example, −72/91 = −23327−113−1.

Proof of the Fundamental Theorem. Existence (using strong induction): Let n ≥ 1 and sup-
pose true for all m < n; either n = 1 (OK, empty product) or n is prime (OK with one
factor), or n = ab with a, b < n, in which case by induction both a and b are products of
primes, hence so is n.

Uniqueness: Suppose n = p1p2 . . . pr = q1q2 . . . qs where r, s ≥ 0 and all the pi and qj
are primes. We use induction on r. If r = 0 then s = 0 (and vice versa) since then n = 1
which has no prime divisors. So suppose r, s ≥ 1. Now p1|q1q2 . . . qs, so p1|qj for some j,
so p1 = qj since p1 and qj are both prime. By reordering the qs we may assume j = 1, so
p1 = q1. Dividing both sides by p1 gives p2p3 . . . pr = q2q3 . . . qs. The left hand side now has
r− 1 prime factors, so by induction r− 1 = s− 1, so r = s, and the remaining pi are equal
to the remaining qj in some order. �

Many facts about integers may easily be proved using their unique factorization into primes.
For example:

Proposition 1.4.7. Let m,n ∈ Z be nonzero. Then

m = ±n ⇐⇒ ordp(m) = ordp(n) ∀p ∈ P.

The function ordp works rather like a logarithm. The following is easy to check:

Proposition 1.4.8. Let m,n ∈ Z be nonzero. Then ordp(mn) = ordp(m) + ordp(n).

Proof. Exercise. �

The previous result looks elementary enough, but it is sufficient to imply the uniqueness
of prime factorization: for if n =

∏
pep is any factorization of n in to primes, applying ordq

to both sides (where q is some fixed prime) and using the Proposition gives

ordq(n) =
∑

epordq(p) = eq,

since ordq(q) = 1 and ordq(p) = 0 when p 6= q. It follows that the exponents ep are uniquely
determined.

Proposition 1.4.9. Let n ∈ Z be nonzero. Then n is a perfect square if and only if n > 0
and ordp(n) is even for all primes p.

Proof. If n = m2 then clearly n > 0, and ordp(n) = 2ordp(m) which is even.

Conversely, if all ordp(n) are even, set m =
∏

p∈P p
ordp(n)/2 ∈ Z; then m2 =

∏
p∈P p

ordp(n) =

n (not −n since n > 0). �

We end this section with a famous and ancient result of Euclid.

Theorem 1.4.10. [Euclid] The number of primes is infinite.

Proof. Let p1, p2, . . . , pk be a finite set of primes. Set n = p1p2 . . . pk + 1. Then n ≥ 2, so
n has a prime factor q, and q is not equal to any of the pi since they clearly do not divide n.
So there exists a prime outside the finite set. Hence the set of all primes cannot be finite. �

Note that this proof actually shows how to construct a “new” prime from any given finite
set of known primes. Variations of this proof can show that there are infinitely many primes
of various special forms: see the Exercises.
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1.5. Unique Factorization Domains. Theorem 1.4.4 (extended to include negative inte-
gers) may be expressed succinctly by the statement that Z is a Unique Factorization Domain
or UFD. Roughly speaking, a UFD is a ring in which every element has an essentially unique
factorization as a unit times a product of “prime” elements. Every PID is a UFD (but not
conversely: Z[X] is a UFD but not a PID), and an important source of PIDs is rings which
have a “division algorithm” similar to the one for Z. Such rings are called Euclidean Domains,
and we start by defining these.

Definition 1.5.1. (a) A nonzero ring R is an Integral Domain if, for a, b ∈ R,

ab = 0 ⇐⇒ (a = 0 or b = 0).

(b) A nonzero ring R is a Euclidean Domain or ED if it is an integral domain equipped
with a function λ : R − {0} → N0 such that, for a, b ∈ R with a 6= 0, there exist
q, r ∈ R such that

b = aq + r with either r = 0 or λ(r) < λ(a).

Examples:

• Z is an ED with λ(n) = |n|: this is what Proposition 1.1.3 states (though note that
the definition of an ED does not require q and r to be unique).
• Any field F is an ED with λ(x) = 0 for all x 6= 0; this is a degenerate example since

we may always take r = 0 in division.
• If F is a field then the polynomial ring F [X] is an ED, using the degree function
λ(f(X)) = deg(f(X)). The required division property is well-known, being just the
usual long division for polynomials.

It is important that F is a field here: for example, Z[X] is not Euclidean (exercise).
• The ring Z[i] of Gaussian Integers is defined as

Z[i] = {a+ bi | a, b ∈ Z};

it is a subring of C. We will study this in some detail as it gives another example
of a Euclidean Domain which is of interest in number theory, both for its own sake
and also for proving some properties of the ordinary or “rational” integers Z. The
Euclidean function λ on Z[i] is usually called the norm and denoted N :

N(α) = αα = a2 + b2 for α = a+ bi ∈ Z[i].

Theorem 1.5.2. The ring Z[i] of Gaussian Integers is a Euclidean Domain.

Lemma 1.5.3. The norm function N on Z[i] has the following properties:

(1) Multiplicativity: for all α, β ∈ Z[i], N(αβ) = N(α)N(β);
(2) Positivity: N(0) = 0, N(α) ≥ 1 for α 6= 0;
(3) Units: N(α) = 1 ⇐⇒ α ∈ U(Z[i]) = {±1,±i}.

Recall that for a ring R, the group of units (invertible elements) is denoted U(R). Elements
of an integral domain are called associate if one is a unit times the other, or (equivalently) if
each divides the other.

Proof. 1. N(αβ) = (αβ)(αβ) = (αα)(ββ) = N(α)N(β).
2. For a, b ∈ Z, a2 + b2 ≥ 0 with equality iff a = b = 0.
3. Let α = a+ bi, so N(α) = a2 + b2. Then N(α) = 1 ⇐⇒ a2 + b2 = 1 ⇐⇒ (a, b) ∈
{(±1, 0), (0,±1)} ⇐⇒ α ∈ {±1,±i}. These elements are units since αα = 1 =⇒ α−1 =
α ∈ Z[i]. Conversely, if α is a unit with αβ = 1 then 1 = N(1) = N(αβ) = N(α)N(β), so
N(α) = N(β) = 1 since both are positive integers. �
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Proof of Theorem. First of all, Z[i] is an integral domain, as it is a subring of C.
Now let α = a+ bi, β = c+ di ∈ Z[i] with α 6= 0. Then N(α) = a2 + b2 6= 0, and

β

α
=
c+ di

a+ bi
=

(c+ di)(a− bi)
N(α)

=
ac+ bd

N(α)
+
ad− bc
N(α)

i.

Let e and f be the nearest integers to the rational numbers ac+bd
N(α)

and ad−bc
N(α)

respectively,

and set γ = e + fi ∈ Z[i] and δ = β − αγ. Then β/α − γ = x + yi with |x|, |y| ≤ 1/2,
so x2 + y2 ≤ 1/4 + 1/4 = 1/2. Hence N(δ) = N(α)(x2 + y2) ≤ 1

2
N(α) < N(α) as

required. �

Example: Take α = 3 + 4i and β = 10 + 11i. Then

10 + 11i

3 + 4i
=

(10 + 11i)(3− 4i)

25
=

74− 7i

25
= 3 +

−1− 7i

25
,

so the quotient is 3 and remainder (10 + 11i)− 3(3 + 4i) = 1− i. Check: N(1− i) = 2 is
less than N(3 + 4i) = 25.

Just as we did for Z, we can now prove that every ED is a PID:

Theorem 1.5.4. Let R be a Euclidean Domain. Then R is a Principal Ideal Domain.

Proof. Let I / R. If I = {0} then I is certainly principal (I = (0)) so assume that I is
nonzero. Let a ∈ I be a nonzero element with minimal value of λ(a). Then (a) ⊆ I.
Conversely, if b ∈ I, write b = aq + r with r = 0 or λ(r) < λ(a). The second possibility is
not possible by minimality of λ(a), since r = b− aq ∈ I, so r = 0 and b = aq ∈ (a). Thus
I = (a) is principal. �

In a PID we have gcds just as in Z, and Bezout’s identity. In general we do not have
uniqueness of gcds, only uniqueness up to associates (multiplication by a unit). (In Z we
avoided this non-uniqueness by insisting that all gcds were non-negative.)

Definition 1.5.5. In a ring R, a gcd of two elements a and b is an element d satisfying

(i) d|a and d|b;
(ii) if c|a and c|b then c|d.

Lemma 1.5.6. If gcd(a, b) exists then it is unique up to associates.

Proof. If d1 and d2 both satisfy the conditions of Definition 1.5.5, then we have both d1|d2
and d2|d1, so d1 and d2 are associate. �

Because of this non-uniqueness we cannot talk about the gcd, only a gcd of a and b. In
specific rings, one may impose an extra condition to ensure uniqueness: in Z we insisted
that gcd(a, b) ≥ 0; in the polynomial ring F [X] (with F a field) one usually insists that
gcd(a(X), b(X)) is monic (with leading coefficient 1).

Proposition 1.5.7. In a PID, the gcd of two elements a and b exists, and may be expressed
in the form au+ bv.

Proof. Let a, b ∈ R which is a PID. Let I = (a, b) = {ra + sb | r, s ∈ R} be the ideal they
generate, and let d ∈ R be such that I = (d). Then d = au + bv for some u, v ∈ R by
construction; a, b ∈ (d) so d|a and d|b; and if c|a and c|b then (d) = (a, b) ⊆ (c) so c|d. �

So in a PID, whether Euclidean or not, the gcd always exists. However, it is only in a ED
that computing gcds is easily possible via the Euclidean Algorithm.

Example: Take α = 3 + 4i and β = 10 + 11i. Then from the previous example we have
β − 3α = 1 − i. Similarly, α − 3i(1 − i) = i, and lastly 1 − i = i(−1 − i) with zero
remainder. The last nonzero remainder was i which is therefore a gcd of α and β; one would
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normally adjust this since i is a unit and say that gcd(α, β) = 1. Back-substitution gives
i = α− 3i(β − 3α) = (1 + 9i)α− 3iβ, so finally 1 = (9− i)α− 3β.

The next step is to show that every PID is also a unique factorization domain. In the case
of Z, we used the Euclidean property again, and not just the PID property, for this step, but
since there are rings which are PIDs but not Euclidean we give a proof which works for all
PIDs.

Definition 1.5.8. In an integral domain R, an element p is called irreducible if it is neither 0
nor a unit and p = ab implies that either a or b is a unit; p is called prime if it is neither 0
nor a unit and p|ab implies that either p|a or p|b.

Lemma 1.5.9. Every prime is irreducible. In a PID, every irreducible is prime.

Proof. Let p be prime and suppose that p = ab. Then p|ab so p|a (say). Write a = pc, then
p = ab = pcb, so p(1− cb) = 0, and since p 6= 0 and R is an integral domain, 1− cb = 0 so
bc = 1 and b is a unit.

In a PID, let p be irreducible and suppose that p|ab. If p 6 |a then the only common divisors
of p and a are units, so gcd(p, a) = 1. Hence we can write 1 = pu+av, so b = p(ub)+(ab)v
which is a multiple of p. �

The last property will be crucial in proving the uniqueness of factorizations into irreducibles,
but for the existence we need to do some more preparation. The following lemma is called
the “ascending chain condition” or ACC for ideals in a PID.

Lemma 1.5.10. Let R be a PID. Let (ai)i∈N be a sequence of elements of R with (a1) ⊆
(a2) ⊆ (a3) ⊆ . . . . (So each ai is a multiple of the next). Then there exists k such that
(ak) = (ak+1) = (ak+2) = . . . , so the chain of ideals stabilizes. Hence any strictly ascending
chain of ideals (a1) ⊂ (a2) ⊂ (a3) ⊂ . . . must be finite.

Proof. Let I = ∪i∈N(ai). An easy check shows that I is an ideal, hence I = (a) for some
a ∈ R. But a ∈ I = ∪i∈N(ai) implies that a ∈ (ak) for some k, so I = (a) ⊆ (ak) ⊆ I. It
follows that I = (a) = (ak) = (ak+1) = . . . . �

This lemma is used to replace induction in the proof of the existence of factorizations into
irreducibles, which was used for Z.

Proposition 1.5.11. Let R be a PID. Every element of R which is neither 0 nor a unit is a
product of irreducibles.

Proof. First we show that every nonzero non-unit of R has an irreducible factor. Let a ∈ R
be neither 0 nor a unit. If a is irreducible there is nothing more to do. Otherwise there is a
factorization a = a1b1 with neither factor a unit. If a1 is not irreducible then a1 = a2b2 with
neither factor a unit. Continuing in this way we have (a) ⊂ (a1) ⊂ (a2) ⊂ . . . with strict
inclusions since b1 = a1/a, b2 = a1/a2, . . . are non-units. By the ACC lemma the sequence
must be finite, so eventually some ak is irreducible.

Now we show that a is a product of irreducibles. If a itself is irreducible, there is nothing
to do; otherwise, by the first step, a = p1c1 with p1 irreducible and c1 not a unit. If c1 is
irreducible, stop, else c1 = p2c2 with p2 irreducible and c2 not a unit. Continuing in this way,
the process must stop since (a) ⊂ (c1) ⊂ (c2) ⊂ . . . . �

Finally, we use the fact that in a PID irreducibles are prime to prove that the factorizations
of any given nonzero non-unit are essentially the same, up to reordering the factors and
replacing irreducibles by associates.

Definition 1.5.12. An Integral Domain R is a Unique Factorization Domain or UFD if

(i) every nonzero element may be expressed as a unit times a product of irreducibles;
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(ii) the factorization in (i) is unique up to the order of the factors and replacing the
irreducibles by associates; that is, if a ∈ R is nonzero and

a = up1p2 . . . pr = vq1q2 . . . qs

with u, v units and all pi, qj irreducibles, then r = s, and after permuting the qj if
necessary, there are units vj for 1 ≤ j ≤ r such that qj = vjpj and u = vv1v2 . . . vr.

Theorem 1.5.13. Let R be a PID. Then R is a UFD.

Proof. The existence of factorizations into irreducibles has already been shown for non-units;
units are included by allowing an empty product of irreducibles and an extra unit factor.

Uniqueness: Suppose that a = up1p2 . . . pr = vq1q2 . . . qs with u, v units and all pi, qj
irreducibles. If r = 0 then a is a unit, hence also s = 0 (since a unit cannot be divisible
by any irreducible), and conversely. So suppose that r, s ≥ 1, and use induction on r. Now
p1|vq1q2 . . . qs, so primality of p1 implies that p1|qj for some j (we cannot have p1|v since v
is a unit). Permuting if necessary, we may assume that j = 1 so p1|q1. Hence q1 = v1p1 for
some v1 which must be a unit since q1 is irreducible. Dividing gives

up2 . . . pr = (vv1)q2 . . . qs,

with only r− 1 irreducibles on the left, so by induction we have r− 1 = s− 1, so r = s, and
units vj for j ≥ 2 such that qj = vjpj and u = (vv1)v2 . . . vr as required. �

Example (continued): Since the ring Z[i] of Gaussian Integers is Euclidean, it is a PID
and a UFD. We have already determined that its units are the four elements ±1 and ±i, but
what are its primes/irreducibles?

(1) If π ∈ Z[i] is prime then π divides some ordinary “rational” prime p, since if n =
N(π) = ππ then π|n so by primality of π, π divides at least one prime factor p of n.

(2) If N(π) = p is prime, then π is irreducible: for if π = αβ then p = N(π) =
N(α)N(β), so one of α, β has norm 1 and is a unit. For example, 1+ i, 2+ i, 3+2i,
4 + i are prime since their norms are 2, 5, 13, 17.

(3) If a rational prime p is a sum of two squares, p = a2 + b2, then setting π = a + bi
gives p = N(π) = N(π), so π and π are both Gaussian primes. We will prove later,
in Theorem 2.4.2, that every rational prime p of the form 4k+1 can be expressed in
this way; the factors π and π are not associate (exercise).

(4) However, rational primes q of the form 4k + 3 can not be expressed as sums of
two squares, since squares all leave remainder of 0 or 1 when divided by 4, so all
numbers of the form a2 + b2 leave a remainder of 0, 1 or 2 on division by 4. Such
primes q remain prime in Z[i]. For if q = αβ with neither α nor β a unit, then
q2 = N(α)N(β) with both N(α), N(β) > 1, so (by unique factorization in Z) we
must have N(α) = N(β) = q, so q would be a sum of two squares.

We sum up this example as follows; we have proved everything stated here except for the
fact that all primes of the form 4k + 1 are sums of two squares (Theorem 2.4.2), and the
remark about associates (exercise).

