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This paper considers the implications of a high-Reynolds-number thin parallel boundary
layer on fluid–solid interaction. Two types of boundary are considered: a compliant

boundary which is flexible but impermeable, such as an elastic sheet or elastic solid,
and a permeable boundary which is rigidly fixed, such as a perforated rigid sheet. The
fluid flow consists of a steady flow along the boundary and a small time-dependent
perturbation, with the boundary reacting to the perturbation. The fluid displacement due
to the perturbation is assumed to be much smaller than the boundary layer thickness. The
analysis is equally valid for compressible and incompressible fluids. Numerical examples
are given for compressible flow along a cylindrical duct, for both permeable and compliant
cylinder walls. The difference between compliant and permeable walls is shown to be
dramatic in some cases. High- and low-frequency asymptotics are derived, and shown to
compare well to the numerics. When used with a mass–spring–damper boundary, this
model is shown to lead to similar, but not identical, temporal instability with unbounded
growth rate to that seen for slipping flow using the Myers boundary condition. It is
therefore suggested that a regularization of the Myers boundary condition removing the
unbounded growth rate may lead to, or at least inform, a regularization of the model
presented here.
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1. Introduction

The modelling of small perturbations to a steady fluid flow past a deformable object
has been widely studied due to its many applications, including sound damping in
automotive and aeroengine acoustic silencers, and physical stability considerations such
as panel flutter. One simple and oft-used model is to approximate the steady fluid
flow as being uniform (for example, Koch & Möhring 1983; Brazier-Smith & Scott 1984;
Crighton & Oswell 1991; Peake 1997; Abrahams & Wickham 2001; Lucey, Sen & Carpenter
2003). The boundary condition applied at the fluid–solid interface in this case is to
match the fluid and solid displacements. This was justified, apparently independently,
by Eversman & Beckemeyer (1972) and Tester (1973) by considering the limit of a
vanishingly thin inviscid boundary layer at the fluid–solid interface. This helped clear
up some considerable confusion that previously existed between matching velocity or
displacement (Rice 1969, for example), and this boundary condition is now almost
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universally applied under the name of the Myers boundary condition (so named because
of the work of Myers 1980).

There has been considerable debate over the mathematical and numerical stability of
the Myers boundary condition when applied to acoustics over deformable surfaces with
slipping flow (for example, Tam & Auriault 1996; Rienstra 2003, 2007; Richter & Thiele
2007). In the author’s opinion there is a deficiency in this mathematical model which
prevents a correct mathematical stability analysis (Brambley 2009). The mathematical
question of stability of the boundary condition is removed for non-slipping flows. In
light of this, and in search of greater accuracy for numerical and analytic solution when
compared with experiments, there has been growing interest in recent years in modelling
a finite thickness shear layer such that the flow at the boundary is nonslipping (for
example Aurégan, Starobinski & Pagneux 2001; Vilenski & Rienstra 2007).

Sound within sheared flow, both within and outside boundary layers, is often studied
using the inviscid equation attributed to Pridmore-Brown (1958) or its cylindrical coun-
terpart (e.g. Mungur & Plumblee 1969), which neglect temperature variation and viscous
and thermal dissipation (Eversman 1971; Mariano 1971; Goldstein & Rice 1973; Jones
1977; Nagel & Brand 1982; Campos & Serrão 1998; Vilenski & Rienstra 2007). These
dissipative terms were included by Nayfeh (1973) when considering viscous flow over a
permeable boundary, although gradients of the mean-flow at the wall were assumed to
be O(1) and so this analysis is not applicable to thin boundary layers. More recently,
Aurégan et al. (2001) included dissipative terms in their analysis while allowing the
boundary layer to be thin. They found the Myers boundary condition was attained
only for high frequencies, while for low frequencies they predicted normal mass-flux to be
constant across the boundary layer (leading to matching normal velocity in the absence of
density gradients). These conclusions were derived under the assumption that the velocity
and temperature difference across the boundary layer are small. Even more recently,
Renou & Aurégan (2010) showed that incorporating viscosity within the boundary layer
is necessary in order to accurately correlate mathematical and numerical results with
experiments.

The purpose of this paper is to investigate the same situation considered by
Aurégan et al. (2001), but without the restriction of small changes in velocity and
temperature across the boundary layer, and allowing for both compliant and permeable
boundaries. The assumptions made here are that the Reynolds number is large, that
the time-dependent perturbations are small, and that the boundary layer flow is parallel
(meaning that all mean flow variables within the boundary layer are functions of
only the distance from the boundary). These assumptions are also made in numerous
other works (for example, Eversman & Beckemeyer 1972; Tester 1973; Jones 1977;
Campos & Serrão 1998; Aurégan et al. 2001; Vilenski & Rienstra 2007), and it seems a
sensible extension of these works to include viscosity without extra complications.

These assumptions are used in §2 to derive the governing equations, and some facts
about their solution are briefly mentioned in §3. The governing equations are then solved
numerically, with some numerical results presented in §4. The results of a comprehensive
study of high- and low-frequency asymptotics are given in §5, the details of which are
in the appendices. The unbounded temporal growth rate seen by applying the Myers
boundary condition to a mass–spring–damper boundary is shown to also occur for
the present model in §6, together with a brief discussion of the effects of this on the
mathematical stability of the model. Conclusions are presented in §7.
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Density ρ∗ = ρ∗0ρ Pressure & viscous stress p∗ = c∗0
2ρ∗0p

Velocity u
∗ = c∗0u Dynamic viscosity (shear & bulk) µ∗ = c∗0ℓ

∗ρ∗0µ
Distance x∗ = ℓ∗x Thermal conductivity κ∗ = c∗0ℓ

∗ρ∗0cp
∗κ

Time t∗ = ℓ∗/c∗0t Temperature T ∗ = c∗0
2/cp

∗T

Table 1. Dimensional and nondimensional variables, based on a lengthscale ℓ∗, a velocity c∗0 , a
density ρ∗0, and a specific heat at constant pressure cp

∗. The ∗ denotes a dimensional variable.