Theorem 1.5.14. The ring Z[i] of Gaussian Integers is a Euclidean Domain and hence also
a Principal Ideal Domain and a Unique Factorization Domain. Its units are the four elements
±1, ±i. Its primes are as follows (together with their associates):

(1) 1 + i, of norm 2;
(2) each rational prime p of the form 4k + 1 is a sum of two squares, p = a2 + b2, and

p factorizes in Z[i] as p = ππ where π = a + bi and π = a − bi are non-associate
Gaussian primes of norm p;

(3) each rational prime q of the form 4k + 3 is also a Gaussian prime.
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For example, here are some Gaussian factorizations: 123 + 456i = 3 · (1 + 2i) · (69 + 14i)
(the last factor has prime norm 4957), 2000 = (1 + i)8(1 + 2i)3(1− 2i)3.

s a g e : Qi .< i> = QQ. e x t e n s i o n ( x ˆ2+1)
s a g e : 2 0 1 8 . f a c t o r ( )
2 ∗ 1009
s a g e : Qi ( 2 0 1 8 ) . f a c t o r ( )
( i ) ∗ (15∗ i − 28) ∗ ( i + 1)ˆ2 ∗ (15∗ i + 28)
s a g e : (123+456∗ i ) . norm ( ) . f a c t o r ( )
3ˆ2 ∗ 5 ∗ 4957
s a g e : (123+456∗ i ) . f a c t o r ( )
(−1) ∗ (−14∗ i − 69) ∗ (2∗ i + 1) ∗ 3

There are other “number rings” similar to Z[i], but not many which are known to have
unique factorization. A complete study requires more algebra, and is done in Algebraic
Number Theory. Here are some further examples.

Example: The ring R = Z[
√
−2] is also Euclidean and hence a UFD. The proof is almost

identical to the one given above for Z[i], using the norm N(α) = αα, so that N(a+b
√
−2) =

a2 + 2b2. The key fact which makes R Euclidean via the norm is that every point in the
complex plane is at distance less than 1 from the nearest element of R, as was the case with
Z[i]. Factorization of primes p now depends on p (mod 8).

Example: The ring R = Z[
√
−3] is not Euclidean, and neither a PID nor a UFD. For

example, 4 = 2 · 2 = (1 +
√
−3) · (1 −

√
−3) with all factors on the right irreducible in R.

Also: the ideal (2, 1+
√
−3) is not principal; and the element 2 is irreducible but not prime (as

the previous equation shows, since neither 1±
√
−3 are divisible by 2 in R). However, if we

enlarge the ring by including numbers of the form (a+b
√
−3)/2 where a and b are both odd,

we obtain the larger ring S = Z[ω], where ω = (−1 +
√
−3)/2, satisfying ω2 + ω + 1 = 0,

which is Euclidean and hence a UFD. The norm is again N(α) = αα; with α = a+ bω one
computes that N(α) = a2 − ab+ b2, and 4N(α) = (2a− b)2 + 3b2. This ring turns out to
be useful in the solution of the Fermat equation x3 + y3 = z3.

Example: As in the previous example, the ring Z[
√
−19] is not Euclidean. Enlarging it to

R = Z[ω], where now ω = (−1+
√
−19)/2, satisfying w2+w+5 = 0, we find a ring which

is still not Euclidean, but is a PID and hence a UFD. This example shows that not every PID
is Euclidean. We omit the details.
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2. Congruences and modular arithmetic

The notation for congruence is an invention of Gauss. It simplifies many calculations and
arguments in number theory.

2.1. Definition and Basic Properties.

Definition 2.1.1. Let m be a positive integer. For a, b ∈ Z we say that a is congruent to b
modulo m and write a ≡ b (mod m) iff a− b is a multiple of m:

a ≡ b (mod m) ⇐⇒ m|(a− b).

Here m is called the modulus. If m6 |(a− b) then we write a 6≡ b (mod m).

For example, −3 ≡ 18 (mod 7) and 19 6≡ 1 (mod 4). All even integers are congruent
to 0 (mod 2), while odd integers are congruent to 1 (mod 2).

Congruence may be expressed in algebraic terms: to say a ≡ b (mod m) is equivalent to
saying that the cosets a+mZ and b+mZ of mZ in Z are equal.

The basic properties of congruence are summarized in the following lemmas.

Lemma 2.1.2. For each fixed modulus m, congruence modulo m is an equivalence relation:

(i) Reflexive: a ≡ a (mod m) for all a ∈ Z;
(ii) Symmetric: a ≡ b (mod m) =⇒ b ≡ a (mod m);

(iii) Transitive: If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

Proof. All parts are easy exercises. They follow from the fact that the subgroup mZ of Z
satisfies: (i) 0 ∈ mZ; (ii) x ∈ mZ =⇒ −x ∈ mZ; (iii) x, y ∈ mZ =⇒ x+ y ∈ mZ. �

Lemma 2.1.3. If a ≡ b (mod m) and c ≡ d (mod m) then a + c ≡ b + d (mod m) and
ac ≡ bd (mod m).

Proof. Another exercise. The second part follows from ac− bd = a(c− d) + d(a− b). �

The preceding result has the following interpretation. As well as mZ being a subgroup of
the additive group Z, it is also an ideal of the ring Z, and hence there is a well-defined quotient
ring Z/mZ. The lemma says that addition and multiplication in Z/mZ are well-defined. We
will return to this viewpoint in the next section.

Lemma 2.1.4. (i) If a ≡ b (mod m) then ac ≡ bc (mod mc) for all c > 0;
(ii) If a ≡ b (mod m) and n|m then a ≡ b (mod n).

Proof. Immediate from Definition 2.1.1. �

Lemma 2.1.5. If ax ≡ ay (mod m), then x ≡ y (mod m/ gcd(a,m)).
Two important special cases:
If ax ≡ ay (mod m) and gcd(a,m) = 1, then x ≡ y (mod m).
If ax ≡ ay (mod m) and a|m, then x ≡ y (mod m/a).

Proof. Let g = gcd(a,m) and write m = gm1 and a = ga1 with gcd(a1,m1) = 1. Then
ax ≡ ay (mod m) =⇒ m|a(x − y) =⇒ m1|a1(x − y) =⇒ m1|(x − y), the last step
using Euler’s Lemma. The special cases are the cases g = 1 and g = a respectively. �

Proposition 2.1.6. Let a, b ∈ Z. The congruence ax ≡ b (mod m) has a solution x ∈ Z if
and only if gcd(a,m)|b. If a solution exists it is unique modulo m/ gcd(a,m).

In particular, when gcd(a,m) = 1 the congruence ax ≡ b (mod m) has a solution for
every b, which is unique modulo m.
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Proof. Solving ax ≡ b (mod m) for x ∈ Z is equivalent to solving ax+my = b for x, y ∈ Z.
Since the set of all integers of the form ax+my is the ideal (a,m) = (d) where d = gcd(a,m),
there is a solution iff b ∈ (d), as stated. If x, x′ are two solutions then ax ≡ ax′ (mod m),
which implies that x ≡ x′ (mod m/d) by Lemma 2.1.5. �

How to solve the congruence ax ≡ b (mod m): Use the EEA to find d, u, v with d =
gcd(a,m) = au + mv. Check that d|b (otherwise there are no solutions). If b = dc then
b = auc+mvc so x = uc is one solution. The general solution is x = uc+tm/d = (ub+tm)/d
for arbitrary t ∈ Z.

Lemma 2.1.7. Each integer a is congruent modulo m to exactly one integer in the set
{0, 1, 2, . . . ,m−1}. More generally, let k be a fixed integer. Then every integer is congruent
modulo m to exactly one integer in the set {k, k + 1, k + 2, . . . , k +m− 1}.

Proof. The first statement is a restatement of the division algorithm: write a = mq+ r with
0 ≤ r ≤ m− 1; then a ≡ r (mod m), and this r is unique.

The general statement follows since no two of the m integers in the set are congruent
to each other modulo m, since their difference is less than m; hence they have distinct
remainders on division by m, and so are congruent to 0, 1, 2, . . . ,m− 1 in some order. �

Definition 2.1.8. Taking k = 0, we obtain the system of least non-negative residues mod-
ulo m: {0, 1, 2, . . . ,m − 1}. Taking k = −[(m − 1)/2] gives the system of least residues
modulo m; when m is odd this is {0,±1,±2, . . . ,±(m−1)/2}, while when m is even we in-
clude m/2 but not −m/2. Any set of m integers representing all m residue classes modulo m
is called a residue system modulo m.

For example, when m = 7 the least non-negative residues are {0, 1, 2, 3, 4, 5, 6} and the
least residues are {−3,−2,−1, 0, 1, 2, 3}; for m = 8 we have least nonnegative residues
{0, 1, 2, 3, 4, 5, 6, 7} and least residues {−3,−2,−1, 0, 1, 2, 3, 4}.

2.2. The structure of Z/mZ.

Definition 2.2.1. The ring of integers modulo m is the quotient ring Z/mZ. We will denote
the group of units of Z/mZ by Um, and its order by ϕ(m). The function ϕ : N→ N is called
Euler’s totient function or Euler’s phi function.

Sometimes Z/mZ is denoted Zm; however there is a conflict of notation here, since for
prime p the notation Zp is used to denote a different ring important in number theory, the
ring of p-adic integers. We will therefore not use this abbreviation!

Informally we may identify Z/mZ with the set {0, 1, 2, . . . ,m− 1}, though the elements
of Z/mZ are not integers but “integers modulo m”: elements of the quotient ring Z/mZ.
To be strictly correct, one should use the notation a, b, . . . for integers and a, b, . . . for
their residues in Z/mZ. Then one has a = b (in Z/mZ) iff a ≡ b (mod m) (in Z), and
Z/mZ = {0, 1, 2, . . . ,m− 1}. For simplicity we will not do this but use the same notation
for an integer and its residue in Z/mZ.

So Z/mZ is a finite ring with m elements, and its unit group Um is a finite group under
the operation of “multiplication modulo m”.

Proposition 2.2.2. Let a ∈ Z/mZ. Then a ∈ Um (that is, a is invertible modulo m) if and
only if gcd(a,m) = 1.

Remark: Note that if a ≡ a′ (mod m) then gcd(a,m) = gcd(a′,m), since a′ = a+ km for
some k. Hence the quantity gcd(a,m) only depends on the residue of a modulo m.

Proof. a is invertible in Z/mZ iff the congruence ax ≡ 1 (mod m) has a solution, which is
iff gcd(a,m) = 1. �
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We may use the Extended Euclidean Algorithm to detect whether or not a is invertible
modulo m, and also to find its inverse a′ if so, since if (x, y) is a solution to ax+my = 1 then
ax ≡ 1 (mod m) so we may take a′ = x. For example, gcd(4, 13) = 1 with 4·10−13·3 = 1,
so the inverse of 4 modulo 13 is 10. Here is a complete table of inverses modulo 13:
a 0 1 2 3 4 5 6 7 8 9 10 11 12
a′ - 1 7 9 10 8 11 2 5 3 4 6 12

It follows that ϕ(m), the order of Um, is equal to the number of residues modulo m of
integers which are coprime to m. This is often given as the definition of ϕ(m).

Corollary 2.2.3.

ϕ(m) = |{a | 0 ≤ a ≤ m− 1 and gcd(a,m) = 1}| .
Definition 2.2.4. A reduced residue system modulo m is a set of ϕ(m) integers covering
the residue classes in Um.

Any set of ϕ(m) integers which are all coprime to m, and no two of which are congruent
modulo m, form a reduced residue system. The “standard” one is

{a | 0 ≤ a ≤ m− 1 and gcd(a,m) = 1}.
For example, U6 = {1, 5}, U7 = {1, 2, 3, 4, 5, 6} and U8 = {1, 3, 5, 7}, so that ϕ(6) = 2,

ϕ(7) = 6 and ϕ(8) = 4. Here are the first few values of ϕ(m):
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕ(m) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8

Proposition 2.2.5. (1) ϕ(m) is even for m ≥ 3;
(2) ϕ(m) = m− 1 if and only if m is prime;
(3) Let p be a prime; then ϕ(pe) = pe−1(p− 1) for e ≥ 1.

Proof. (1) Um is a group of order ϕ(m) and the element −1 has order 2, unless m = 1
or m = 2 when −1 ≡ 1, so ϕ(m) must be even by Lagrange’s Theorem for finite
groups.

(2) If m is prime then gcd(a,m) = 1 for all a with 1 ≤ a ≤ m− 1, and conversely.
(3) Let m = pe where p is prime. The only integers a not coprime to m are the

multiples of p, which in the range 0 ≤ a < pe are a = pb with 0 ≤ b < pe−1, so
ϕ(pe) = pe − pe−1.

�

We will use this to obtain a general formula for ϕ(m) after the Chinese Remainder Theorem
below, which will reduce the determination of ϕ(m) for general m to the case of prime powers.

Arithmetic modulo m is much simpler when m is prime, as the following result indicates.

Theorem 2.2.6. If p is a prime then Z/pZ is a field. If m is composite then Z/mZ is not
a field, and not even an integral domain.

Proof. Let p be prime. Then Z/pZ is a commutative ring in which every nonzero element
is invertible, i.e. a field. If m is composite then m = ab with 1 < a, b < m. Then ab ≡ 0
(mod m) while a, b 6≡ 0 (mod m), so Z/mZ is not an integral domain. �

Notation: To emphasize its field structure, Z/pZ is also denoted Fp, and the multiplicative
group Up is then denoted F∗p. It has order p− 1, and is cyclic (see Theorem 2.6.1 below).

2.3. Euler’s, Fermat’s and Wilson’s Theorems. Since Um is a finite multiplicative group
of order ϕ(m) we immediately have the following as a consequence of Lagrange’s Theorem
for finite groups.

Theorem 2.3.1. (a) Euler’s Theorem: Let m be a positive integer and a an integer
coprime to m. Then

aϕ(m) ≡ 1 (mod m).
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(b) Fermat’s Little Theorem: Let p be a prime and a an integer not divisible by p.
Then

ap−1 ≡ 1 (mod p);

moreover, for every integer a we have

ap ≡ a (mod p).

Proof. The first follows directly from Lagrange’s Theorem for finite groups, since a ∈ Um
which has order ϕ(m). The second is a special case since ϕ(p) = p − 1. The last follows
from this, since it is clearly true when p|a as then both sides are 0. �

Fermat’s Little Theorem can be used as a primality test. Let n be an odd integer which
one suspects to be a prime; if 2n−1 6≡ 1 (mod n) then n is certainly not prime. Note that
this has been proved without exhibiting a factorization of n. On the other hand, if 2n−1 ≡ 1
(mod n) it does not prove that n is prime! For example this holds with n = 1729 = 7 ·13 ·19.
Such a number is called a pseudoprime to base 2. By using a combination of so-called bases
(as here we used the base 2) one can develop much stronger “probabilistic primality tests”.

Corollary 2.3.2. In Fp[X] the polynomial Xp−X factorizes as a product of p linear factors:

Xp −X =
∏
a∈Fp

(X − a) in Fp[X].

Proof. By Fermat’s Little Theorem, all p elements a ∈ Fp are roots of Xp −X, from which
the result follows by polynomial algebra. �

Corollary 2.3.3. [Wilson’s Theorem] Let p be a prime. Then

(p− 1)! ≡ −1 (mod p).

Proof. Compare the constant term on both sides of the factorization (in Fp[X]): Xp−1−1 =∏
a∈F∗p

(X − a). This gives

−1 ≡ (−1)p−1(p− 1)! (mod p),

so (p− 1)! ≡ (−1)p ≡ −1 (mod p). �

Remark: The converse to Wilson’s Theorem also holds; in fact, for composite integers m
greater than 4 we have (m−1)! ≡ 0 (mod m) (exercise). But this is not useful as a primality
test, since there is no way to compute the residue of (m− 1)! (mod m) quickly.
Example: Take p = 13. Then (p− 1)! = 12! = 479001600 = 13 · 36846277− 1. A better
way of seeing this is to write

12! ≡ 1 · 12 · (2 · 7) · (3 · 9) · (4 · 10) · (5 · 8) · (6 · 11) ≡ 12 ≡ −1 (mod 13).

A similar trick, pairing each residue apart from ±1 with its inverse, may be used to prove
Wilson’s Theorem directly. This works because ±1 are the only residues modulo a prime
which are their own inverse:

Proposition 2.3.4. Let p be a prime. Then the only solutions to x2 ≡ 1 (mod p) are
x ≡ ±1.

Proof. Clearly ±1 are solutions. Since Fp is a field, the quadratic equation X2 = 1 has at
most two solutions in Fp, so there are no more solutions.

Alternatively, if x is a solution then p|x2 − 1 = (x − 1)(x + 1), so either p|(x − 1) or
p|(x+ 1), so x ≡ ±1 (mod p). �
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Example: Let m = F5 = 232 + 1 = 4294967297. Check that x = 1366885067 satisfies
x2 ≡ 1 (mod m). This proves that m is not prime. In fact, m = ab where a = 671 =
gcd(m,x− 1) and b = 6700417 = gcd(m,x + 1). Many modern factorization methods are
based on this idea. Of course, one needs efficient ways to find solutions other than ±1 to
the congruence x2 ≡ 1 (mod m) where m is the (odd) composite number being factorized.
There are several of these, which collectively go by the name of “quadratic sieve” methods.

2.4. Some Applications.

Proposition 2.4.1. Let p be an odd prime. Then the congruence x2 ≡ −1 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

Proof. If x = a satisfies a2 ≡ −1 (mod p) then a4 ≡ 1 (mod p), and so a has order
exactly 4 in the multiplicative group F∗p of order p− 1, so by Lagrange’s Theorem 4|(p− 1).

If 4|(p− 1) then the polynomial Xp−1− 1 is divisible by X4− 1 and hence by X2+1. But
Xp−1−1 factorizes in Fp[X] as a product of the p−1 linear factors X−a for a ∈ F∗p. Hence
X2 + 1 is a product of two linear factors, so X2 + 1 = (X − a)(X + a) where a2 + 1 = 0
(in Fp) so the congruence x2 ≡ −1 (mod p) has solutions ±a. �

There are many other ways of proving the preceding Proposition. One is to use the fact
that F∗p is cyclic (Theorem 2.6.1), hence has elements of order d for all d|(p − 1), and an
element a of order 4 satisfies a4 = 1, a2 6= 1, so a2 = −1. Alternatively, from Wilson’s
Theorem one can show that for all odd p,

(((p− 1)/2)!)2 ≡ −(−1)(p−1)/2 (mod p),

so when p ≡ 1 (mod 4) the number a = ((p− 1)/2)! satisfies a2 ≡ −1 (mod p).
As a corollary we can prove the result used earlier, that a prime of the form 4k + 1 may

be written as a sum of two squares.

Theorem 2.4.2. Let p be a prime such that p ≡ 1 (mod 4). Then there exist integers a
and b such that p = a2 + b2.

Proof. We give two proofs here. The first uses the fact that the ring Z[i] of Gaussian Integers
is a UFD, while the second is more elementary. A third proof will be given in Chapter 4 (see
Theorem 4.2.2). All start from the existence of an integer c such that c2 ≡ −1 (mod p).

First proof. In Z[i] we have p|(c2 +1) = (c− i)(c+ i), but p does not divide either factor
c ± i. Hence p is not a prime in Z[i], so p = αβ with α, β ∈ Z[i] nonunits. Taking norms
gives p2 = N(α)N(β), so N(α) = N(β) = p. Writing α = a + bi with a, b ∈ Z we have
p = a2 + b2 as required.

Second proof. Let k = [
√
p], so k2 < p < (k + 1)2. The set

S = {(x, y) | 0 ≤ x ≤ k, 0 ≤ y ≤ k}
contains (k + 1)2 > p pairs of integers, so there must exist two distinct pairs with the same
residue of x+cy (mod p), say x1+y1c ≡ x2+y2c with (x1, y1) 6= (x2, y2). Set a = |x1−x2|
and b = |y1 − y2|. Then on the one hand, 0 < a2 + b2 ≤ 2k2 < 2p, and on the other hand
from x1 + y1c ≡ x2 + y2c (mod p) we have a2 = (x1 − x2)2 ≡ c2(y1 − y2)2 ≡ c2b2 ≡ −b2
(mod p), so a2 + b2 is a multiple of p. Hence a2 + b2 = p. �

Remarks The first proof can be made constructive: given c satisfying c2 ≡ −1 (mod p), it
is not hard to show that the element a+ bi = gcd(c+ i, p) in Z[i] satisfies a2 + b2 = p, so a
single application of the Euclidean algorithm in Z[i] gives a solution.

The first proof also shows that the solution is essentially unique, up to permuting a and b
and changing their signs. This follows from the fact that the factorization of p in Z[i] as
p = ππ with π = a+ bi is unique up to permuting the factors and multiplying them by units.

We finish this section with some more applications to the distribution of primes.



MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 19

Proposition 2.4.3. (a) There are infinitely many primes p ≡ 1 (mod 4).
(b) There are infinitely many primes p ≡ 3 (mod 4).

Proof. For part (b) we refer to the exercises.
We know that odd prime divisors p of numbers of the form n2 +1 satisfy p ≡ 1 (mod 4),

since the congruence x2 ≡ −1 (mod p) has the solution x = n. (Or directly, n has order 4
in the group Up, so by Lagrange 4|(p − 1).) Now if p1, p2, . . . , pk are primes, every prime
divisor of (2p1p2 . . . pk)

2 + 1 is congruent to 1 (mod 4), and is distinct from all the pi, so
the number of primes ≡ 1 (mod 4) cannot be finite. �

Similarly, odd prime divisors of n4 + 1 are ≡ 1 (mod 8) and there are therefore infinitely
many of those; odd prime divisors of n8 + 1 are ≡ 1 (mod 16) so there are infinitely many
of those; and so on. Next we have

Proposition 2.4.4. Let q be an odd prime.

(a) Let p be a prime divisor of f(n) = nq−1 + nq−2 + · · ·+ n+ 1. Then either p = q or
p ≡ 1 (mod q).

(b) There are infinitely many primes p ≡ 1 (mod q).

Proof. (a) Since (n− 1)f(n) = nq − 1 we have p|nq − 1, so nq ≡ 1 (mod p). So the order
of n in Up divides q, so is either 1 or q.

If the order is 1 then n ≡ 1 (mod p) so 0 ≡ f(n) ≡ 1 + 1 + · · · + 1 ≡ q (mod p) so
p = q.

If the order is q then by Lagrange, q|(p− 1) so p ≡ 1 (mod q).
(b) All prime divisors p of f(qp1p2 . . . pk) satisfy p ≡ 1 (mod q) and are distinct from all

the pi, so the number of primes ≡ 1 (mod q) cannot be finite. �

Using cyclotomic polynomials (for example, f(n) above) one can show that there are
infinitely many primes p ≡ 1 (mod m) for any m. More generally Dirichlet’s Theorem on
primes in arithmetic progressions states that there are infinitely many primes p ≡ a (mod m)
whenever a and m are coprime: the general proof uses complex analysis!

2.5. The Chinese Remainder Theorem or CRT.

Proposition 2.5.1. [Chinese Remainder Theorem for simultaneous congruences] Let m,n ∈
N be coprime. Then for every pair of integers a, b the simultaneous congruences

x ≡ a (mod m)(2.5.1)

x ≡ b (mod n)

have a solution which is unique modulo mn.
More generally, if d = gcd(m,n) then the congruences (2.5.1) have a solution if and only

if a ≡ b (mod d), and the solution (when it exists) is unique modulo lcm(m,n) = mn/d.

Proof. Write x = a+my to satisfy the first congruence; the second then becomes a+my ≡ b
(mod n) or my ≡ b − a (mod n), which by Proposition 2.1.6 has a solution if and only if
d|(b − a) where d = gcd(m,n). Uniqueness: y is unique modulo n/d, so x = a + my is
unique modulo mn/d. �

To find the solution in the coprime case, write 1 = mu + nv. Then we have the solution
x = mub + nva since nv ≡ 1 (mod m),≡ 0 (mod n) while mu ≡ 0 (mod m),≡ 1
(mod n).

Example: Let m = 13, n = 17. Then 1 = gcd(13, 17) = 52−51 so the solution for general
a, b is x ≡ 52b− 51a (mod 221).
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The CRT says that there is a bijection between pairs (a mod m, b mod n) and single
residue classes (c mod mn) when m,n are coprime. This bijection is in fact a ring isomor-
phism:

Theorem 2.5.2. [Chinese Remainder Theorem, algebraic form] Let m,n ∈ N be coprime.
Then we have the isomorphism of rings

Z/mnZ ∼= Z/mZ× Z/nZ.
Restricting to units on both sides, we have the isomorphism of groups

Umn ∼= Um × Un.

Proof. Map Z→ Z/mZ×Z/nZ by c 7→ (c mod m, c mod n). This is a ring homomor-
phism, which is surjective by the previous Proposition, and has kernel mZ∩nZ = mnZ (the
last equality because gcd(m,n) = 1). The first result follows by the Isomorphism Theorem
for ring homomorphisms.

In the correspondence (a, b) ↔ c we have a ≡ c (mod m) and b ≡ c (mod n), so
gcd(c,mn) = 1 ⇐⇒ gcd(c,m) = gcd(c, n) = 1 ⇐⇒ gcd(a,m) = gcd(b, n) = 1, which
gives the last bijection. Moreover, from the ring isomorphism we get an isomorphism of the
groups of units, so Umn = U(Z/mnZ) ∼= U(Z/mZ × Z/nZ) ∼= U(Z/mZ) × U(Z/nZ) =
Um × Un. �

Both forms of the CRT extend to several moduli m1, m2, . . . , mk provided that they are
pairwise coprime. The second part of the proposition has the following important corollary:
ϕ is a multiplicative function.

Proposition 2.5.3. Let m,n ∈ N be coprime. Then ϕ(mn) = ϕ(m)ϕ(n).

Proof. ϕ(mn) = |Umn| = |Um × Un| = |Um| · |Un| = ϕ(m)ϕ(n). �

Corollary 2.5.4. Let m ∈ N have prime factorization

m =
k∏
i=1

peii

where the pi are distinct primes and ei ≥ 1. Then

ϕ(m) =
k∏
i=1

pei−1i (pi − 1) = m

k∏
i=1

(
1− 1

pi

)
.

Proof. By multiplicativity we have ϕ(m) =
∏k

i=1 ϕ(p
ei
i ), and ϕ(peii ) = pei−1i (pi − 1) by

Proposition 2.2.5. The last part is just a rearrangement of the product; it has the merit that
the exponents of the prime divisors of m do not appear explicitly. �

Examples: (1). ϕ(168) = ϕ(8)ϕ(3)ϕ(7) (splitting 168 into prime powers) = (8 − 4)(3 −
1)(7 − 1) = 4 · 2 · 6 = 48. Alternatively, ϕ(168) = 168 ·

(
1− 1

2

)
·
(
1− 1

3

) (
1− 1

7

)
=

168 · 1
2
· 2
3
· 6
7
= 48.

(2). ϕ(100) = ϕ(4)ϕ(25) = 2 · 20 = 40.

One more property of ϕ(m) will be useful later.

Proposition 2.5.5. Let m ∈ N. Then
∑

d|m ϕ(d) = m.

The sum here is over all positive divisors of m. For example, when m = 12 we have

12 = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(4) + ϕ(6) + ϕ(12)

= 1 + 1 + 2 + 2 + 2 + 4.



MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 21

Proof. Consider the m fractions k/m for 0 ≤ k ≤ m − 1. Reduced to lowest terms they
become a/d where d|m, 0 ≤ a ≤ d− 1, and gcd(a, d) = 1. So there are ϕ(d) fractions with
denominator d for each divisor d of m, giving the total as stated. �

Applications of CRT: The CRT says that congruences to two coprime moduli are, in a
sense, independent. Solving a general congruence to a general modulus reduces to solving it
modulo prime powers, and then using CRT to “glue” the separate solutions together.

For example: solve x2 ≡ 1 (mod 91). Since 91 = 7 · 13 we first solve separately modulo 7
and modulo 13, giving x ≡ ±1 (mod 7) and x ≡ ±1 (mod 13) by an earlier proposition
since 7 and 13 are prime. This gives four possibilities modulo 91:

(+1 mod 7, +1 mod 13) ↔ (+1 mod 91)

(+1 mod 7, −1 mod 13) ↔ (−27 mod 91)

(−1 mod 7, +1 mod 13) ↔ (+27 mod 91)

(−1 mod 7, −1 mod 13) ↔ (−1 mod 91)

So the solutions are x ≡ ±1 (mod 91) and x ≡ ±27 (mod 91). To solve the second and
third we use the method given above: write 1 = 7u+ 13v = 14− 13, then (a, b) = (1,−1)
maps to mub+ nva = 14b− 13a = 14(−1)− 13(1) ≡ −27 (mod 91).

Systematic study of various types of congruence now follows the following pattern. First
work modulo primes; this is easiest since Z/pZ is a field. Then somehow go from primes
to prime powers. The process here (called “Hensel lifting”) is rather like taking successive
decimal approximations to an ordinary equation, and we will come back to this at the end of
the module, in Chapter 5 on p-adic numbers. Finally, use the CRT to “glue” together the
information from the separate prime powers.

2.6. The structure of Um. The most important result here is that for prime p, the multi-
plicative group Up (= F∗p) is cyclic.

Theorem 2.6.1. Let p be a prime. Then the group Up = F∗p is cyclic.

Proof. Every a ∈ F∗p has multiplicative order d for some d|(p− 1) and so is a root of Xd− 1

modulo p. Conversely if d|(p − 1) then Xd − 1|Xp−1 − 1 (as polynomials); since the latter
factors into p− 1 distinct linear factors in Fp[X], so does Xd − 1 for each d|(p− 1). So for
each d|(p− 1) there are exactly d roots of Xd − 1 in F∗p.

For each n|(p − 1) the roots of Xn − 1 have order d for some d|n, and conversely every
element of order d which divides n is a root of Xn− 1. Let ψ(d) be the number of elements
of order d. The previous statement shows that

∑
d|n ψ(d) = n for all n|(p − 1). We prove

that ψ(n) = ϕ(n) for all n|(p − 1) by induction, starting with ψ(1) = 1 = ϕ(1) since only
a = 1 has order 1. If true for all d < n then

ψ(n) = n−
∑

d|n,d<n

ψ(d) = n−
∑

d|n,d<n

ϕ(d) = ϕ(n).

Hence ψ(n) = ϕ(n) for all n|(p− 1). In particular, ψ(p− 1) = ϕ(p− 1) > 0, so at least one
a ∈ F∗p has order p− 1, so F ∗p is cyclic. �

Definition 2.6.2. An integer which generates Up = F∗p is called a primitive root modulo p.
If Um is cyclic, then a generator of Um is called a primitive root modulo m.

When g is a primitive root modulo m, the powers 1, g, g2, . . . , gϕ(m)−1 are incongruent
modulo m, and every integer which is coprime to m is congruent to exactly one of these.
The other primitive roots are the gk for which gcd(k, ϕ(m)) = 1. So we have the following:
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Corollary 2.6.3. Let p be a prime. Then p has a primitive root, and the number of incon-
gruent primitive roots modulo p is ϕ(p − 1). More generally, for every d|(p − 1) there are
ϕ(d) integers (incongruent modulo p) with order d modulo p.

If m has a primitive root then there are ϕ(ϕ(m)) incongruent primitive roots modulo m.

Example: Let p = 13. Since ϕ(p− 1) = ϕ(12) = 4 there are 4 primitive roots modulo 13.
One is 2, since the successive powers of 2 modulo 13 are 1, 2, 4, 8, 3, 6,−1, . . . . The others
are the powers 2k where gcd(k, 12) = 1: taking k = 1, 5, 7, 11 gives the primitive roots
2, 25 ≡ 6, 27 ≡ 11, 211 ≡ 7 (mod 13).

As an application of primitive roots, we may give a simple proof of a result proved earlier,
that when p ≡ 1 (mod 4) then the congruence x2 ≡ −1 (mod p) has a solution. For let g
be a primitive root modulo p, and set a = g(p−1)/4. Then a2 ≡ g(p−1)/2 6≡ 1 (mod p), but
a4 = gp−1 ≡ 1 (mod p), from which it follows that a2 ≡ −1 (mod p).

Theorem 2.6.4. Primitive roots modulo m exist if and only if m = 1, 2, 4, pe or 2pe where
p is an odd prime and e ≥ 1.

Proof. 1 is a primitive root modulo 1 and 2 since ϕ(1) = ϕ(2) = 1, and 3 (or −1) is a
primitive root modulo 4.

The integers excluded from the above list are the higher powers of 2, and m = n1n2 with
gcd(n1, n2) = 1 and n1, n2 ≥ 3. Higher powers of 2 do not have primitive roots since
ϕ(2e) = 2e−1, but induction shows that for all odd integers a we have a2

e−2 ≡ 1 (mod 2e).
If m = n1n2 with gcd(n1, n2) = 1 and n1, n2 ≥ 3 then both ϕ(ni) are even; for all a ∈ Um

we then have

a
1
2
ϕ(m) ≡ a

1
2
ϕ(n1)ϕ(n2) ≡

(
aϕ(n1)

) 1
2
ϕ(n2) ≡ 1 (mod n1),

since gcd(a, n1) = 1, and similarly a
1
2
ϕ(m) ≡ 1 (mod n2), so by the Chinese Remainder

Theorem we have a
1
2
ϕ(m) ≡ 1 (mod m) for all a ∈ Um, so no element of Um has order as

big as ϕ(m).
Now we show that primitive roots exist for m = pe and m = 2pe where p is an odd prime.
Let g be a primitive root modulo p, and consider the order d of g modulo p2. By Lagrange

we have d|ϕ(p2) = p(p− 1), and gd ≡ 1 (mod p2) =⇒ gd ≡ 1 (mod p) =⇒ p− 1|d, so
either d = p− 1 or d = p(p− 1). If gp−1 ≡ 1 (mod p2) then replace g by g1 = g+ p, which
is still a primitive root modulo p, and satisfies gp−11 = (g + p)p−1 ≡ gp−1 + p(p − 1)gp−2 ≡
1 − pgp−2 6≡ 1 (mod p2). So we may assume that gp−1 6≡ 1 (mod p2), and then g is a
primitive root modulo p2 as well as modulo p.