2. Governing equations

We consider a compressible viscous perfect gas (a similar derivation is valid for an
incompressible fluid). The dimensional and nondimensional variables used are listed in
table 1. Writing D/Dt ≡ ∂/∂t + u · ∇, the nondimensional governing equations are
(Landau & Lifshitz 1987):

∂ρ

∂t
+∇ · (ρu) = 0; (2.1a)

ρ
Du

Dt
= −∇p+∇ · σ, (2.1b)

σij = µ

(

∂ui

∂xj
+

∂uj

∂xi

)

+

(

µB − 2

3
µ

)

δij∇ · u; (2.1c)

ρ
DT

Dt
=

Dp

Dt
+ σij

∂ui

∂xj
+∇ ·

(

κ∇T
)

; (2.1d)

T =
γ

γ − 1

p

ρ
, (2.1e)

where γ = cp
∗/cv

∗ is the ratio of specific heats. We assume the viscosity µ, the bulk (or
volume) viscosity µB and the thermal conductivity κ to depend linearly on temperature
and be independent of pressure (Prangsma, Alberga & Beenakker 1973), so that

µ =
T

T0Re
µB =

T

T0Re

µB
0
∗

µ∗
0

κ =
T

T0PrRe
. (2.1f )

where T0 is a (nondimensionalized) reference temperature at which the viscosity is µ∗
0,

µB
0
∗
/µ∗

0 is the ratio of bulk to shear viscosity which we assume to be constant, and we
have defined Re = c∗0ℓ

∗ρ∗0/µ
∗
0 and Pr = µ∗

0cp
∗/κ∗

0. Re may be interpreted as the Reynolds
number and Pr as the Prandtl number, both based on the nondimensionalization given
in table 1. This temperature dependence was not considered by Aurégan et al. (2001).

The analysis presented here is valid for flow over a compliant or permeable surface for
many geometries. For definiteness, we shall consider here the specific case of flow along a
cylindrical tube, as shown in figure 1. The tube is of radius ℓ∗ and is parallel to the x∗-
axis, with the cross-section described by polar coordinates (r∗, θ). The mean flow consists
of a boundary layer of width δ∗, outside which the flow is uniform in the x∗-direction
at velocity U∗

0 . Within the boundary layer the flow is assumed parallel with u∗, p∗, T ∗

and ρ∗ all functions of radius. The lengthscale ℓ∗ is the radius of the tube, the reference
velocity c∗0 is the speed of sound within the uniform flow, and the reference quantities ρ∗0,
T ∗
0 , µ

∗
0, µ

B
0
∗
and κ∗

0 are the values within the uniform flow. This gives T0 = 1/(γ− 1) and
p0 = 1/γ. The nondimensionalized uniform flow velocity U0 = M is the Mach number.
For this cylindrical geometry, using a subscript to denote differentiation, the governing
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Figure 1. Schematic of parallel flow in a cylindrical tube with a coupled boundary.

equations (2.1a)–(2.1d) become

ρt +
(

ρu
)

x
+ 1

r

(

rρv
)

r
+ 1

r

(

ρw
)

θ
= 0, (2.2a)

ρ
(

ut + uux + vur +
1
rwuθ

)

= −px +
(

σ11

)

x
+ 1

r

(

rσ12

)

r
+ 1

r

(

σ13

)

θ
, (2.2b)

ρ
(

vt + uvx + vvr +
1
rwvθ

)

= 1
rρw

2 − pr − 1
rσ33 +

(

σ12

)

x
+ 1

r

(

rσ22

)

r
+ 1

r

(

σ23

)

θ
, (2.2c)

ρ
(

wt + uwx + vwr +
1
rwwθ

)

=− 1
rρvw − 1

r pθ

+
(

σ13

)

x
+ 1

r2

(

r2σ23

)

r
+ 1

r

(

σ33

)

θ
,

(2.2d)

ρ
(

Tt + uTx + vTr +
1
rwTθ

)

=
(

pt + upx + vpr +
1
rwpθ

)

+
(

κTx

)

x
+ 1

r

(

rκTr

)

r
+ 1

r2

(

κTθ

)

θ
+ σ11ux + σ12

(

ur + vx
)

+ σ13

(

1
ruθ + wx

)

+ σ22vr + σ23

(

1
r vθ + r

(w

r

)

r

)

+ 1
rσ33

(

wθ + v
)

,

(2.2e)

σij = µ











2ux ur + vx
1
ruθ + wx

· 2vr
1
r vθ + r

(

w
r

)

r

· · 2
r

(

wθ + v
)











+
(

µB − 2
3µ

)[

ux + 1
r

(

rv
)

r
+ 1

rwθ

]

δij .

(2.2f )

Since µ0 = 1/Re ≪ 1, viscosity is assumed to be unimportant within the flow outside
the boundary layer, so that outside the boundary layer these equations reduce to the
inviscid Euler equations. We now change variables to concentrate on the behaviour within
the boundary layer. Balancing the viscous and inertial terms gives the boundary layer
scaling

r = 1− δy, v = −δv1, δ2 = 1/Re. (2.3)

We now consider solving (2.2) using this scaling, to leading order in δ. First, we shall
consider the steady mean flow, and then following that small perturbations about this
mean flow.

2.1. Mean flow

Any boundary layer profile independent of t, x and θ could be chosen for the analysis
that follows. (It should be noted that, in what follows, we have assumed that the fluid
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Figure 2. Velocity (right scale, solid line) and temperature (left scale, dashed line) for a
compressible Blasius boundary layer a distance x0 downstream of a leading edge. M = 0.5,
Pr = 0.7, γ = 1.4.

and boundary are in thermal equilibrium, so that Ty(0) = 0.) Possibilities include 1/7th
power law, exponential, logarithmic and quarter sine boundary layer profiles. We shall
here take the axial velocity, pressure and temperature to be that of a compressible Blasius
boundary layer a distance x0 downstream of a leading edge (see, e.g. Schlichting 1968).
An example of such a boundary layer profile is plotted in figure 2. Choosing Re and x0

allows both the Reynolds number of the outer flow and the displacement thickness of the
boundary layer to be set to any desired values.