This same g is now a primitive root modulo pe for all e ≥ 1. Proceeding by induction, the
order of g modulo pe divides ϕ(pe) = pe−1(p− 1) and is a multiple of ϕ(pe−1) = pe−2(p− 1)
so either equals pe−2(p−1) or pe−1(p−1). However, from gp−1 = 1+kp with p 6 |k it follows
by induction that (gp−1)p

e−2 ≡ 1 + kpe−1 6≡ 1 (mod pe) for all e ≥ 2, so the order of g
modulo pe is in fact pe−1(p− 1) = ϕ(pe).

Finally if m = 2pe with p an odd prime, note that ϕ(2pe) = ϕ(2)ϕ(pe) = ϕ(pe). Let g be
any primitive root modulo pe which is also odd (replace g by g + pe if necessary). Then g is
a primitive root modulo 2pe. �

Now if m is odd, with prime factorization m =
∏k

i=1 p
ei
i , it follows that the group Um is

isomorphic to the product of cyclic groups of order pei−1i (pi − 1) for 1 ≤ i ≤ k.
We have not determined the structure of U2e for e ≥ 3; it turns out that while not cyclic,

it is almost so: for e ≥ 3, U2e is isomorphic to the product of cyclic groups of order 2
(generated by −1) and order 2e−2 (generated by 5).
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3. Quadratic Reciprocity

In this section we will study quadratic congruences to prime moduli. When p is an odd
prime, then any quadratic congruence ax2+ bx+ c ≡ 0 (mod p) (with p 6 |a) may be reduced
by completing the square to the simpler congruence y2 ≡ d (mod p), where d = b2 − 4ac
and y = 2ax+ b. So solving quadratic congruences reduces to the problem of taking square
roots.

3.1. Quadratic Residues and Nonresidues.

Definition 3.1.1. Let p be an odd prime and a an integer not divisible by p. We say that a
is a quadratic residue of p when x2 ≡ a (mod p) has at least one solution, and a quadratic
nonresidue otherwise.

Note that when a is a quadratic residue with b2 ≡ a (mod p) then the congruence x2 ≡ a
(mod p) has exactly two solutions, namely x ≡ ±b. For these are both solutions; they are
incongruent modulo p since b ≡ −b =⇒ 2b ≡ 0 =⇒ b ≡ 0 =⇒ a ≡ 0. (Here we
used that p 6= 2.) Lastly, there are no more solutions since p|x2 − a =⇒ p|x2 − b2 =⇒
p|(x− b)(x+ b) =⇒ p|(x− b) or p|(x+ b).

We can find the quadratic residues modulo p by reducing b2 modulo p for 1 ≤ b ≤ (p−1)/2.
The other squares will repeat these (in reverse order), since (p−b)2 ≡ b2 (mod p). It follows
that exactly half the nonzero residues are quadratic residues and the other half quadratic
nonresidues.
Examples: p = 11: the quadratic residues modulo 11 are:

12, 22, 32, 42, 52 ≡ 1, 4, 9, 5, 3 ≡ 1, 4,−2, 5, 3
while the quadratic nonresidues are 2, 6, 7, 8, 10 ≡ 2,−5,−4,−3,−1.
p = 13: the quadratic residues modulo 13 are:

12, 22, 32, 42, 52, 62 ≡ 1, 4, 9, 3, 12, 10 ≡ 1, 4,−4, 3,−1,−3
while the quadratic nonresidues are ±2, ±5, ±6.

The reason for the patterns we see here will become apparent later.
Another way to see that exactly half the nonzero residues are quadratic residues is to use

primitive roots. Let g be a primitive root modulo p. Then the nonzero residues are gk for
0 ≤ k ≤ p − 2 and every integer not divisible by p is congruent to gk for some k in this
range. The quadratic residues are the gk for even k: that is, the powers of g2.

For example when p = 13 we may take g = 2, so g2 = 4 with successive powers
1, 4, 3, 12, 9, 10 (mod 13). These are the quadratic residues; to get the quadratic nonresidues
multiply them by g = 2 to get the odd powers 2, 8, 6, 11, 5, 7 (mod 13).

3.2. Legendre Symbols and Euler’s Criterion.

Definition 3.2.1. The Legendre Symbol

(
a

p

)
is defined as follows:

(
a

p

)
=

 +1 if p 6 |a and x2 ≡ a (mod p) has a solution
−1 if p 6 |a and x2 ≡ a (mod p) does not have a solution
0 if p|a

In all cases, the number of (incongruent) solutions to x2 ≡ a (mod p) is 1 +

(
a

p

)
.

Proposition 3.2.2. Let p be an odd prime.

(a) a ≡ b (mod p) =⇒
(
a

p

)
=

(
b

p

)
.
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(b) Euler’s Criterion:

(
a

p

)
≡ a(p−1)/2 (mod p).

(c)

(
−1
p

)
= (−1)(p−1)/2 =

{
+1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

.

(d)

(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. (a) is obvious from Definition 3.2.1.
(b) This is clear when p|a since then both sides are congruent to 0. So suppose p 6 |a.
First we use a primitive root g. Note that g(p−1)/2 ≡ −1 (mod p), since h = g(p−1)/2

satisfies h2 ≡ 1 but h 6≡ 1 (mod p), so h ≡ −1 (mod p). Writing a ≡ gk we have
a(p−1)/2 ≡ gk(p−1)/2 ≡ (−1)k which is +1 iff k is even which is iff a is a quadratic residue.

Here is a direct proof not using primitive roots. If

(
a

p

)
= 1 then a ≡ b2 for some b, and

then a(p−1)/2 ≡ bp−1 ≡ 1 (mod p) by Fermat. If

(
a

p

)
= −1 then consider the statement

of Wilson’s Theorem, that (p − 1)! ≡ −1 (mod p). In the product pair off x1, x2 with
1 ≤ x1 < x2 ≤ p − 1 when x1x2 ≡ a (mod p). No x is paired with itself since x2 ≡ a
(mod p) has no solutions, so we get −1 ≡ a(p−1)/2 (mod p) as required.

(c) This is a special case of (b); we also proved it earlier (Proposition 2.4.1).

(d) First we have

(
ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
(mod p). Now

both sides are in {−1, 0, 1} so being congruent modulo p they must be equal (since p >
2). �

Corollary 3.2.3. Let p be an odd prime.

If p ≡ 1 (mod 4) then

(
−a
p

)
=

(
a

p

)
for all a.

If p ≡ 3 (mod 4) then

(
−a
p

)
= −

(
a

p

)
for all a.

Proof. This follows from

(
−a
p

)
=

(
−1
p

)(
a

p

)
and the evaluation of

(
−1
p

)
. �

If we start to ask questions such as “for which primes p is 2 a quadratic residue?” then
we are led to one of the most famous results in elementary number theory. Experimental
evidence for small primes easily convinces one that the answer is “primes congruent to ±1
(mod 8)”: (

2

p

)
= +1 for p = 7, 17, 23, 31, 41, 47, 71, . . .(

2

p

)
= −1 for p = 3, 5, 11, 13, 19, 29, 37, 43, . . .

More generally, the value of

(
a

p

)
for fixed a and variable p only depends on the residue of

p modulo 4a. This is one form of Gauss’s famous Law of Quadratic Reciprocity.

3.3. The Law of Quadratic Reciprocity.

Proposition 3.3.1. [Gauss’s Lemma] Let p be an odd prime and a an integer not divisible

by p. Then

(
a

p

)
= (−1)s, where s is the number of integers i with 0 < i < p/2 for which

the least residue of ai is negative.
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Proof. Let λ(n) denote the least residue of n modulo p; recall that this means that λ(n) ≡ n
(mod p) and |λ(n)| < p/2. We need to count the number of i for which λ(ai) < 0. Now

{|λ(ai)| | 0 < i < p/2} = {i | 0 < i < p/2}
since the left side is a subset of the right, and has no repeats since

λ(ai) = ±λ(aj) =⇒ ai ≡ ±aj =⇒ i ≡ ±j (mod p) =⇒ i = j,

since −p < i ∓ j < p. Hence (−1)s
∏

i i ≡
∏

i λ(ai) ≡
∏

i ai ≡ a(p−1)/2P where P =
((p − 1)/2)!. Cancelling the common factor P gives a(p−1)/2 ≡ (−1)s and hence the result
by Euler’s criterion. �

Example: Take p = 13 and a = 11; then we reduce 11, 22, 33, 44, 55, 66 modulo 13 to
−2,−4,−6, 5, 3, 1. As expected by the proof of the Proposition, these are, up to sign, the

integers between 1 and 6. There are 3 minus signs, so

(
11

13

)
= (−1)3 = −1.

If p = 13 and a = 10 then we reduce 10, 20, 30, 40, 50, 60 to −3,−6, 4, 1,−2,−5 with

four negative values, so

(
10

13

)
= (−1)4 = 1. Indeed, 62 = 36 ≡ 10 (mod 13).

Corollary 3.3.2. Assume that a > 0, and set a′ = a if a is even, a′ = a − 1 if a is odd.

Then

(
a

p

)
= (−1)s where

s =
a′∑
k=1

[(kp)/(2a)] .

Proof. By Gauss’s Lemma,

(
a

p

)
= (−1)s where s is the total number of integers i in all the

intervals (kp/2a, (k+1)p/2a) for odd k = 1, 3, · · · < a. But if x < y and x, y /∈ Z then the
number of integers between x and y is [y]− [x], so is congruent to [x] + [y] (mod 2). �

Example: Take p = 13 and a = 11, so a′ = 10. Then

(
11

13

)
= (−1)s where s = [13/22]+

[26/22]+[39/22]+[52/22]+[65/22]+[78/22]+[91/22]+[104/22]+[117/22]+[130/22] ≡

0 + (1 + 1) + (2 + 2) + 3 + (4 + 4) + (5 + 5) ≡ 1 (mod 2), so

(
11

13

)
= −1.

We can use Corollary 3.3.2 to Gauss’s Lemma to evaluate

(
2

p

)
for all odd primes p.

Proposition 3.3.3. Let p be an odd prime. Then(
2

p

)
= (−1)(p2−1)/8 =

{
+1 if p ≡ ±1 (mod 8);
−1 if p ≡ ±3 (mod 8).

Proof. By Corollary 3.3.2 we have

(
2

p

)
= (−1)s where s = [p/4] + [p/2], whose parity

depends on p (mod 8).
If p = 8r + 1 then s ≡ 2r + 4r ≡ 0.
If p = 8r + 3 then s ≡ 2r + (4r + 1) ≡ 1.
If p = 8r + 5 then s ≡ (2r + 1) + (4r + 2) ≡ 1.
If p = 8r + 7 then s ≡ (2r + 1) + (4r + 3) ≡ 0.
The result follows if we note that (p2 − 1)/8 is even when p ≡ ±1 (mod 8) and is odd

when p ≡ ±3 (mod 8). �
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More generally, we can deduce that in general the value of

(
a

p

)
only depends on p

(mod 4a), our first form of quadratic reciprocity : although the definition of

(
a

p

)
is in terms

of a (mod p), it is far from obvious that it depends on p (mod 4a)!

Proposition 3.3.4. Let p and q be odd primes and a a positive integer not divisible by
either p or q. Then

p ≡ ±q (mod 4a) =⇒
(
a

p

)
=

(
a

q

)
.

(For a < 0 a slightly modified result holds: exercise.)

Proof. Define s by the sum in Corollary 3.3.2, so that

(
a

p

)
= (−1)s, and consider how the

sum changes when p is replaced by q. The number of terms is the same.
If q = p+4an, then the kth term in this expression is increased by 2kn, so its parity does

not change, and so neither does the parity of s; hence

(
a

p

)
=

(
a

q

)
.

If q = 4an − p, the kth term becomes 2kn + [−kp/2a]; this has the opposite parity to
[kp/2a] since for x /∈ Z, [x] is even if and only if [−x] is odd, and vice versa. So each term in
the sum changes parity; but the number of terms is even, so the parity of s is unchanged. �

The Law of Quadratic Reciprocity uses this result in the case that a is also prime to get
a very symmetric statement.

Theorem 3.3.5. [Quadratic Reciprocity] Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)(

p−1
2 )( q−1

2 ).

So

(
q

p

)
=

(
p

q

)
if p ≡ 1 or q ≡ 1 (mod 4), while

(
q

p

)
= −

(
p

q

)
if p ≡ q ≡ 3 (mod 4).

Proof. If p ≡ q (mod 4), say with p > q, then write p − q = 4a with a > 0; then we have(
p

q

)
=

(
q + 4a

q

)
=

(
4a

q

)
=

(
a

q

)
=

(
a

p

)
=

(
4a

p

)
=

(
p− q
p

)
=

(
−q
p

)
, which

equals

(
q

p

)
if p ≡ q ≡ 1 (mod 4) and equals −

(
q

p

)
if p ≡ q ≡ 3 (mod 4).

Similarly, if p ≡ −q (mod 4) then write p+q = 4a with a > 0; then

(
p

q

)
=

(
4a− q
q

)
=(

4a

q

)
=

(
a

q

)
=

(
a

p

)
=

(
4a

p

)
=

(
p+ q

p

)
=

(
q

p

)
. �

Since the Legendre symbol

(
a

p

)
is completely multiplicative in a for fixed p, to evaluate(

a

p

)
for all a we only need to know the values of

(
−1
p

)
,

(
2

p

)
and

(
q

p

)
, for odd primes q

different from p. The Law of Quadratic Reciprocity tells us how to evaluate each of these!
Special cases of the reciprocity law were conjectured by Euler on the basis of substantial
calculations and knowledge, but Gauss first proved it, and in fact gave several proofs.
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Summary of Quadratic Reciprocity: If p and q are distinct odd primes then:

•
(
−1
p

)
= (−1)(p−1)/2 =

{
+1 if p ≡ 1 (mod 4);
−1 if p ≡ 3 (mod 4);

•
(
2

p

)
= (−1)(p2−1)/8 =

{
+1 if p ≡ ±1 (mod 8);
−1 if p ≡ ±3 (mod 8);

•
(
q

p

)
=


+

(
p

q

)
if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4);

−
(
p

q

)
if both p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

Using QR we may easily answer questions of the form: Given a, for which p is

(
a

p

)
= 1?

For example: (
−2
p

)
=

(
−1
p

)(
2

p

)
=

{
+1 if p ≡ 1, 3 (mod 8);
−1 if p ≡ −1,−3 (mod 8).(

−3
p

)
=

(
−1
p

)(
3

p

)
=
(p
3

)
=

{
+1 if p ≡ 1 (mod 3);
−1 if p ≡ −1 (mod 3).(

3

p

)
=

(
−1
p

)(p
3

)
=

{
+1 if p ≡ ±1 (mod 12);
−1 if p ≡ ±5 (mod 12).

(Notice how

(
a

p

)
sometimes depends only on p modulo a rather than modulo 4a.)

Using Proposition 3.3.4 gives an alternative method of evaluating

(
a

p

)
for fixed a > 0.

Take a = 3, so we know that

(
3

p

)
only depends on ±p (mod 12); when p = 13 we have(

3

13

)
= +1 and when p = 5 we have

(
3

5

)
= −1; so

(
3

p

)
= +1 for all p ≡ ±1 (mod 12)

and

(
3

p

)
= −1 for all p ≡ ±5 (mod 12).

When a < 0 it is also true that p ≡ q (mod 4a) =⇒
(
a

p

)
=

(
a

q

)
, but now p ≡ −q

(mod 4a) =⇒
(
a

p

)
= −

(
a

q

)
. (Apply Prop. 3.3.4 to −a to see this.) Hence we can

evaluate

(
a

p

)
for a < 0.

For example, take a = −5. Then

(
−5
p

)
depends on p modulo 20, giving ϕ(20) = 8 cases.

Take the primes p = 61, 3, 7, 29 which are congruent respectively to 1, 3, 7, 9 (mod 20);

computing the four Legendre symbols

(
−5
p

)
, we find that they are all +1. Hence(

−5
p

)
=

{
+1 if p ≡ 1, 3, 7, 9 (mod 20);
−1 if p ≡ 11, 13, 17, 19 (mod 20).

where the second line follows from the first by the “anti-symmetry” since −5 < 0.
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4. Diophantine Equations

A Diophantine Equation is simply an equation in one or more variables for which integer
(or sometimes rational) solutions are sought. For example:

• x2 + y2 = z2 has solutions (x, y, z) = (3, 4, 5), (5, 12, 13), . . . ;
• x3 + y3 = z3 has no solutions with x, y, z positive integers;
• x2 − 61y2 = 1 has infinitely many solutions with x, y > 0; the smallest has x =
1766319049 and y = 226153980.

We will use the techniques we have developed in earlier chapters, as well as one new one,
to solve a number of Diophantine equations all of which have had some historical interest.
Their solution has led to the development of much of modern algebra and number theory.
The new technique we will use is called the Geometry of Numbers.

4.1. Geometry of Numbers and Minkowski’s Theorem. We will use the geometry of
Rn and of certain subsets of it:

Definition 4.1.1. A lattice in Zn is a subgroup L ⊆ Zn of finite index.

The lattices we will use are all defined using congruence conditions on the coordinates
of vectors in Zn, and the index of the lattice will be determined from the moduli of these
congruences (example to follow soon). There are more general subsets of Rn called lattices,
but we will not need them.

Our general strategy will be to set up a lattice so that the coordinates give a “modular
approximation” to the equation being solved; then to get an exact solution we require a second
condition, that the vector of coefficients is “small” in some sense. Minkowski’s Theorem will
show that (under certain conditions) there are short lattice vectors, and we win. Its statement
requires the following definitions.

Definition 4.1.2. A subset S ⊆ Rn is symmetric if x ∈ S ⇐⇒ −x ∈ S, and convex if
x, y ∈ S =⇒ tx+ (1− t)y ∈ S for all t with 0 ≤ t ≤ 1.

Here is the result from the geometry of numbers we will use to deduce the existence of
solutions to several Diophantine Equations:

Theorem 4.1.3. [Minkowski] Let L ≤ Zn be a lattice of index m, and let S ⊆ Rn be a
bounded convex symmetric domain. If S has volume v(S) > 2nm, then S contains a nonzero
element of L.

The same conclusion holds when v(S) = 2nm, provided that S is compact.

Proof. See section 4.6 below. �

4.2. Sums of squares. In this section we will give an answer to the questions “which positive
integers can be expressed as a sum of 2 squares (S2S), or a sum of 3 squares (S3S), or a
sum of 4 squares (S4S)”? In the 3-squares case we will only give a partial proof, since the
full proof uses concepts which we will not cover. The reason for the S3S case being harder
is that the set of S3S numbers is not closed under multiplication, while for S2S and S4S it
is, which then essentially reduces the question to the case of primes.

4.2.1. Sums of two squares. To ask whether an integer n is a sum of two squares, n = a2+b2,
is the same as to ask whether it is the norm of a Gaussian Integer: n = a2 + b2 = N(α)
where α = a + bi ∈ Z[i]. Using Theorem 1.5.14 on Gaussian primes, such an integer must
be a product of norms of Gaussian primes which are: 2, p for any prime p ≡ 1 (mod 4), and
q2 for any prime q ≡ 3 (mod 4). This proves the following:
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Theorem 4.2.1. The positive integer n may be expressed as a sum of two squares, n =
x2 + y2, if and only if ordq(n) is even for all primes q ≡ 3 (mod 4), or equivalently if and
only if n = ab2 where a has no prime factors congruent to 3 (mod 4).

Remarks: One can similarly characterize positive integers of the form n = x2+2y2 as those
such that ordq(n) is even for all primes q ≡ 5, 7 (mod 8). Either a direct proof or one based
on unique factorization in the Euclidean Domain Z[

√
−2] is possible. A similar result holds

for n = x2 + 3y2 (though is slightly harder to prove since Z[
√
−3] is not Euclidean). But

the pattern does not continue, and for general m it is a very hard problem to determine
exactly which integers n, or even which primes p, have the form x2+my2. The study of this
question leads on to algebraic number theory, and in particular to the study of the arithmetic
properties of quadratic number fields.

Recall from Chapter 1 that the key to determining the Gaussian primes was a fact which
we only proved later (Theorem 2.4.2): that if p is a prime such that p ≡ 1 (mod 4) then p
is a sum of two squares. We proved this in Chapter 2 by using facts about Gaussian Integers,
together with the fact that for such primes the congruence x2 ≡ −1 (mod p) has a solution.
Now we give a different proof that p ≡ 1 (mod 4) =⇒ p = a2 + b2, as a first application
of the Geometry of Numbers.

Theorem 4.2.2. [=Theorem 2.4.2 again] Let p be a prime such that p ≡ 1 (mod 4). Then
there exist integers a and b such that p = a2 + b2.

Proof. Let r ∈ Z be a solution to r2 ≡ −1 (mod p), which exists by Proposition 2.4.1. Let
L be the lattice

L = {(x, y) ∈ Z2 | x ≡ ry (mod p)},
which has index p in Z2. (In case that is not obvious to you, note that L is the kernel of the
surjective group homomorphism Z2 → Z/pZ given by (x, y) 7→ x− ry (mod p), and hence
Z2/L ∼= Z/pZ by group theory.) Note that for (x, y) ∈ L we have x2 + y2 ≡ (1+ r2)y2 ≡ 0
(mod p). The idea now is to find a lattice point which is short enough that x2 + y2 = p: let
S ⊆ R2 be the subset

S = {(x, y) ∈ R2 | x2 + y2 < 2p},
which is the interior of a circle of radius

√
2p so has “volume” (area) v(S) = π(

√
2p)2 =

2πp > 4p. Clearly S is convex and symmetric; hence by Minkowski’s Theorem there is a
non-zero point (x, y) ∈ S ∩ L, for which we have 0 < x2 + y2 < 2p and p | x2 + y2, hence
p = x2 + y2. �

Before applying Minkowski again to prove the four-square theorem below, we will briefly
(and incompletely) look at sums of three squares.

4.2.2. Sums of three squares.

Proposition 4.2.3. Let n be a positive integer with n ≡ 7 (mod 8). Then n is not a sum
of three squares, and nor is any integer of the form 4kn with n ≡ 7 (mod 8).

Proof. All squares are all congruent to 0, 1 or 4 (mod 8), so the sum of three squares is
congruent to 0, 1, 2, 3, 4, 5 or 6 (mod 8). This gives the first part.

If m = x2 + y2 + z2 and 4|m, then all of x, y, z must be even since otherwise their sum
cannot be a multiple of 4, since squares are ≡ 0, 1 (mod 4). So m/4 = (x/2)2 + (y/2)2 +
(z/2)2 is also S3S. Continuing to divide out factors of 4, if we reach an odd number n = m/4k

then by the first part, since n is a sum of three squares, n 6≡ 7 (mod 8). �

The converse of this result is true: every positive integer not of the form 4kn with n ≡ 7
(mod 8) can be written as a sum of three squares. But this is harder to prove and we omit
it. Instead we turn to sums of four squares.
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4.2.3. Sums of four squares.

Theorem 4.2.4. [Lagrange] Every positive integer may be expressed as a sum of four squares.

Note that 0 is allowed as one of the squares. The theorem will follow from the following
Lemma 4.2.5, which reduces the problem to expressing all primes as S4S, and Proposi-
tion 4.2.6 which shows that all primes are S4S.

Lemma 4.2.5. If m = a21+a
2
2+a

2
3+a

2
4 and n = b21+b

2
2+b

2
3+b

2
4 then mn = c21+c

2
2+c

2
3+c

2
4

where

c1 = a1b1 + a2b2 + a3b3 + a4b4

c2 = a1b2 − a2b1 + a3b4 − a4b3
c3 = a1b3 − a3b1 − a2b4 + a4b2

c4 = a1b4 − a4b1 + a2b3 − a3b2.
Proof. Calculation. To see where this comes from, look up “quaternions”. �

Proposition 4.2.6. Every prime number may be expressed as a sum of four squares.

Proof. Let p be an odd prime, as clearly 2 = 12 + 12 + 02 + 02. First we show that the
congruence x2 + y2 ≡ −1 (mod p) has a solution, say (x, y) = (a, b). As x and y run over
Z/pZ, the expression x2 takes on (p + 1)/2 distinct values (mod p), namely 0 and all the
QRs, and so does −1 − y2, so there must be a common value v, and hence a solution to
x2 ≡ v ≡ −1− y2 (mod p).

Now let L be the lattice in Z4 defined by two congruences modulo p:

L = {(x, y, z, w) ∈ Z4 | ax+ by + z ≡ −bx+ ay + w ≡ 0 (mod p)}.
This has index p2 in Z4 by a similar argument as before (L is the kernel of the map Z4 →
(Z/pZ)2 given by (x, y, z, w) 7→ (ax+ by+ z,−bx+ ay+w)). For (x, y, z, w) ∈ L we have

x2+y2+z2+w2 ≡ x2+y2+(ax+by)2+(−bx+ay)2 ≡ (1+a2+b2)(x2+y2) ≡ 0 (mod p).

Next we define the convex symmetric set

S = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 < 2p},
the interior of a ball of radius

√
2p. The volume of a ball of radius r in 4-space is π2r4/2

(exercise!), so v(S) = π2(
√
2p)4/2 = 2π2p2 > 16p2 (since π2 > 8). So Minkowski’s

Theorem provides a point (x, y, z, w) for which x2 + y2 + z2 + w2 is a multiple of p and
strictly between 0 and 2p, hence equal to p. �

4.3. Legendre’s Equation. Here is an example of an equation with no nontrivial solutions.

Example: The equation x2 + y2 = 3z2 has no integer solutions except x = y = z = 0.
For suppose that (x, y, z) is a nonzero solution. Then we may assume that gcd(x, y) = 1

since if both x and y were divisible by some prime p, then p2|3z2 and so p|z, so we could divide
through by p2 to get the smaller nontrivial solution (x/p, y/p, z/p). Next, neither x nor y is
divisible by 3 (since if either is then so would the other be). This implies x ≡ ±1 (mod 3)
and y ≡ ±1 (mod 3), so x2 + y2 ≡ 1 + 1 = 2 6≡ 0 (mod 3), contradicting x2 + y2 = 3z2.

We have used two properties of the number 3 here: that it is square-free (so p2|3z2 =⇒
p|z) and that x2+y2 ≡ 0 (mod 3) =⇒ x ≡ y ≡ 0 (mod 3). So the same argument works
for the equations x2 + y2 = qz2 where q is any prime congruent to 3 (mod 4).

The general equation

(4.3.1) ax2 + by2 = cz2

with a, b, c ∈ N has been studied since the 19th century, and is known as Legendre’s Equation.
There is a simple criterion for the existence of nontrivial solutions in terms of congruences
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modulo a, b and c. By a solution to (4.3.1) we will always mean a solution other than
the trivial one (x, y, z) = (0, 0, 0). By homogeneity, (x, y, z) satisfies (4.3.1) if and only if
(rx, ry, rz) also does for any r 6= 0; a solution will be called primitive if gcd(x, y, z) = 1.

First we reduce to the case where a, b, c are pairwise coprime and square-free:

• If d = gcd(a, b) > 1 then (x, y, z) satisfies (4.3.1) if and only if (dx, dy, z) satisfies
the similar equation with coefficients (a/d, b/d, cd). Similarly if gcd(a, c) > 1 or
gcd(b, c) > 1. Note that the product abc is reduced (by a factor d) in each case, so
after a finite number of such steps we may assume that a, b, c are pairwise coprime.
• If d2|a then (x, y, z) satisfies (4.3.1) if and only if (dx, y, z) satisfies the similar

equation with coefficients (a/d2, b, c). Similarly with square factors of b or c, so we
can assume that each of a, b, c is square-free.

Theorem 4.3.1. Let a, b, c ∈ N be pairwise coprime and square-free. Then a non-trivial
solution to (4.3.1) exists if and only if each of the quadratic congruences

x2 ≡ bc (mod a), x2 ≡ ac (mod b), x2 ≡ −ab (mod c)

has a solution.

Proof. First we show that the conditions are necessary. Suppose (x, y, z) is a solution; we
may assume that gcd(x, y, z) = 1 since the equation is homogeneous. Then x, y, z are in
fact pairwise coprime, since if (for example) p|x and p|y then p2|cz2, but p 6 |z then implies
p2|c, contradicting the assumption that c is square-free. Now also gcd(y, a) = gcd(z, a) =
gcd(x, b) = gcd(z, b) = gcd(x, c) = gcd(y, c) = 1.

Since gcd(y, c) = 1 we can solve yk ≡ ax (mod c) for k ∈ Z. Also, ax2 + by2 ≡ 0
(mod c). Then y2k2 ≡ a2x2 ≡ −aby2 (mod c), so k2 ≡ −ab (mod c). Similarly both ac
and bc are congruent to squares modulo b and a respectively.

To show that the conditions are sufficient, we first deal with some simple special cases.
If a = c = 1 a solution is (1, 0, 1). If b = c = 1 a solution is (0, 1, 1). If a = b = 1 we must

solve X2 + Y 2 = cZ2; but from k2 ≡ −ab (mod c) it follows that c has no prime factors
q ≡ 3 (mod 4), so c is a sum of two squares by Theorem 4.2.1, and we have a solution (with
z = 1). From now on we may therefore assume that ab, bc, ac > 1.

Let f(X, Y, Z) = aX2+ bY 2− cZ2. The idea is to find “small” x, y, z with f(x, y, z) ≡ 0
(mod abc); if small enough, f(x, y, z) would have to equal 0.

Let r, s, t ∈ Z be such that r2 ≡ bc (mod a), s2 ≡ ac (mod b), t2 ≡ −ab (mod c).
Define the lattice L ≤ Z3 by the congruences

by ≡ rz (mod a) (equivalently, ry ≡ cz (mod a))

−cz ≡ sx (mod b) (equivalently, −sz ≡ ax (mod b))

ax ≡ ty (mod c) (equivalently, tx ≡ −by (mod c)).

Then L has index abc in Z3, and a simple calculation shows that for (x, y, z) ∈ L we have
f(x, y, z) ≡ 0 (mod a), (mod b) and (mod c), hence f(x, y, z) ≡ 0 (mod abc) since
a, b, c are pairwise coprime.

Next define the symmetric convex compact set S ⊂ R3 by

S = {(x, y, z) ∈ R3 | |x| ≤
√
bc, |y| ≤

√
ac, |z| ≤

√
ab}.

This is a box of volume 8abc which is 23 times the index of L. By the strong form of
Minkowski’s Theorem, there exists a nonzero (x, y, z) ∈ S ∩ L.

Then (x, y, z) 6= (0, 0, 0) and f(x, y, z) ≡ 0 (mod abc); moreover,

−abc < f(x, y, z) < 2abc
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since

0 ≤ ax2 < abc,

0 ≤ by2 < abc,

0 ≤ cz2 < abc =⇒ −abc < −cz2 ≤ 0.

Here we cannot have equality (= abc) on any line: for example x2 6= bc, since bc is square-free
and > 1. So either f(x, y, z) = 0, in which case we win, or f(x, y, z) = abc. In the latter
case we have instead the solution (xz + by, yz − ax, z2 + ab), since we may verify that

a(xz + by)2 + b(yz − ax)2 − c(z2 + ab)2 = (z2 + ab)(ax2 + by2 − cz2 − abc) = 0.

�

Our proof just fails to show that there always is a solution satisfying the inequalities
|x| ≤

√
bc, |y| ≤

√
ac, |z| ≤

√
ab, because of the adjustment needed at the end; however

there is always such a “small” solution (proof omitted).

To make the proof constructive, we would need to have a method for finding short vectors
in lattices. Such methods do exist (the most famous is the LLL method named after Lenstra,
Lenstra and Lovasz) and have a huge number of applications in computational number theory
and cryptography. One reason that lattice-based methods are becoming popular in crypto-
graphy is that they are “quantum-resistant”, meaning that no-one (yet!) knows how to solve
problems such as the SVP (Shortest Vector Problem) using a quantum computer, unlike the
case for factorization-based methods such as RSA.

4.4. Pythagorean Triples. A classical problem is to find all right-angled triangles all of
whose sides have integral length. Letting the sides be x, y and z this amounts (by Pythago-
ras’s Theorem) to finding positive integer solutions to the Diophantine equation

(4.4.1) x2 + y2 = z2.

A solution (x, y, z) is called a Pythagorean Triple. For example, (3, 4, 5) is a Pythagorean
Triple.

Clearly if (x, y, z) is a Pythagorean Triple then so is (kx, ky, kz) for all k ≥ 1, and to avoid
this trivial repetition of solutions we will restrict to Primitive Pythagorean Triples which have
the additional property that gcd(x, y, z) = 1. From (4.4.1) it then follows that x, y, z are
pairwise coprime, since a prime divisor of any two would have to divide the third.

Finally, in any primitive Pythagorean Triple, exactly one of x and y is even, the other odd;
for they are not both even by primitivity, and cannot both be odd for then x2 + y2 ≡ 2
(mod 4), so x2+ y2 could not be a square. By symmetry we only consider triples with x and
z odd, y even.

The following result shows how to parametrize all primitive Pythagorean Triples.

Theorem 4.4.1. Let u and v be positive coprime integers with u 6≡ v (mod 2) and u > v.
Set

x = u2 − v2; y = 2uv; z = u2 + v2.