2.2. Small perturbations in the boundary layer

We now consider a small time-dependent perturbation to the steady flow considered
above (such perturbations will be denoted by a tilde). We write, for example, ρ + ρ̃ for
the density, where ρ is the mean flow and ρ̃ is the perturbation. All perturbations will
be of magnitude εa ≪ δ, and have dependence exp{iωt− ikx− imθ}.
Outside the boundary layer viscosity is assumed to be unimportant and the mean flow

is uniform, so that u = (M + ũU , ṽU , w̃U ), p = 1/γ + p̃U , ρ = 1 + ρ̃U and T = 1/(γ −
1) + T̃U . Solving for the perturbation in such a situation is fairly straightforward (e.g.
Vilenski & Rienstra 2007; Brambley & Peake 2008), and here we assume that the outer
solution is known. We denote limr→1 ṽU = ṽ∞ and limr→1 p̃U = p̃∞, which will be used
to match with the solution within the boundary layer.
Within the boundary layer, we rescale r = 1−δy and set u = (u+ũ,−δṽ, w̃). Neglecting

terms of order O(ε2a) and O(δ) in the governing equations (2.2a–f ) gives

i(ω − uk)ρ̃+ ρ
(

ṽy − ikũ− imw̃
)

+ ρy ṽ = 0, (2.4a)

i(ω − uk)ũ+ ṽuy = 1
ρ ikp̃+

γ−1
ρ

(

T ũy + T̃ uy

)

y
, (2.4b)

p̃y = O
(

δ2
)

(2.4c)

i(ω − uk)ρw̃ = imp̃+ (γ − 1)
(

T w̃y

)

y
(2.4d)

i(ω − uk)T̃ + ṽTy = 1
ρ i(ω − uk)p̃+ γ−1

ρPr

(

T̃ Ty + T T̃y

)

y
+ (γ−1)

ρ

(

T̃ (uy)
2 + 2Tuyũy

)

,

(2.4e)

(γ − 1)ρ2T̃ = γρp̃− ρ̃. (2.4f )
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a) Compliant b) Permeable

ξ̃0 ṽ0

Figure 3. Sketches of a compliant (a) and a permeable (b) boundary. Arrows indicate normal

displacement ξ̃0 in (a) and normal velocity ṽ0 in (b).

Hence p̃ is constant across the boundary layer to leading order. Since the curvature of
the cylindrical boundary occurs at O(δ), the above equations are equally valid for a flat
surface.
Matching the boundary layer perturbation with the perturbation in the uniform flow

gives p̃ and w̃ being O(1) while ũ, ṽ, ρ̃ and T̃ are O(1/δ) owing to matching ṽ∞ with
−δṽ. These assumptions give, to leading order, ρ̃ = −(γ − 1)ρ2T̃ , and

i(ω − uk)T̃ + Ty ṽ − T ṽy + ikT ũ = 0, (2.5a)

i(ω − uk)ũ+ ṽuy = (γ − 1)2T
(

T ũy + T̃ uy

)

y
, (2.5b)

i(ω − uk)T̃ + ṽTy = (γ − 1)2T
[

1
Pr

(

T̃ T
)

yy
+ T̃ (uy)

2 + 2Tuyũy

]

. (2.5c)

If the fluid is incompressible, the nonlinear equations of motion (2.1) must be modified.
It turns out that the linear equations of motion (2.5a,b) remain valid for an incompressible
fluid, provided we take T (y) ≡ 1/(γ − 1) and T̃ = 0 irrespective of what the actual
temperature of the incompressible fluid is.

2.3. The fluid–solid boundary condition

We now considered the boundary conditions to the boundary layer perturbation
equation (2.5) derived above. Two types of boundaries will be considered here, shown
in figure 3. The term compliant boundary will be used for a boundary which may be
deformed by the fluid but is impermeable, as shown in figure 3a. If the velocity of the
boundary is (ũ0, ṽ0, w̃0) at (x0, θ0) and the temperature of the boundary is T (0) + T̃0,
then rescaling to within the boundary layer means we require

T (y) + T̃ (x+ x̃, y, θ + θ̃) = T̃0(x, θ) + T (0)

u(y) + ũ(x+ x̃, y, θ + θ̃) = ũ0(x, θ)

ṽ(x+ x̃, y, θ + θ̃) = −ṽ0(x, θ)/δ

w̃(x+ x̃, y, θ + θ̃) = w̃0(x, θ)























at y = −ξ̃0/δ, (2.6)

where ξ̃0 = ṽ0/(iω) is the normal displacement of the wall in the radial direction, and
x̃ = ũ0/(iω) and θ̃ = w̃0/(iω) are the tangential displacements of the wall. Linearizing
and taking only the leading order terms, which are of order 1/δ, gives the boundary
conditions

ũ(0) = Cuy(0)
ṽ0/δ

iω
, ṽ(0) = −ṽ0/δ, T̃ (0) = 0,

ũ(y) → 0, ṽ(y) → −ṽ∞/δ, T̃ (y) → 0, as y → ∞, (2.7)

with C = 1, the ‘C’ standing for ‘compliant’.
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In contrast, we will use the term permeable boundary for a boundary which remains
fixed at y = 0 and which the fluid may flow through, as shown in figure 3b. For such a
boundary, the boundary conditions are

ũ(x, 0, θ) = 0 ṽ(x, 0, θ) = −ṽ0(x, θ)/δ w̃(x, 0, θ) = 0. (2.8)

This gives the same boundary conditions as (2.7) but with C = 0.