Then (x, y, z) is a primitive Pythagorean Triple. Conversely, all primitive Pythagorean Triples
are obtained in this way for suitable u and v.

Proof. Let u and v be as in the statement of the theorem, and define x, y, z by the above
formulae. The identity (u2 − v2)2 + (2uv)2 = (u2 + v2)2 is easily checked, so (x, y, z) is a
Pythagorean Triple. Any common factor k of x, y, z would divide u2 ± v2 and hence divide
2u2 and 2v2. Since gcd(u, v) = 1 we have k|2; but x = u2 − v2 is odd, so k = 1, and
(x, y, z) is primitive.
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Conversely, let (x, y, z) be a primitive Pythagorean Triple with y even. Then y2 = z2−x2 =
(z − x)(z + x), and both factors are even since x and z are both odd, so(y

2

)2
=

(
z − x
2

)(
z + x

2

)
.

Now the factors on the right are coprime since any common factor would divide both x and z,
and their product is a square, so each is a square. [We use the unique factorization of integers
at this step.] So there exist positive integers u, v with

v2 = (z − x)/2
u2 = (z + x)/2

uv = y/2.

Now z = u2 + v2, x = u2 − v2 and y = 2uv. Lastly, u and v have opposite parity since
x = u2−v2 is odd, and are coprime since any common factor would divide both x and z. �

We will see an application of our parametrization of Pythagorean triples to the Fermat
equation x4 + y4 = z4 in the next section. This case of Fermat’s Last Theorem says that
there are no Pythagorean Triples with all three integers perfect squares.

An alternative approach to the previous Theorem is to use the Gaussian Integers Z[i].
Suppose x2 + y2 = z2 with gcd(x, y) = 1 and z odd. Then z2 = (x + yi)(x− yi), and the
factors on the right are coprime: for if α|x+ yi and α|x− yi for some α ∈ Z[i], then α|2x
and α|2yi, from which α|2 since gcd(x, y) = 1 and i is a unit. But gcd(z, 2) = 1 so α is a
unit.

Now each of x± yi must be a square or a unit times a square, since they are coprime and
their product is a square and Z[i] is a UFD. If x + yi = ±(u + vi)2 then x = ±(u2 − v2)
and y = ±2uv; if x + yi = ±i(u + vi)2 then x = ∓2uv and y = ±(u2 − v2). The proof
that gcd(u, v) = 1 and u 6≡ v (mod 2) is as before, or follows from the fact that u + vi
and u− vi are coprime in Z[i].

Other similar equations may be solved by the same method. For example, all primitive
solutions to x2 + 2y2 = z2 are obtained from (x, y, z) = (±(u2 − 2v2),±2uv,±(u2 + 2v2)).
This can be proved using the UFD Z[

√
−2] or by elementary means.

4.5. Fermat’s Last Theorem. After our success in finding all solutions to the equation
x2 + y2 = z2, it is natural to turn to analogous equation for higher powers. So we ask for
solutions in positive integers to the equation

(4.5.1) xn + yn = zn with n ≥ 3.

Fermat claimed, in the famous marginal note to his edition of the works of Diophantus, that
there are no solutions to (4.5.1). The result is known as Fermat’s Last Theorem: it is the last
of Fermat’s unproved claims to be proved (or disproved). Since 1994 it has become possible
to state the result as a Theorem:

Theorem 4.5.1. [Fermat’s Last Theorem; Wiles and Taylor–Wiles, 1994] Let n ≥ 3. Then
there are no solutions in positive integers to the equation xn + yn = zn.

The only case which we know that Fermat proved is n = 4, which we will prove below.
Euler proved the case n = 3, using arithmetic in the ring Z[

√
−3], though there is some doubt

as to the validity of Euler’s argument at a crucial step where he tacitly assumed that this
ring had unique factorization (which it does not). Subsequent work by Dirichlet, Legendre,
Kummer and many others settled many more exponents, at the same time creating most
of modern algebraic number theory and algebra. By 1987, the Theorem was known to be
true for all n ≤ 150000. In 1986, an unexpected connection was found, by Frey, between
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the Fermat equation and another class of Diophantine equation called Elliptic curves. A
solution to Fermat’s equation would lead to the existence of an elliptic curve with properties
so strange that they would contradict widely-believed, but then unproved, conjectures about
elliptic curves. This connection was proved by Ribet. Finally, Andrew Wiles, with the help of
Richard Taylor, proved the elliptic curve conjecture, firmly establishing the truth of Fermat’s
Last theorem.

We will prove the case n = 4 of the theorem.

Theorem 4.5.2. [Fermat’s Last Theorem for exponent 4] The equation x4 + y4 = z4 has
no solutions in positive integers.

We will prove a stronger statement: x4 + y4 cannot be a square, let alone a 4th power:

Theorem 4.5.3. The equation x4 + y4 = z2 has no solutions in positive integers.

Proof. We follow the method used by Fermat and known as “infinite descent”. The idea is to
suppose we have a solution, and use it to construct a strictly smaller solution (with smaller
positive z). Repeating this process indefinitely we could construct an infinite decreasing
sequence of positive integers, which is impossible. The conclusion is that no solution can
have existed in the first place.

Suppose that (x, y, z) is a solution. Any common prime factor p of x and y would divide z,
and in fact p2|z, so we would have a smaller solution (x/p, y/p, z/p2). Hence we may assume
that gcd(x, y) = 1, and then the equation implies that x, y, z are pairwise coprime. Now
(x2, y2, z) is a primitive Pythagorean triple. Without loss of generality x is odd and y is even.
By Theorem 4.3.1 there are positive integers u, v, coprime with u > v and u 6≡ v (mod 2),
such that

x2 = u2 − v2

y2 = 2uv

z = u2 + v2.

Since x is odd we have x2 ≡ 1 (mod 4), so u must be odd and v even.
Now (y/2)2 = u(v/2) with positive coprime factors, which must therefore both be squares:

u = r2

v/2 = s2

with r, s positive and coprime.
Since x2 + v2 = u2 it follows that (x, v, u) is another primitive Pythagorean triple, and

since x is odd we apply Theorem 4.3.1 again to obtain

x = m2 − n2

v = 2mn

u = m2 + n2

with m,n positive, coprime, and of opposite parity.
Now s2 = v/2 = mn with positive coprime factors, so both m and n are squares. Setting

m = m2
1 and n = n2

1 we have r2 = u = m2+n2 = m4
1+n

4
1. So (m1, n1, r) is a new solution

in positive integers to the original equation, and it is smaller since

r ≤ r2 = u ≤ u2 < u2 + v2 = z.

By infinite descent, the equation cannot have any solutions. �

Corollary 4.5.4. Let n ∈ N be a multiple of 4. Then there are no solutions in positive
integers to the equation xn + yn = zn.
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Proof. Write n = 4m; a nonzero solution would satisfy (xm)4 + (ym)4 = (z2m)2 and contra-
dict the preceding theorem. �

Now to prove Fermat’s Last Theorem in general it suffices to show that the equation
xp + yp = zp has no positive integer solutions for each odd prime p, since every n ≥ 3 is
divisible either by 4 or by an odd prime, and impossibility for a divisor of n implies impossibility
for n itself.

4.6. Proof of Minkowski’s Theorem. There are several ways to prove Minkowski’s Theo-
rem 4.1.3, all of which are based on a continuous analogue of the pigeon-hole principle. We’ll
use a preliminary result called Blichfeld’s Theorem:

Theorem 4.6.1. [Blichfeld’s theorem] Let S be a bounded subset of Rn whose volume v(S)
exists and satisfies v(S) > m for some integer m ≥ 1. Then there exist m+1 distinct points
x0, x1, . . . , xm ∈ S such that xi − xj ∈ Zn for all i, j.

Proof. Let C be the unit cube C = {y = (y1, . . . , yn) ∈ Rn | 0 ≤ yi < 1 (∀i)}. Clearly
v(C) = 1, and every x ∈ Rn can be uniquely written as x = a+ y with a ∈ Zn and y ∈ C.

Let χS be the characteristic function of S; then v(S) =
∫
S
1dx =

∫
Rn χS(x)dx (this is the

definition of volume!). Now we compute

v(S) =

∫
Rn

χS(x)dx =
∑
a∈Zn

∫
y∈C

χS(a+ y)dy

=

∫
C

∑
a∈Zn

χS(a+ y)

 dy

=

∫
C

g(y)dy,

where for y ∈ C, g(y) =
∑

a∈Zn χS(a + y). Since S is bounded, this is a finite sum, which

also justifies the interchange of summation and integration. Also, g(y) is integer-valued: it
just counts the number of a ∈ Zn for which a+ y ∈ S.

Now, if g(y) ≤ m for all y ∈ C then we would have

m < v(S) =

∫
C

g(y)dy ≤
∫
C

mdy = mv(C) = m,

contradiction. Hence for some y ∈ C we have g(y) ≥ m+ 1. So there are (at least) m+ 1
points a0, a1, . . . , am ∈ Zn for which xj = y + aj ∈ S. Since xi − xj = ai − aj ∈ Zn, this
proves the theorem. �

Proof of Minkowski’s Theorem 4.1.3. Recall the statement: “Let L ≤ Zn be a lattice of
index m, and let S ⊆ Rn be a bounded convex symmetric domain. If S has volume v(S) >
2nm, then S contains a nonzero element of L.”

Let S2 = 1
2
S = {1

2
x | x ∈ S}. Then v(S2) = 2−nv(S) > m. Applying Blichfeld’s

Theorem 4.6.1 to S2 we have m+1 distinct xi ∈ S2 (for 0 ≤ i ≤ m) such that xi−x0 ∈ Zn
for all i. Since L has only m cosets in Zn, two of these must lie in the same coset, so there
exist i 6= j such that

0 6= a = xi − xj = (xi − x0)− (xj − x0) ∈ L.
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Finally, 2xi, 2xj ∈ S (by definition of S2), so −2xj ∈ S (by symmetry of S) and finally
(by convexity of S)

a = xi − xj =
1

2
(2xi) +

1

2
(−2xj) ∈ S.

To prove the stronger version of the theorem, where have the weaker condition that v(S) ≥
2nm, but also assume that S is compact, first apply the result just proved to (1 + ε)S to
conclude that

(L \ {0}) ∩ (1 + ε)S 6= ∅
for all ε > 0. This is a nested collection of nonempty compact sets, so has nonempty
intersection (over all ε > 0), and hence

(L \ {0}) ∩ S 6= ∅
as required. �
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5. p-adic Numbers

5.1. Motivating examples. We all know that
√
2 is irrational, so that 2 is not a square in

the rational field Q, but that we can enlarge Q to the real field R where 2 is a square. In R,
we may represent irrational numbers by (non-terminating, non-recurring) decimal expansions:

√
2 = 1.414213562373 · · · = 1 + 4 · 10−1 + 1 · 10−2 + 4 · 10−3 + 2 · 10−4 + . . .

In general, real numbers are expressible as

x = ±
n∑

k=−∞

ak10
k,

where the digits ak ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; there are only finitely many terms with k > 0,
but may be infinitely many with k < 0; the series always converges in R; and the sequence
of digits (ak) is usually uniquely determined by x. (The exceptions are numbers x with finite
decimal expansions, where we can replace the tail . . . a000 . . . with . . . (a− 1)999 . . . .)

Another way of thinking about the decimal expansion of the irrational number
√
2 is to

say that
√
2 is the limit of a sequence (xk) of rational numbers: x0 = 1, x1 = 14/10,

x2 = 141/100, . . . . This is a Cauchy sequence of rational numbers, and has no limit in Q,
but does have a limit

√
2 = limk→∞ xk in the larger complete field R. The rational numbers

xk are rational approximations to
√
2, each being a better approximation than the previous

one:
|
√
2− xk| ≤ 10−k.

As a first example of a p-adic number for p = 7, we consider the quadratic congruences

x2 ≡ 2 (mod 7k)

for k = 1, 2, 3 . . . . When k = 1 there are two solutions: x = x1 ≡ ±3 (mod 7). Any
solution x2 to the congruence modulo 72 must also be a solution modulo 7, hence of the
form x2 = x1 + 7y = ±3 + 7y; choosing x1 = 3 gives x2 = 3 + 7y, which must satisfy

0 ≡ x22 − 2 ≡ (3 + 7y)2 − 2 ≡ 7(1 + 6y) (mod 72);

equivalently, 1+6y ≡ 0 (mod 7) with unique solution y ≡ 1 (mod 7); so x2 = 3+1·7 = 10.
Continuing in a similar way, setting x3 = x2 + 72y and substituting, we find that x23 ≡ 2

(mod 73) ⇐⇒ y ≡ 2 (mod 7), so x3 ≡ x2 + 2 · 72 ≡ 108 (mod 73). The process may
be continued indefinitely. At each stage there is a unique solution, so (after fixing the initial
choice of x1 = 3) we find, uniquely,

x1 = 3 = 3,

x2 = 10 = 3 + 1 · 7,
x3 = 108 = 3 + 1 · 7 + 2 · 72,
x4 = 2166 = 3 + 1 · 7 + 2 · 72 + 6 · 73, . . .

The general formula is xk+1 ≡ x2k + xk − 2 (mod 7k+1).
What happens “in the limit”? Does it even make sense to talk about the limit of the

sequence xk? Certainly there can be no single integer x satisfying x2 ≡ 2 (mod 7n) simul-
taneously for all n ≥ 1, for then x2 − 2 would be divisible by arbitrarily large powers of 7
which is only possible when x2− 2 = 0. Also, the infinite series 3+1 · 7+2 · 72+6 · 73+ . . .
does not converge in the normal sense, since the successive terms do not tend to 0.

We will define a new kind of number called a p-adic number, for each prime p. The p-adic
integers will form a ring Zp, which contains Z; there is one such ring for each prime p. In
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the ring Z7 of 7-adic integers, our sequence 3+ 1 · 7+ 2 · 72 +6 · 73 + . . . will converge to a
7-adic limit, so that the equation x2 = 2 has a solution in Z7. The solution can be expressed
as an infinite 7-adic expansion:

x = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 74 + 2 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + . . .

=
∞∑
k=0

ak7
k,

where the “digits” ak are all in the set {0, 1, 2, 3, 4, 5, 6} and are uniquely determined after
fixing x ≡ 3 (mod 7): a0 = 3, a1 = 1, a2 = 2, a3 = 6, . . . .

The ring Zp has a field of fractions Qp, which contains the rational field Q. In fact, Qp may
be constructed directly from Q by a process similar to the construction of the real numbers
as the set of limits of Cauchy sequences of rationals. R is the completion of Q, complete in
the usual analytic sense that Cauchy sequences converge in R. Just as one can define the
real numbers as (equivalence classes of) Cauchy sequences of rational numbers, we will start
by defining p-adic integers as equivalence classes of suitable sequences of ordinary integers.

5.2. Definition of Zp. Fix, once and for all, a prime number p.

Definition 5.2.1. A p-adic integer α is defined by a sequence of integers xk for k ≥ 1

α = {xk}∞k=1 = {x1, x2, x3, . . . },
satisfying the conditions

(5.2.1) xk+1 ≡ xk (mod pk) for all k ≥ 1,

with two sequences {xk} and {yk} determining the same p-adic integer α if and only if

xk ≡ yk (mod pk) for all k ≥ 1.

The set of p-adic integers is denoted Zp.

An integer sequence satisfying (5.2.1) will be called coherent. Thus, each p-adic integer is
actually an equivalence class of coherent sequences of ordinary integers, any one of which may
be used to represent it. The representation of a p-adic integer x = {xk} will be called reduced
if 0 ≤ xk < pk for all k ≥ 1. Every p-adic integer has a unique reduced representation.

The ordinary integers Z embed into Zp as constant sequences, via x 7→ {x, x, x, . . . }; this
map is injective since if x, y ∈ Z satisfy x ≡ y (mod pk) for all k ≥ 1, then x = y. So we
can view Z as a subset of Zp. We may call elements of Z rational integers to distinguish
them from p-adic integers.

Examples: Take p = 3. Here are three elements of Z3:

α = 40 = {40, 40, 40, 40, 40, . . . } = {1, 4, 13, 40, 40, . . . };
β = −1 = {−1,−1,−1,−1,−1, . . . } = {2, 8, 26, 80, 242, . . . };
γ =? = {1, 7, 16, 70, 151, . . . }.

the last representation is reduced in each case. Later we will see that γ is actually a repre-
sentation of the rational number −7/8! In the reduced representation of −1, notice that

2 = 3− 1 = 2,

8 = 32 − 1 = 2 + 2 · 3,
26 = 33 − 1 = 2 + 2 · 3 + 2 · 32,
80 = 34 − 1 = 2 + 2 · 3 + 2 · 32 + 2 · 33,
242 = 35 − 1 = 2 + 2 · 3 + 2 · 32 + 2 · 33 + 2 · 34,
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suggesting that the limiting value of the sequence xk is 2(1+3+32+33+. . . ). This geometric
series does not converge in the usual sense; but if it did converge, the usual formula would
give as its sum the correct value 2/(1 − 3) = −1. We will see later that this is a perfectly
valid computation within the field Q3 of 3-adic numbers.