2.4. Impedance models of the boundary

The boundary reacts to the disturbance in the fluid, linking the wall pressure p̃0 and
the wall velocity (ũ0, ṽ0, w̃0). The boundary impedance is given by Z = p̃0/ṽ0.
Given the impedance of the boundary, we would like to know the effective impedance

Zeff = p̃∞/ṽ∞ seen by the inviscid perturbation to the mean flow above the boundary
layer. Since pressure is constant throughout the boundary layer to leading order, so that
p̃0 = p̃ = p̃∞, Zeff is given by

Zeff = Z
ṽ0
ṽ∞

. (2.9)

Neglecting viscous dissipation in the boundary layer, the normal particle displacement
ξ̃ would be constant across the boundary layer (Eversman & Beckemeyer 1972; Tester
1973), so that ṽ0 = iωξ̃, ṽ∞ = i(ω −Mk)ξ̃, and therefore

Zeff =
Z

1−Mk/ω
. (2.10)

This is referred to here as continuity of displacement, and we set Zdisp = Z/(1−Mk/ω).
This boundary condition is often referred to as the Myers boundary condition (Myers
1980). Aurégan et al. (2001) predicted this to hold in the high-frequency limit.
In the low-frequency limit, Aurégan et al. (2001) predicted mass flux, ρṽ, to be constant

through the boundary layer. Assuming this gives the effective impedance as

Zeff = Z(γ − 1)T (0). (2.11)

This is referred to here as continuity of mass flux, and we set Zmass = Z(γ − 1)T (0).
To summarize: the leading order equations for a linearized perturbation to a thin

parallel boundary layer are (2.5), subject to the boundary conditions (2.7). We are
interested in ṽ∞/ṽ0, as this gives the effective impedance of the boundary as seen by
the uniform-flow perturbation outside the boundary layer.

3. Implications of the governing equations

We now note two important consequences of the governing equations (2.5) and bound-
ary conditions (2.7): a branch cut caused by the boundary conditions (§3.1); and the
effect of rescaling the size of the boundary layer (§3.2).

3.1. The boundary-layer solution outside the boundary layer

Consider the boundary layer solution as y → ∞. We assume that, sufficiently far from
the boundary, the mean boundary layer velocity, temperature and pressure attain their
uniform-flow values, so that for some Y , u(y) = M and T (y) = 1/(γ − 1) for y > Y .
This is true for practical purposes (computational precision being about 10−16) for the
Blasius boundary layer shown in figure 2 for Y & 12

√
x0. In this region, the governing
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equations within the boundary layer (2.5) simplify and uncouple to give

i(ω −Mk)(γ − 1)T̃ + ikũ = ṽy, (3.1a)

i(ω −Mk)ũ = ũyy, (3.1b)

i(ω −Mk)T̃ = 1
Pr T̃yy. (3.1c)

with the solutions that are bounded as y → ∞ given by

ũ(y) = ũ∞ exp{−η∞y} T̃ (y) = T̃∞ exp{−ση∞y}

ṽ(y) = ṽ∞ − η∞(γ − 1)

σ
T̃∞ exp{−ση∞y} − ik

η∞
ũ∞ exp{−η∞y}. (3.2)

σ = +
√
Pr η∞ =

√

i(ω −Mk) with Re η∞ > 0.

This exact solution for y > Y may be used to give a numerical boundary condition at
y = Y , rather than having to integrating numerically to y = ∞. This is discussed further
in §4. From the definition of η∞, there is a branch cut when i(ω −Mk) is both real and
negative. For fixed ω, this gives a branch cut in the k-plane along k = ω/M − iq for
q > 0. This branch cut is different from a critical layer, which is a singularity at y = y0
in the inviscid Pridmore–Brown equations where ω−u(y0)k = 0; critical layers would be
expected for values of ω and k for which (ω −Mk) = −q for q > 0. Viscosity regularizes
the critical layer singularity, as is shown for our boundary layer approximation (2.5) using
a Frobenius expansion in appendix A.

3.2. The effect of boundary layer thickness

Throughout this paper, all examples presented are for boundary thicknesses corre-
sponding to x0 = 1. In fact, these results are universal, with the only effect of changing
x0 being to rescale ω, k, ũ, T̃ , and y. Suppose ũ1(y), T̃1(y) and ṽ1(y) are the solution to
the governing equations (2.5) and boundary conditions (2.7) for a boundary layer profile
given by u1(y) and T1(y) for parameters ω1 = x0ω and k1 = x0k. Then the solution to
the governing equations and boundary conditions for a boundary layer profile given by
u(y) = u1(y/

√
x0) and T (y) = T1(y/

√
x0) for parameters ω and k is given by

ũ(y) =
√
x0ũ1(y/

√
x0), T̃ (y) =

√
x0T̃1(y/

√
x0), ṽ(y) = ṽ1(y/

√
x0), (3.3)

as can be verified by direct substitution. This shows that the behaviour for x0 = 1 is
universal.

4. Numerical results

Having derived the mathematical model we will be considering in §2 and noted some
properties of this model in §3, in this section (2.5) is solved numerically and some
numerical results presented. The equations were solved numerically using a 4th order
symmetric finite difference scheme on an equally-spaced set of N points in the interval
y ∈ [0, Y ], yielding a 3N×3N banded matrix A with at most 48N nonzero elements. The
boundary conditions at y = 0 were specified as in (2.7) with ṽ0 = −δ. For the boundary
condition at y = ∞, the analytic solutions for y > Y from (3.2) were used to give the
numerical boundary conditions at y = Y

ũy + η∞ũ = 0, T̃y + ση∞T̃ = 0. (4.1)

These boundary conditions were encapsulated into a 3N -dimensional vector b, with b1 =
1 and bi = 0, i ∈ [2, 3N ]. The discretized problem was therefore to solve Ax = b for the
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Figure 4. Contours of Zeff/Zdisp in the k-plane at high frequency. For a) and c), contours are of
|Zeff/Zdisp|; the solid, dashed and dotted lines are for = 1, < 1 and > 1, spaced logarithmically.
For b) and d), contours are for arg(Zeff/Zdisp); the solid, dashed, dotted and dash-dot lines are
for = 0, ∈ (0,π), ∈ (−π, 0), and = π. ω = 31, Pr = 0.7, γ = 1.4, M = 0.5, x0 = 1.

solution x, which was performed using the LAPACK ZGBSV routine (Anderson et al.

1999). After this calculation, (3.2) was used to extrapolate ṽ(Y ) to ṽ(∞) = ṽ∞. Typically,
Y = 16

√
x0 and N = 4000 were used for the results that follow, with each solution

taking about 10ms on a standard desktop computer. Checks were performed in each
case to ensure these parameters were sufficient, by verifying that the solution remained
unaltered by increasing N and by verifying the numerical solution against the analytic
solution (3.2) for y > Y .
We now consider the effect of the viscous boundary layer on the response of the

boundary at high (§4.1) and low (§4.2) frequencies, and the resulting effect of this on
acoustic modes in a cylindrical lined duct (§4.3).