It follows from the coherence condition (5.2.1) that α = {x1, x2, x3, . . . } = {x2, x3, x4, . . . }!
In other words, we can shift the sequence any number of steps, or even delete any finite num-
ber of terms without affecting the value. At first sight this seems strange, but if you think
of the value of α as being the limit of the sequence (xk) (which we will later see to be the
case), then it is natural.

We will see this index-shifting in action in proving some facts about p-adic numbers soon.

As suggested by the second example above, we now consider an alternative representation
of a p-adic integer α with reduced representation {xk}. Writing xk to base p, we have

(5.2.2) xk = a0 + a1 · p+ a2 · p2 + · · ·+ ak−1 · pk−1

with each “digit” ai ∈ {0, 1, 2, . . . , p − 1}. The coherency condition (5.2.1) implies that
x1 = a0, x2 = a0 + a1p, x3 = a0 + a1p+ a2p

2, and so on, with the same digits ai. So each
α ∈ Zp determines a unique infinite sequence of p-adic digits (ai)

∞
i=0 with 0 ≤ ai ≤ p−1, and

conversely every such digit sequence determines a unique p-adic integer α = {xk} via (5.2.2).
In the examples, the 3-adic digits of α = 40 = 1+3+32+33 are 1, 1, 1, 1, 0, 0, . . . (effectively
a finite sequence), those of β = −1 form the infinite recurring sequence 2, 2, 2, 2, 2, . . . and
those of γ = 1 + 2 · 3 + 32 + 2 · 33 + 34 + . . . are 1, 2, 1, 2, 1, . . . .

We will write α = {xk} =
∑∞

i=0 aip
i when the p-adic digits of α are ai, so that xk =∑k−1

i=0 aip
i for k ≥ 1. For now, this infinite series should be regarded as just a formal

expression or shorthand.

5.3. The ring Zp. To add and multiply p-adic integers, just add and multiply the represen-
tative sequences termwise:

{xk}+ {yk} = {xk + yk};
{xk} · {yk} = {xkyk}.

One must check that the sequences on the right are coherent (in the sense of (5.2.1)), and that
replacing {xk} or {yk} by an equivalent sequence does not change the equivalence classes
of the sequences on the right: these are straightforward exercises, as are the verifications
that all the ring axioms hold. For example, the negative of α = {xk} is just −α = {−xk}.
Expressing these operations in terms of the expansions α =

∑
aip

i is not so easy: we will
see examples later.

This gives Zp the structure of a commutative ring, with Z as a subring. The factorization
theory of p-adic integers turns out to be rather simple. There are no zero-divisors:

Proposition 5.3.1. Zp is an integral domain.

Proof. As Zp is a nonzero commutative ring, we only need show that it has no zero-divisors.
Let α = {xk} 6= 0 and β = {yk} 6= 0. Then there exist k1 ≥ 1 such that xk1 6≡ 0 (mod pk1)
and k2 ≥ 1 such that yk2 6≡ 0 (mod pk2). Hence for k = k1 + k2, we have xk ≡ xk1 6≡ 0
(mod pk1) and yk ≡ yk2 6≡ 0 (mod pk2), so ordp(xkyk) < k1 + k2 = k. Thus xkyk 6≡ 0
(mod pk), and so αβ = {xkyk} 6= 0. �

Next we determine the units U(Zp):

Proposition 5.3.2. Let α = {xk} =
∑
aip

i ∈ Zp. The following are equivalent:

(i) α ∈ U(Zp);
(ii) p 6 |x1;
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(iii) p 6 |xk for all k ≥ 1;
(iv) a0 6= 0;

Proof. (ii), (iii) and (iv) are equivalent since a0 ≡ x1 ≡ xk (mod p), using the coherency
condition (5.2.1) repeatedly for the second congruence.

If α is a unit with inverse β = {yk}, then αβ = 1 implies x1y1 ≡ 1 (mod p), so p 6 |x1.
Conversely, suppose that p 6 |x1 and hence p 6 |xk for all k ≥ 1. Then for each k, there

exists an integer yk satisfying xkyk ≡ 1 (mod pk). The sequence {yk} is coherent since
xk+1yk+1 ≡ 1 (mod pk+1) =⇒ xkyk ≡ 1 ≡ xk+1yk+1 ≡ xkyk+1 (mod pk), using xk+1 ≡
xk (mod pk); hence yk+1 ≡ yk (mod pk). So {yk} determines a p-adic integer β such that
αβ = 1, and α is a unit in Zp. �

Examples: If a ∈ Z with p 6 |a, then a is a p-adic unit. Its inverse is given by the coherent
sequence {xk} where xk satisfies axk ≡ 1 (mod pk) for k ≥ 1.

For example, 3 is a 5-adic unit, so 1/3 ∈ Z5. To find the terms xk in its defining sequence
for k ≤ 4, solve 3x4 ≡ 1 (mod 54) to get x4 = 417. Reducing this modulo lower powers
of 5 then gives the start of the sequence in reduced form: 1/3 = {2, 17, 42, 417, . . . }. And
since 417 = 2 + 3 · 5 + 52 + 3 · 53, the 5-adic digits of 1/3 start 2, 3, 1, 3, . . . . In fact the
digit sequence recurs: 2, 3, 1, 3, 1, 3, 1, 3, 1, 3 . . . . We can verify this by summing the series:

1 + (1 + 3 · 5)(1 + 52 + 54 + . . . ) = 1 + 16/(1− 25) = (24− 16)/24 = 1/3.

As another example, expanding −7/8 in Z3 gives the example denoted γ above (exercise).

It is easy to tell whether a p-adic integer is divisible by p, or by a power of p:

Proposition 5.3.3. For α = {xk} ∈ Zp:
(i) p|α ⇐⇒ α /∈ U(Zp) ⇐⇒ x1 ≡ 0 (mod p) ⇐⇒ xk ≡ 0 (mod p) (∀k ≥ 1);

(ii) for n ≥ 1, pn|α ⇐⇒ xn ≡ 0 (mod pn) ⇐⇒ xk ≡ 0 (mod pn) (∀k ≥ n).

Proof. (i) The second and third equivalences are part of the previous proposition.
If p|α then α = pβ, with β = {yk} ∈ Zp; then x1 ≡ py1 ≡ 0 (mod p). Conversely,

suppose that xk ≡ 0 (mod p) for all k ≥ 1. Define β = {yk} where yk = xk+1/p. This is
a coherent sequence, since xk+2 ≡ xk+1 (mod pk+1) =⇒ pyk+1 ≡ pyk (mod pk+1) =⇒
yk+1 ≡ yk (mod pk). Now pβ = α since for all k, pyk = xk+1 ≡ xk (mod pk).

Shifting the indices by 1 when defining the yk is necessary here, both to prove coherence,
and also for the yk to even be well-defined modulo pk.

(ii) This is similar: part (i) is the case n = 1. Note that the condition xk ≡ 0 (mod pn)
only makes sense for k ≥ n, since xk is only well-defined modulo pk. If the condition holds,
set β = {yk} where yk = xk+n/p

n; checking that {yk} is coherent is just as in the special
case, and α = pnβ. The converse is easy. �

Now we know that every p-adic integer is either a unit or a multiple of p, but never both.
From this we can show that Zp is a UFD, with p the only prime:

Theorem 5.3.4. Zp is a UFD (unique factorization domain). The only irreducible (prime)
element, up to associates, is p.

That is, every nonzero element α ∈ Zp may be uniquely expressed as α = pmε where
m ∈ Z, m ≥ 0 and ε ∈ U(Zp).

Proof. Let α = {xk} ∈ Zp be nonzero. Then there exists k ≥ 1 such that xk 6≡ 0 (mod pk).
Let n be the largest index such that xn ≡ 0 (mod pn), with n = 0 if xk 6≡ 0 (mod pk) for
all k (this is the case when α is a unit, by Proposition 5.3.2). By Proposition 5.3.3, n is the
largest integer such that pn|α. Hence α = pnε where p 6 |ε, so ε is a unit.
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For uniqueness, suppose also α = pmη where m ≥ 0 and η ∈ U(Zp). Without loss of
generality, m ≥ n. Now pmη = pnε =⇒ pm−nη = ε. Since ε is a unit, it is not divisible
by p, so m− n = 0, hence m = n and η = ε.

Lastly we show that p actually is irreducible in Zp. In any factorization p = αβ, write
α = pmε and β = pnη; then p = pm+nεη with εη a product of units and hence a unit. By the
uniqueness already proved, m+ n = 1, so one of m,n = 0 and either α or β is a unit. �

Every rational number r = b/a with a, b ∈ Z and p 6 |a is also in Zp, since both a and b
are, and a is a p-adic unit. We have b/a = {xk} where axk ≡ b (mod pk) for k ≥ 1. The
rational numbers r which have this form are those for which ordp(r) ≥ 0, since ordp(b/a) =
ordp(b)− ordp(a). These are called p-integral rational numbers. Define

Rp =
{n
d
∈ Q : p 6 |d

}
= {x ∈ Q | ordp(x) ≥ 0}.

The set Rp of p-integral rationals is a subring both of Q and of Zp. Within Zp they may
be recognized as the p-adic integers whose digit sequence is ultimately periodic (just as the
rationals are the real numbers with ultimately periodic decimal expansions).

Proposition 5.3.5. Rp is a ring, with Z ⊂ Rp ⊂ Q, and Z ⊂ Rp ⊂ Zp. Also, Rp = Zp∩Q.

Proof. To show that Rp is a ring (a subring of Q), we only need to verify that Rp is closed
under addition and multiplication, which is an exercise. For the last part, we have seen
that Rp ⊂ Zp, so Rp ⊂ Zp ∩ Q. For the reverse inclusion, suppose that a/b ∈ Q with
gcd(a, b) = 1 is a p-adic integer α. Then a = bα in Zp. Now p|b =⇒ p|a, contradicting
coprimality. So p 6 |b, and hence a/b ∈ Rp. �

Corollary 5.3.6. (a) Every rational number is in Zp for all but a finite number of
primes p.

(b)
⋂
p∈PRp = Z.

Proof. Let r = a/b ∈ Q with a, b ∈ Z coprime. The only primes p for which r /∈ Rp are
those which divide b, which are finite in number, and r ∈ Zp ⇐⇒ r ∈ Rp by the preceding
proposition. If r ∈ Z then we may take b = 1, so r ∈ Rp for all p. Conversely, if r ∈ Rp for
all primes p then b has no prime divisors, so b = ±1 and r = ±a ∈ Z. �

We now extend the function ordp, which we have already defined on Z and on Q, to Zp.
Since the prime p is fixed we may sometimes write ord instead of ordp.

Definition 5.3.7. For nonzero α ∈ Zp we define ordp(α) = m where m is the largest integer
for which pm|α (in Zp). We also set ordp(0) =∞.

So ordp(α) = m ≥ 0 is the power of p appearing in its factorization α = pmε. This
definition agrees with the old definition of ordp for rationals when α ∈ Zp ∩Q = Rp.

Proposition 5.3.8. The function ordp : Zp → N0 ∪ {∞} has the following properties:

(1) for n ∈ Z (or Q), this definition of ordp(n) agrees with the one in Chapter 1;
(2) ordp(αβ) = ordp(α) + ordp(β);
(3) α|β ⇐⇒ ordp(α) ≤ ordp(β);
(4) ordp(α + β) ≥ min{ordp(α), ordp(β)}, with equality if ordp(α) 6= ordp(β).

Proof. Just as in Z and Q (see exercises). �

We can also consider congruences in Zp. The next proposition shows that these are
effectively the same as congruences in Z modulo powers of p.
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Proposition 5.3.9. For each m ≥ 0, every α ∈ Zp is congruent modulo pm to a unique
integer n with 0 ≤ n < pm. Moreover there is a ring isomorphism

Zp/pmZp ∼= Z/pmZ.

Proof. Let α = {xk} and n ∈ Z. Viewing n as the constant sequence {n}, we see that
pm|(α− n) ⇐⇒ xm ≡ n (mod pm). This proves the first part, taking n to be the reduced
residue of xm (mod pm). For the second part, α↔ xm is a bijection between Zp/pmZp and
Z/pmZ which preserves addition and multiplication. �

5.4. The field Qp. Since the ring Zp is an integral domain we can form its field of fractions,
the field of p-adic numbers Qp:

Qp = {α/β | α, β ∈ Zp, β 6= 0}.

This forms a field under the usual rules for arithmetic of fractions, with Zp as a subring and Q
as a subfield. Since every nonzero p-adic integer has the form pnε with ε a p-adic unit, we see
that the nonzero elements of Qp all have the form x = pmε where now the exponent m is an
arbitrary integer. We extend the order function from Zp to a function ordp : Qp → Z∪ {∞}
by setting ordp(x) = m. So Zp = {x ∈ Qp | ordp(x) ≥ 0} (including 0 since ordp(0) =∞.)
Parts (2) and (4) of Proposition 5.3.8 still apply.

{0} ⊂ · · · ⊂ p3Zp ⊂ p2Zp ⊂ pZp ⊂ Zp ⊂ p−1Zp ⊂ p−2Zp ⊂ p−3Zp · · · ⊂ Qp.

Let x ∈ Qp\Zp, so ordp(x) = −m < 0 and x = p−mε with ε ∈ U(Zp). Write ε = a+pmβ
with β ∈ Zp and a ∈ Z; by Proposition 5.3.9 this is uniquely possible with 0 ≤ a < pm, and
since ε is a unit, p 6 |a. Now

x = p−mε = p−m(a+ pmβ) =
a

pm
+ β;

so all p-adic numbers may be written (uniquely) as a p-adic integer plus a fractional part
which is an ordinary rational number r satisfying 0 ≤ r < 1, with denominator a power of p.

Example: Let x = 1
10
∈ Q5, with ord5(x) = −1. Then 5x = 1

2
= 3+2 ·5+2 ·52+2 ·53+ . . .

(using the method of earlier examples), so

x = 3 · 5−1 + 2 + 2 · 5 + 2 · 52 + . . . ,

with fractional part 3
5

and 5-integral part x− 3
5
= −1

2
= 2 + 2 · 5 + 2 · 52 + . . . .

Secondly, let x = 1
100
∈ Q5, so ord5(x) = −2 and 52x = 1

4
∈ Z5. To find the fractional

part of x we approximate 1
4

modulo 52 by solving 4y ≡ 1 (mod 25) to get y ≡ 19 (mod 25).
Then x− 19

25
= 1−4·19

100
= −75

100
= −3

4
∈ Z5, so the fractional part of x is 19

25
and the 5-integral

part is −3
4
. (You can also get this by squaring 1

10
.)

We may use the ordp function on Qp to define a metric (distance function) and hence a
topology on Qp. Then we may talk about convergence, continuity and such like; in particular,
we will be able to justify the computations with infinite series we have seen in earlier examples.
The key idea is that of a norm on a field.

Definition 5.4.1. Let F be a field. A norm on F is a function x 7→ ‖x‖ from F to the real
numbers satisfying the following properties:

(i) Positivity: ‖x‖ ≥ 0, and ‖x‖ = 0 ⇐⇒ x = 0;
(ii) Multiplicativity: ‖xy‖ = ‖x‖ ‖y‖;
(iii) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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For example, the usual absolute value |x| is a norm on the fields Q, R and C. We
sometimes write this as |x|∞ by analogy with the p-adic norms introduced below. The
trivial norm, defined by ‖x‖ = 1 for all nonzero x, is a norm on any field. Note that the
multiplicativity and positivity always imply that ‖1‖ = ‖−1‖ = 1, so that ‖−x‖ = ‖x‖ for
all x ∈ F .

Given a norm ‖·‖ on F , we may use it to define a metric or distance function on F , by
setting d(x, y) = ‖x− y‖ for x, y ∈ F . This has the following properties:

(i) Positivity: d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y;
(ii) Symmetry: d(x, y) = d(y, x);
(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

The field F , equipped with the metric from a norm on F , becomes a metric space, and hence
also a topological space, so that we may consider such concepts as convergence of sequences
and continuous functions on F . If F has more than one norm, this will lead to different
metrics and (in general) different topologies on F . However, if we just replace a norm ‖x‖
by ‖x‖α for a positive real number α, then the metrics will be equivalent (in the sense of
metric spaces) and the topologies the same. We call a pair of norms which are related in this
way equivalent.

We now introduce the p-adic norms on the field Q. Fix a prime number p. Recall that the
function ordp : Q→ Z ∪ {∞} has the following properties; these also hold in Qp.

Lemma 5.4.2. (1) ordp(xy) = ordp(x) + ordp(y);
(2) ordp(x+ y) ≥ min{ordp(x), ordp(y)}, with equality if ordp(x) 6= ordp(y).