4.1. High frequency results

At high frequency, we would expect from Aurégan et al. (2001) that Zeff = Zdisp; i.e.
the Myers boundary condition should hold. The variation of Zeff/Zdisp in the k-plane,
calculated numerically for ω = 31, γ = 1.4, Pr = 0.7, M = 0.5 and x0 = 1 (intended to be
typical of tonal fan noise within an aeroengine intake) is shown in figure 4. For a compliant
boundary (figure 4a,b), as expected, Zeff/Zdisp ≈ 1 to a reasonably good accuracy for
the majority of the k-plane. The branch cut mentioned in §3.1 is just about visible,
extending in the negative imaginary direction from k = ω/M = 62. For a permeable
boundary (figure 4c,d), Zeff/Zdisp ≈ 1 in the upper and left halves of the k-plane. The
branch cut is clearly visible in this case, beyond which is an anomalous region where it
is clearly not true that Zeff/Zdisp ≈ 1. This behaviour was not seen by Aurégan et al.

(2001), since they considered only the limit of a low flow speed for which the branch cut
is at infinity.
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Figure 5. Contours of Zeff/Zmass in the k-plane at low frequency. For a) and c), contours are
of |Zeff/Zmass|; the solid, dashed and dotted lines are = 1, < 1 and > 1, spaced logarithmically.
For b) and d), contours are of arg(Zeff/Zmass); the solid, dashed, dotted and dash-dot lines are
for = 0, ∈ (0,π), ∈ (−π, 0), and = π. ω = 0.03, Pr = 0.7, γ = 1.4, M = 0.5, x0 = 1.

4.2. Low frequency results

At low frequencies, plots of Zeff/Zdisp show that continuity of displacement does not
hold for either compliant or permeable boundaries for ω ≪ 1. Aurégan et al. (2001)
suggest that at low frequencies we should expect Zeff ≈ Zmass. The variation of Zeff/Zmass

in the k-plane, calculated for the same parameters as figure 4 but with ω = 0.03, is shown
in figure 5. For a permeable boundary (C = 0, figure 5c,d), arguably Zeff/Zmass ≈ 1 is
a good approximation for the majority of the k-plane, at least away from the point
k = ω/M . However, continuity of mass flux does not appear correct for the compliant
boundary (C = 1, figure 5a,b); this may be seen especially by comparing figures 5b and 5d,
which show the permeable boundary maintaining arg(Zeff/Zmass) within about ±π/8,
while the compliant boundary has arg(Zeff/Zmass) varying beyond 3π/4 even outside the
anomalous region and away from k = ω/M . This difference becomes more obvious for
even smaller frequencies, and will be investigated further using asymptotics in §5.2.

4.3. Effect of the boundary layer on acoustic duct modes

Having looked at the effect of the boundary layer on the behaviour of the boundary,
we now investigate its effect on the acoustic modes in a cylindrical lined duct. Consider
acoustic waves in a cylindrical duct with uniform flow and a permeable boundary (e.g.
Rienstra 2003), with solution

ũU = ∇φ, φ = AJm(αr) exp{iωt− ikx− imθ}, (4.2)

p̃U = ρ̃U = −i(ω −Mk)φ, α2 = (ω −Mk)2 − k2, (4.3)

where Jm are Bessel functions of the first kind. Assuming continuity of displacement
(the Myers boundary condition), the boundary condition at r = 1 gives the dispersion



Acoustics of a thin viscous boundary layer over a compliant or permeable surface 11

-200

-100

 0

 100

 200

-100 -50  0  50  100  150

Roots of (4.5)

Roots of (4.4)

Im
(k
)

Re(k)

Figure 6. Modes in the k-plane for a cylindrical duct, using the boundary layer boundary
condition (+, 4.5) and the continuity of displacement boundary condition (×, 4.4). Z = 2 + i,
ω = 31, m = 24, M = 0.5, Pr = 0.7, γ = 1.4, x0 = 1.

relation

1− (ω −Mk)2

iωZ

Jm(α)

αJ′m(α)
= 0. (4.4)

Accounting for the boundary layer using (2.5) gives the dispersion relation

1 +
i(ω −Mk)

Zṽ0/ṽ∞

Jm(α)

αJ′m(α)
= 0. (4.5)

Figure 6 shows the effect of the boundary layer on these duct modes for a perme-
able boundary. The acoustic modes, both cut-on and cut-off, are identical for both
boundary conditions. The potential hydrodynamic instability mode (Rienstra 2003;
Brambley & Peake 2006) in the upper-right quadrant is noticeably different for the two
boundary conditions. Moreover, in the lower-right quadrant there are three boundary
layer modes with no uniform-flow equivalent. These three modes are in the anomalous
region seen in figure 4, and disappear behind the branch cut as Im(ω) → −∞.

5. Asymptotics

In this section, some asymptotic predictions are made to explain and understand some
of the features seen in the numerical examples in the previous section. We rescale ũ, ṽ and
T̃ by −ṽ0/δ, so that the governing equations (2.5) remain the same while the boundary
condition (2.7) become

ũ(0) = −C
uy(0)

iω
, ṽ(0) = 1, T̃ (0) = 0,

ũ(y) → 0, ṽ(y) → ṽ∞/ṽ0, T̃ (y) → 0, as y → ∞, (5.1)

The quantity ṽ∞/ṽ0 is the unknown we would like to calculate. We will be interested in
asymptotic solutions to this set of equations in the low (§5.1 and §5.2) and high (§5.3)
frequency limits with k/ω = O(1). Details of the derivation of these results are given in
the appendices.
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5.1. Low frequencies for permeable boundaries

Consider the behaviour of ṽ∞/ṽ0 in the low-frequency limit ω ≪ 1 with ω/k = O(1)
for a permeable boundary. After some algebra (given in appendix B), we find that

ṽ∞
ṽ0

=
1

(γ − 1)T (0)
+ ω1/2

√

i(1 −Mk/ω)

[

(γ − 1)√
Pr

F (∞) +
A

ω/k −M

]

+O(ω), (5.2)

where

1
Pr(TF )yy − (uy)

2F =
Ty + 2uy(M − u)

(γ − 1)2T (0)
with F (0) = Fy(∞) = 0, (5.3)

A =

∫ ∞

0

u(y)−M

(γ − 1)2T (0)T (y)
− F (y)uy(y)

T (y)
dy. (5.4)

To leading order this is continuity of mass flux across the boundary layer, agreeing with
Aurégan et al. (2001). The first order correction at O(ω1/2) is in terms of integrals of
the mean flow velocity and temperature profiles. These asymptotics have been verified
against the numerics for numerous values of all parameters, some of which are plotted in
appendix B.