Proof. See exercises. �

Definition 5.4.3. Let p be a prime. For nonzero x ∈ Qp we define the p-adic norm of x to
be

|x|p = p−ordp(x),

and set |0|p = 0.

Proposition 5.4.4. For each prime p the p-adic norm is a norm on Q and on Qp. It satisfies
the following stronger form of the triangle inequality:

|x+ y|p ≤ max{|x|p , |y|p}.
The associated p-adic metric d(x, y) = |x− y|p on Qp satisfies

d(x, z) ≤ max{d(x, y), d(y, z)},
with equality if d(x, y) 6= d(y, z).

Proof. This is immediate from Lemma 5.4.2 and Definition 5.4.3 of the p-adic norm. �

A norm or metric which satisfies this stronger form of the triangle inequality is called non-
Archimedean, in contrast to more familiar Archimedean metrics. This inequality is sometimes
known as the “isosceles triangle principle”, since it implies that in a space with a non-
Archimedean metric every triangle is isosceles!.

Example: Consider the 5-adic norm on Q. Take x = 3
10

and y = 40. Since ord5(x) = −1
and ord5(y) = 1 we have |x|5 = 5 and |y|5 = 5−1. The third side of the “triangle” with
vertices 0, x, y has length |x − y|5. Now x − y = −397

10
so ord5(x − y) = −1, and hence

|x− y|5 = 5 = |x|5.

Exercise: Prove the Product Formula: for every nonzero x ∈ Q we have

|x|∞
∏
p∈P

|x|p = 1.
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The main theorem on norms on the rational field Q states that (up to equivalence) the
only norms are the ones we have seen:

Theorem 5.4.5. [Ostrowski’s Theorem] Every nontrivial norm on Q is equivalent either to
the standard absolute value |x| or to the p-adic norm |x|p for some prime p. All these norms
are inequivalent.

We omit the proof. The idea is that if ‖n‖ ≥ 1 for all nonzero n ∈ Z, then one can show
that ‖x‖ = |x|α∞ for some α > 0, while if ‖n‖ < 1 for some n > 1 then the least such n

must be a prime p, and ‖x‖ = βordp(x) where β = ‖p‖.

One can prove that Qp, with the p-adic metric, is complete. In fact, an alternative
construction of Qp is to start with the p-adic metric on Q and form the completion of Q with
respect to this metric; this is entirely analogous to the construction of the real numbers by
completing Q with respect to the usual metric. Either way we end up with a complete field
Qp in which Q is dense (we prove this below).

The theory of p-adic analysis has many counter-intuitive features, such as the fact that
every p-adic triangle is isosceles. Another one is: a series

∑∞
n=1 an with terms an ∈ Qp

converges if and only if the terms tend to zero, i.e. limn→∞ an = 0. We will prove a special
case of this in the next proposition.

Rather than continuing with this analytic theory, however, we will content ourselves with
some examples, which in particular show that the earlier computations we carried out with
power series are valid in Qp, once we have equipped it with its (p-adic) metric.

Proposition 5.4.6. (1) Let α ∈ Zp be given by a coherent sequence {xk} of integers.
Then limk→∞ xk = α, the limit being in the p-adic topology on Zp.

(2) Let (ai)
∞
i=0 be a sequence of integers with 0 ≤ ai ≤ p−1 for all i ≥ 0. Then the series∑∞

i=0 aip
i converges in Zp to the p-adic integer α = {xk}, where xk =

∑k−1
i=0 aip

i.

Proof. From the proof of Proposition 5.3.9 we have α − xk = pkβ with β ∈ Zp. Hence
ord(α−xk) ≥ k, so |α− xk|p ≤ p−k. It follows that limk→∞(α−xk) = 0, so limk→∞ xk = α.

The second part follows from this since the xk as defined form a coherent sequence. �

Corollary 5.4.7. Every p-adic integer in Zp is the limit of a convergent sequence of rational
integers. Every p-adic number in Qp is the limit of a sequence of rational numbers.

Proof. The first part is a restatement of the proposition: for α = {xk} ∈ Zp, we have
limk→∞ xk = α. For the second part, if α ∈ Qp, write α = pmε with ε ∈ Zp. Then ε = limxk
with xk ∈ Z by the first part, and so α = pmε = limxkp

m with each xkp
m ∈ Q. �

In other words, Z is dense in Zp, and Q is dense in Qp.

Examples:
√
2 = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 74 + 2 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + · · · ∈ Z7;

40 = 1 + 3 + 9 + 27 ∈ Z3 (a finite sum);

−1 = 2(1 + 3 + 32 + 33 + . . . ) ∈ Z3;

−7

8
= 1 + 2 · 3 + 32 + 2 · 33 + 34 + · · · ∈ Z3;

1

3
= 2 + 3 · 5 + 52 + 3 · 53 + 54 + 3 · 55 + 56 + · · · ∈ Z5;

1

10
= 3 · 5−1 + 2 + 2 · 5 + 2 · 52 + · · · ∈ Q5;
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5.5. Squares in Zp. The method we used in Section 5.1 to find the 7-adic approximation

to
√
2 is valid more generally. The case p = 2 is harder, so we start with odd primes.

Proposition 5.5.1. Let p be an odd prime and α = {xk} ∈ U(Zp). Then there exists

β ∈ Zp with α = β2 if and only if

(
x1
p

)
= +1 (x1 is a quadratic residue modulo p). In

particular, every rational integer which is a quadratic residue modulo p is a p-adic square.

An equivalent condition to

(
x1
p

)
= +1 is

(
a0
p

)
= +1 where a0 is the first p-adic digit

of α, since α ≡ x1 ≡ a0 (mod p). For α ∈ Zp we define

(
α

p

)
=

(
a0
p

)
=

(
x1
p

)
.

Proof. Since α ≡ x1 (mod p), if α = β2 with β = {yk}, then β ≡ y1 (mod p), and x1 ≡ y21

(mod p), so

(
x1
p

)
= +1.

Conversely, suppose that

(
x1
p

)
= +1. Then there exists y1 ∈ Z with y21 ≡ x1 (mod p).

We construct inductively integers yk for k ≥ 2 satisfying yk ≡ yk−1 (mod pk−1) and y2k ≡ xk
(mod pk). Then {yk} is a coherent sequence, so determines a p-adic integer β, and β2 = α.

Suppose we already have yk; then yk ≡ yk−1 ≡ · · · ≡ y1 (mod p). Set yk+1 = yk + pkt
with t ∈ Z; then certainly yk+1 ≡ yk (mod pk) and we must choose t so that y2k+1 ≡ xk+1

(mod pk+1). We have xk+1 = xk + pka and y2k = xk + pkb with a, b ∈ Z; substituting gives

y2k+1 − xk+1 = (yk + pkt)2 − (xk + pka) = pk(b− a+ 2tyk) + t2p2k,

so we must solve
0 ≡ b− a+ 2tyk ≡ b− a+ 2ty1 (mod p).

This has a (unique) solution for t (mod p) since p 6 |2y1. �

Remark: A square unit in Zp must have exactly two square roots, since Zp is an integral
domain, so the polynomial x2 − α cannot have more than 2 roots. In the proof of the
proposition one can see that after making an initial choice of y1 as one of two possible
choices for the square root modulo p, at all subsequent steps there is a unique choice.

An alternative approach to finding p-adic square roots is to start with a value y = y1 which
is a “first-order approximation”, meaning a solution to y2 ≡ α (mod p), and then iterate
the map y 7→ y′ = y + u(y2 − α) where u satisfies 1 + 2uy1 ≡ 0 (mod p). At each step we
obtain a better approximation, and in the limit we obtain an exact solution. To see why this
works, the computation

(y′)2 − α = (y + u(y2 − α))2 − α = (y2 − α)(1 + 2uy) + u2(y2 − α)2

shows that the valuation of y2 − α strictly increases at each step, so β = lim y satisfies
β2 − α = lim(y2 − α) = 0.

Examples: 1. Taking p = 7 and α = 2 we see that 2 is a 7-adic square since

(
2

7

)
= 1.

One square root is β = 3+1 ·7+2 ·72+6 ·73+ . . . (see the calculation done in Section 5.1)
and the other is −β = 4 + 5 · 7 + 4 · 72 + 0 · 73 . . . .
2. Take p = 3 and α = −2. Using the second approach, take y = 1 which satisfies
y2 ≡ −2 (mod 3) as a first approximation. Let u = 1 so that 1 + 2uy ≡ 0 (mod 3), and
iterate y 7→ y+ u(y2−α) = y2 + y+2. The first few values of y are (reducing the k’th one
modulo 3k):

1, 4, 22, 22, 22, 508, 508, 2695, . . . .
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Expanding 2695 to base 3 gives the expansion
√
−2 = 1 + 3 + 2 · 32 + 2 · 35 + 37 + · · · ∈ Z3

where the next nonzero term is a113
11 since 26952 +2 = 311 · 41, so |

√
−2− 2695|3 = 3−11.

(The last statement should be checked carefully.)

Now we have identified the p-adic units which are squares, it is a simple matter to determine
all the squares in Zp.

Proposition 5.5.2. Let p be an odd prime. Let α = pmε be a nonzero p-adic integer with

m = ord(α) and ε ∈ U(Zp). Then α is a square in Zp if and only if m is even and

(
ε

p

)
= 1.

Proof. If α = β2 where β = pnη, then pmε = p2nη2 implies m = 2n and ε = η2, so m

is even and ε is a square unit. Conversely, if m = 2n and

(
ε

p

)
= 1, then ε = η2 by

Proposition 5.5.1, and α = (pnη)2. �

The case of 2-adic squares is a little different: for a 2-adic unit to be a square, it is
not sufficient to be a square modulo 2 (which is true for all 2-adic units since they are all
congruent to 1 (mod 2)); they must be congruent to 1 modulo 8. This is due to the fact
that odd integer squares are all congruent to 1 modulo 8. The next result is that being
congruent to 1 (mod 8) is sufficient for a 2-adic unit to be a square in Z2.

Proposition 5.5.3. A 2-adic unit α is a square in Z2 if and only if α ≡ 1 (mod 8).

Proof. If α = β2 then α ≡ x3 ≡ y23 ≡ 1 (mod 8), where α = {xk} and β = {yk}.
Conversely, suppose that α ≡ 1 (mod 8). Starting with y = 1 we can successively obtain

better approximations to
√
α as follows (stopping if ever y2 = α exactly): if ord2(y

2−α) = k
replace y by y′ = y + 2k−1. This does give a better approximation, since y2 − α = 2kb with
b odd implies

(y + 2k−1)2 − α = y2 − α + 2ky + 22k−2 = 2k(b+ y + 2k−2),

which has valuation > k since the expression in parentheses is even (using k ≥ 3). The y
sequence so constructed converges to some β ∈ Z2 with β2 = α since y2 − α→ 0. �

The proof shows how to find a 2-adic square root in practice: start with y = 1 and
repeatedly replace y by y′ = y + 2k−1 where k = ord2(y

2 − α).

Example: We compute
√
17 in Z2, which exists since 17 ≡ 1 (mod 8).

Start with y = 1. Then y2 − 17 = −16 = −24, so replace y by y + 23 = 9.
Now y2 − 17 = 92 − 17 = 64 = 26, so replace y by y + 25 = 41.
Now y2 − 17 = 412 − 17 = 27 · 13, so replace y by y + 26 = 105.
Now y2 − 17 = 1052 − 17 = 28 · 43, so replace y by y + 27 = 233; and so on.
Thus we obtain a sequence 1, 9, 41, 105, 233, . . . converging to

√
17 ∈ Z2, and

√
17 =

1 + 23 + 25 + 26 + 27 + . . . .
Similarly we may compute (approximations to)

√
−7 in Z2, to get

√
−7 = lim{1, 5, 21, 53, 181, . . . } = 1 + 22 + 24 + 25 + 27 + 214 + . . .

with digit sequence 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, . . . . The long block of zero digits
comes from the fact that 1812 +7 = 32768 = 215, so 181 is a rather good approximation to√
−7 in Z2. We have ord(

√
−7− 181) = 14, so |

√
−7− 181|2 = 2−14.
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5.6. Hensel lifting. The process we used in the previous section to find p-adic square roots
for odd p involves going from a solution of a congruence modulo pk to a solution modulo pk+1.
This process is called “Hensel lifting” after Kurt Hensel (1861–1941), the inventor of p-adic
numbers. It is the p-adic equivalent of refining an approximate real solution to an equation
to a more precise solution, correct to more decimal places.

We will prove a quite general result which generalises the p-adic square root procedure for
odd primes p, and also shows why p = 2 was different. Formally, this Hensel lifting is very
similar to the Newton-Raphson method for finding roots of equations over R.

Theorem 5.6.1. [Hensel Lifting Theorem] Let f(X) ∈ Zp[X] be a polynomial, and let
x1 ∈ Zp satisfy f(x1) ≡ 0 (mod p) and f ′(x1) 6≡ 0 (mod p). Then there exists a unique
x ∈ Zp such that f(x) = 0 and x ≡ x1 (mod p).

Example: Let p be odd and a ∈ Z a quadratic residue modulo p. Then a is a p-adic
square: just take f(X) = X2 − a in the theorem with x1 a solution to x2 ≡ a (mod p).
The derivative condition is that f ′(x1) = 2x1 6≡ 0 (mod p), which holds since p 6= 2.
Example: Let p be prime and take f(X) = Xp − X. We know from Fermat’s Little
Theorem that f has p roots modulo p, one in each residue class. Hensel’s Theorem says that
f has p roots in Zp also. One of these is 0; the others are (p − 1)’st roots of unity in Zp.
One way of constructing these will be in the exercises.

Proof of Hensel Lifting Theorem 5.6.1. We will construct inductively a sequence {xn} such
that f(xn) ≡ 0 (mod pn) and xn ≡ xn+1 (mod pn) for all n ≥ 1; then x = limn xn has the
desired properties. In the proof we will see that each xn is uniquely determined modulo pn,
giving uniqueness.

To start with, we are given x1. Suppose we have xk satisfying f(xk) ≡ 0 (mod pk) for
1 ≤ k ≤ n and xk ≡ xk+1 (mod pk) for all k with 1 ≤ k ≤ n− 1; we construct xn+1. Note
that xn ≡ xn−1 ≡ · · · ≡ x1 (mod p).

Put xn+1 = xn+p
ny and solve for y to make f(xn+1) ≡ 0 (mod pn+1). The residue class

of xn+1 (mod pn+1) will only depend on y (mod p), and we show that there is a unique y
(mod p) which works. We have

f(xn+1) = f(xn + ypn) = f(xn) + ypnf ′(xn) + . . .

where all omitted terms are divisible by pn+1. Since f(xn) = pna for some a ∈ Zp, this gives

f(xn+1) ≡ pn(a+ yf ′(xn)) (mod pn+1),

so f(xn+1) ≡ 0 (mod pn+1) holds if and only if a + yf ′(xn) ≡ 0 (mod p). Since f ′(xn) ≡
f ′(x1) 6≡ 0 (mod p), there is a unique solution for y (mod p), and hence for xn+1 (mod pn+1).

�

Remark: In this proof we have y ≡ −a/f ′(x1) ≡ −(f(xn)/pn)/f ′(x1) (mod p), so

xn+1 = xn + pny ≡ xn − f(xn)/f ′(xn) (mod pn+1).

Thus, Hensel lifting consists of starting with a “seed” x = x1 which must be a simple root
of f (mod p), and iterating the map

x 7→ x− f(x)/f ′(x),

just as in the classical Newton method. Every iteration gives one more p-adic “digit”, and
the sequence always converges! To use the iteration formula to go from a root modulo pn

to a root modulo pn+1, you can compute the inverse u of f ′(x1) (mod p) once and for all
at the start, and simply iterate x 7→ x− uf(x), as in the next example.
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Example: We’ll compute an approximation to 3
√
2 ∈ Q5. An initial approximation is x1 = 3,

and since 33 ≡ 2 (mod 25) we can also take x2 = 3. Here f(X) = X3−2, so f ′(X) = 3X2

and f ′(x1) = 27 ≡ 2 (mod 5) with inverse u = −2, so the recurrence is x 7→ x+2(x3− 2):

x3 ≡ 3 + 2(27− 2) ≡ 53 (mod 53); now 533 ≡ 127 (mod 54) =⇒
x4 ≡ 53 + 2(127− 2) ≡ 303 (mod 54); now 3033 ≡ 2502 (mod 55) =⇒
x5 ≡ 303 + 2(2502− 2) ≡ 5305 ≡ 2178 (mod 55); and so on.

We have an approximation to 3
√
2, good to five 5-adic “digits”:

3
√
2 = 3 + 2 · 52 + 2 · 53 + 3 · 54 + · · · ∈ Q5.

This statement is analogous to saying that
3
√
2 = 1.259921 · · · = 1 + 2 · 10−1 + 5 · 10−2 + 9 · 10−3 + · · · ∈ R.
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