5.2. Low frequencies for compliant boundaries

The low-frequency asymptotics for compliant and permeable boundaries are signifi-
cantly different, since the ũ boundary condition (2.7) implies ũ = O(1/ω) for a compliant
boundary. In this case, after a different asymptotic analysis (given in appendix C), we
find

ṽ∞
ṽ0

= −ω−1/2 uy(0)k/ω
√

i(1−Mk/ω)
+ (1−Mk/ω)

uy(0)f(∞)√
Pr

− kuy(0)

ω

∫ ∞

0

uy(y)f(y)

(γ − 1)T (y)
dy +

1

(γ − 1)T (0)
+O(

√
ω), (5.5)

where
1
Pr (Tf)yy − (uy)

2f = −2uy, with f(0) = fy(∞) = 0. (5.6)

The first term in (5.5) is the direct effect of the compliant boundary. The second and third
terms are the indirect effect of the compliant boundary acting through the temperature,
and are not present for an incompressible fluid. The final term in (5.5) is the continuity
of mass flux term, as for a permeable boundary. This demonstrates a major difference
between a compliant and permeable boundary, since ṽ∞/ṽ0 are of different orders of
magnitude in each case.

5.3. High frequencies and short wavelengths

Consider solving the governing equations (2.5) in the the high frequency limit ω ≫ 1
with k/ω 6 O(1). The details for this, together with the short wavelength case (k ≫ 1
with ω/k 6 O(1)), are given in appendix D. We use the Method of Multiple Scales (see,
e.g., Hinch 1991), introducing a fast variable θ(y) such that

θ(y) = ω−1/2

∫ y

0

η̄(y′) dy′, Re
(

ω1/2
)

> 0, (5.7)

η̄(y)2 =
i(1− u(y)k/ω)

(γ − 1)2T (y)2
, Re

(

η̄(y)
)

> 0 as y → ∞, (5.8)
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Figure 7. Comparison of ṽ(y) calculated numerically against the asymptotics (5.10) for a value
of k in the anomalous region. ω = 31, k = 70− 70i, M = 0.5, Pr = 0.7, C = 0, γ = 1.4, x0 = 1.

We shall assume that η̄(y) 6= 0 for any y (otherwise a caustic is present, as dealt with
in §D.1). For a compliant boundary, we find

ṽ = 1− uk/ω +O(ω−1), ũ = iuy/ω +O(ω−2), T̃ = iTy/ω +O(ω−2),

Zeff =
Z

1−Mk/ω
+O(ω−1), (5.9)

while for a permeable boundary,

ṽ =

(

1− uk

ω

)[

1 +
kuy(0)

ω3/2η̄(0)

]

− kuy(0)

ω3/2η̄

(

1− uk

ω

)−3/4

e−θ +O(ω−1),

ũ =
iuy

ω
− iuy(0)

ω

(

1− uk

ω

)−3/4

e−θ +O(ω−3/2), T̃ =
iTy

ω
+O(ω−3/2),

Zeff =
Z

1−Mk/ω

[

1− uy(0)k

η̄(0)ω3/2

]

+O(ω−1). (5.10)

To leading order, both of these are continuity of displacement, agreeing with Aurégan et al.

(2001). These asymptotic results break down in the anomalous region; however, outside
this region the asymptotic results have been verified against numerical results for
numerous values of all parameters, a selection of which are plotted in appendix D.
As an example of the breakdown of the asymptotics in the anomalous region, figure 7

compares the numerical results and the asymptotic prediction of (5.10) for a permeable
boundary at the moderate frequency ω = 31, for k = 70 − 70i, which is in the anoma-
lous region. The asymptotics are obviously getting the wrong result, as is particularly
noticeable from the solution at large y. The period and magnitude of the oscillations
around y ∈ [2, 10] are of the correct type, suggesting the choice of fast variable θ is
still correct. The reason for the dramatic increase in amplitude of the asymptotics is
that Re(η̄(y)) changes sign, so that initially e−θ grows for small y as y increases, before
eventually decaying as y → ∞ by the choice of branch of η̄(y). This causes the asymptotic
analysis to break down, since e−θ, which was assumed to be at most O(1), may now be
exponentially large. The similarity of the period and magnitude of oscillations between
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Figure 8. Trajectories of ω(k) as k is varied, for a cylindrical duct with a mass–spring–damper
boundary with Z = 1 + i(0.335ω − 0.15/ω). M = 0.7, m = 0, Pr = 0.7, x0 = 1. Only modes
with Re(ω) > 0 are plotted; the others may be obtained by symmetry.

the asymptotics and numerics suggests a similar asymptotic analysis might predict the
behaviour within this region, though this is not attempted here.

For Re(η̄(y)) to change sign, there must be a value of y for which Re(η̄(y)) = 0,
implying i(ω− u(y)k) must be real and negative for some y. For real ω, this will happen
for some y if and only if Im(k) < 0 and Re(k) > ω/M . This is exactly the region seen in
figure 4 with anomalous behaviour. Provided we are outside this anomalous region, the
e−θ term is O(1), and the asymptotics above holds. This anomalous region is therefore
bounded by the branch cut mentioned above, for which Re(k) = ω/M , and by the caustic
for which η̄(y) = 0 for some y.

6. Stability

We now show that the viscous boundary layer analysis given here leads to similar
illposedness to compressible slipping flow over a lining modelled using the Myers bound-
ary condition. Illposed is shown by demonstrating an unbounded temporal growth rate;
that is, solving the dispersion relation for ω as a function of k shows that, for real k,
Im(ω) → −∞ as k → ±∞ for at least one mode (see Brambley 2009, for details).

Figure 8(b) compares Im(ω(k)) for a mass–spring–damper boundary with impedance
of the form Z = R + iaω − ib/ω (where a > 0 is the mass constant, b > 0 is the spring
constant, and R > 0 is the damping constant) using both the Myers continuity of dis-
placement boundary condition from (4.4) and the numerically-calculated boundary-layer
boundary condition from (4.5). As can be seen, both demonstrate something like Im(ω) =
O(k1/2) behaviour, as is to be expected for (4.4) (Rienstra & Peake 2005; Brambley
2009). The dispersion relation for surface modes (Rienstra 2003; Brambley & Peake 2006)
is

√

k2 +m2 − (ω −Mk)2 +
i(ω −Mk)

Zeff
= 0, (6.1)

with Re(
√· · ·) > 0. Motivated by the scaling ω = O(k1/2), we consider a caustic at the
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wall (§D.1.2, low-ω̄ limit), giving

Zeff = Z
0.777eiπ/6

(

(γ − 1)uy(0)T (0)
)2/3

Mk1/3
(6.2)

to leading order. Assuming a mass–spring–damping boundary so that Z = iaω + O(1)
gives the leading order solution to (6.1) for large real k of

ω =
e−iπ/6M2k1/3

0.777a
√
1−M2

(

(γ − 1)uy(0)T (0)
)2/3

. (6.3)

Since in this case ω = O(k1/3), our assumption of a caustic at the wall is self-consistent.
The accuracy of this prediction is shown in figure 9. This figure also demonstrates the
difference in behaviour seen by accounting for the boundary layer, since the unbounded
growth rate for a mass–spring–damping boundary changes from −Im(ω(k)) = O(k1/2)
using the Myers boundary condition (4.4) to −Im(ω(k)) = O(k1/3) when accounting for
the boundary layer (4.5).
Since Im(ω(k)) is unbounded below for (4.5), it is expected that the viscous boundary

layer model presented here will lead to the same numerical stability problems when
simulated numerically in the time domain that the Myers boundary condition (4.4)
suffers from. It is suggested here that, because of this similarity, it may be possible to
regularize (4.5) and remove this unwanted unbounded growth rate in a similar way to the
regularization of the Myers boundary condition (4.4) (see, e.g. Brambley 2011). However,
the different asymptotic behaviour seen here may imply that such a regularization may
not be as straight forward in the viscous case.

7. Conclusion

In this paper, we have given a thorough analysis of the response of a thin parallel
boundary layer over a non-rigid boundary to small perturbations. The small perturba-
tions may be acoustic, but may also be small perturbations to an incompressible fluid.
The governing equations (2.5) and boundary conditions (2.7) were derived under the
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assumption that the boundary layer was thin and parallel and the acoustic perturbations
were small. The analysis presented here is valid for any boundary layer profile, provided it
is parallel and in thermal equilibrium with the boundary, so that Ty(0) = 0. In particular,
no assumption has been made restricting the change in velocity or temperature across
the boundary layer to be small, as was assumed by Aurégan et al. (2001).
The distinction shown here between a compliant and permeable boundary (sketched

in figure 3) is notable in that this distinction appears not to have been made before, at
least in this context. This may be because there is no distinction between these two types
of boundaries either with inviscid fluid (as considered by, e.g. Eversman & Beckemeyer
1972; Tester 1973), since in this case there is no no-slip boundary condition, or for viscous
flow over a fixed surface, since a fixed surface could be considered as either a permeable
or compliant boundary with an infinite impedance. Nayfeh (1973, equations 13 and 14)
explicitly considers only permeable boundaries, while for Aurégan et al. (2001, following
equation 18) the permeability assumption is stated as a fact.
As a summary of the behaviour discovered here, at high frequency or, equivalently,

for well-developed boundary layers with x0 ≫ 1, the Myers boundary condition of
continuity of displacement across the boundary layer seems appropriate, as predicted
by Aurégan et al. (2001). At low frequency we find continuity of mass flux (as predicted
by Aurégan et al. 2001) to be valid only for a permeable boundary, while a compliant
boundary leads to a pressure-release boundary condition to leading order (which may be
interpreted as compliance providing a yielding boundary, with the degree of compliance
given in higher-order terms coming from the O(1) terms in equation 5.5). For large real
k and a mass–spring–damper boundary we find ω ∼ A1e

−iπ/6k1/3 for some positive
constant A1; this contrasts with the Myers boundary condition, which predicts ω ∼
A2e

−iπ/2k1/2 for some positive constant A2. Since Im(ω(k)) is unbounded below, this
model is predicted to suffer the same numerical instability when simulated numerically
in the time domain, and possesses the same lack of a mathematical stability analysis, that
the Myers boundary condition suffers from, although this could presumably be corrected
in the same manner as for the Myers boundary condition (see Brambley 2011, for details).
In the high-frequency limit there is a branch cut when i(ω − Mk) is both real and

negative, and for a permeable boundary there exists an anomalous region of the k-plane
(bounded by this branch cut and a caustic) within which continuity of displacement
appears not to hold. This region was unseen by Aurégan et al. since they considered the
limit in which the mean-flow temperature and velocity varied little across the boundary
layer, putting the branch cut and any anomalous region at infinity. It is unclear whether
this region is an artifact of the approximations used here or whether it has some physical
significance.
While the validity of any of these assumptions made here may be questioned in any

particular scenario, what has unquestionably been shown here is that the permeable or
compliant nature of the boundary together with the inclusion of dissipative terms within
the boundary layer (such as viscosity and thermal conductivity) can lead to dramatically
different behaviour than would be seen if they had been ignored. For example: figure 4
and §5.3 shows the dramatic difference between a compliant boundary (figure 4a,b)
and a permeable boundary (figure 4c,d) at high frequency; sections 4.2, 5.1 and 5.2
show that for low frequencies the Myers boundary condition is not appropriate, and
that dissipative terms cause different leading-order effects for compliant and permeable
boundaries; figure 6 shows three new modes in the anomalous region due to dissipation in
an aeroacoustically-relevant parameter range; and figure 9 shows asymptotically-different
surface-mode behaviour when dissipation is included compared with the Myers boundary
condition.
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Appendix A. Frobenius expansion about a critical layer

We investigate the behaviour of the linearized governing equations (2.5) about a
point y0 at which ω − u(y0)k = 0. The point y0 is referred to as a critical layer

(Vilenski & Rienstra 2007, and references therein). Setting z = y − y0, we pose the
Frobenius expansion (see, e.g. Riley, Hobson & Bence 2002, §16.3) for small z

ṽ = zν
∞
∑

n=0

ṽnz
n, ũ = zµ

∞
∑

n=0

ũnz
n, T̃ = zτ

∞
∑

n=0

T̃nz
n, (A 1a)

u =

∞
∑

n=0

unz
n, T =

∞
∑

n=0

Tnz
n, (A 1b)

with none of the leading coefficients being zero. (Note that, in this section, ṽ0 is the
leading coefficient in the expansion of ṽ, and not the normal velocity at the wall as
elsewhere in the paper.) Looking at only the terms that could potentially be leading-
order, the leading-order terms of (2.5) will be the leading-order terms of

−iu1kT̃0z
τ+1 − T0νṽ0z

ν−1 + (T1ṽ0 − T0ṽ1)z
ν + ikT0ũ0z

µ = 0. (A 2a)

− u1ṽ0z
ν

(γ − 1)2T0
+ µ(µ− 1)T0ũ0z

µ−2 + µ
[

(µ+ 1)T0ũ1 + T1ũ0

]

zµ−1

+(µ+ 1)
[

(µ+ 2)T0ũ2 + T1ũ1

]

zµ + τu1T̃0z
τ−1 +

[

(τ + 1)u1T̃1 + 2u2T̃0

]

zτ = 0.

(A 2b)

− T1ṽ0z
ν

(γ − 1)2T0
+

1

Pr

[

τ(τ − 1)T0T̃0z
τ−2 + τ

[

(τ + 1)T0T̃1 + 2T1T̃0

]

zτ−1

+
[

(τ + 2)(τ + 1)T0T̃2 + 2(τ + 1)T1T̃1 + 2T2T̃0 + Pr(u1)
2T̃0

]

zτ
]

+2T0u1ũ0µz
µ−1 + 2T0u1ũ1(µ+ 1)zµ = 0.

(A 2c)

We now look for values of (ν, µ, τ) that allow these three equations to be satisfied. If
ν 6= 0 and µ /∈ {0, 1} and τ /∈ {0, 1} then we would need to balance two terms in each
equation with powers of z

a) ν − 1 µ τ + 1
b) ν µ− 2 τ − 1
c) ν µ− 1 τ − 2

(A 3)

By considering the three possible pairings of terms in c), we find that no solutions of this
form exist. Therefore, either ν = 0 or µ ∈ {0, 1} or τ ∈ {0, 1}. Considering ν = 0, we find
that (A 2b,c) imply that µ = τ = 2 (we cannot have µ, τ ∈ {0, 1} as this would give an
under determined system of equations for the coefficients), and that in this case (A 2a)
then gives an equation for ṽ1 in terms of ṽ0. Hence, we may take (ν, µ, τ) = (0, 2, 2)
and specify ṽ0, with all other coefficients then being uniquely determined. Proceeding
like this, five solutions are given in table 2, which can easily be seen to be independent.
The reason for the extra conditions is that, without these, the fourth and fifth solutions
would contain an arbitrary multiple of the second and third solutions. Since the set of
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Specify ν µ τ Extra conditions

ṽ0 = ṽ(y0) 0 2 2
ũ0 = ũ′(y0) 2 1 2

T̃0 = T̃ ′(y0) 3 2 1
ũ0 = ũ(y0) 1 0 3 ũ1 =1

T̃0 = T̃ (y0) 2 2 0 T̃1 =0

Table 2. Leading-order coefficients for a Frobenius expansion about a critical layer.

equations are fifth order in total, these are all the solutions. Since all the exponents
are non-negative, the governing equations (2.5) are regular even at y = y0, unlike the
linearized Euler equations for shear flows, showing that viscosity regularizes the critical
layer.

Appendix B. Low frequency asymptotics for permeable boundaries

In this section we derive the low-frequency asymptotics for ṽ∞/ṽ0 for a permeable
boundary. Rewriting the governing equations (2.5) gives

(

ṽ

T

)

y

=
iω

T 2

[(

1− uk

ω

)

T̃ +
k

ω
T ũ

]

, (B 1a)

(

T ũy + T̃ uy

)

y
− uy ṽ

(γ − 1)2T
=

iω

(γ − 1)2T

(

1− uk

ω

)

ũ, (B 1b)

1
Pr(T̃ T )yy + T̃ (uy)

2 + 2Tuyũy −
Tyṽ

(γ − 1)2T
=

iω

(γ − 1)2T

(

1− uk

ω

)

T̃ . (B 1c)

Setting η̄2∞ = i(1 − Mk/ω) with Re η̄∞ > 0, expanding the exact result for y > Y
from (3.2) in powers of ω gives

ṽ = ṽ∞ − ω1/2

[

η̄∞
σ

(γ − 1)T̃∞ +
ik

ωη̄∞
ũ∞

]

+ ωy

[

(γ − 1)η̄2∞T̃∞ +
ik

ω
ũ∞

]

+O
(

ω3/2
)

,

(B 2a)

ũ = ũ∞ − ω1/2η̄∞yũ∞ + 1
2ωη̄

2
∞y2ũ∞ +O

(

ω3/2
)

, (B 2b)

T̃ = T̃∞ − ω1/2ση̄∞yT̃∞ + 1
2ωσ

2η̄2∞y2T̃∞ +O
(

ω3/2
)

. (B 2c)

We will match the inner solution to this expansion.
For the inner expansion, we expanding in powers of ω1/2, so that ṽ = ṽ0+ω1/2ṽ1+ · · · .

Then (B 1a), to leading order, gives ṽ0 = T/T (0), which is continuity of mass flux across
the boundary layer. At leading order, (B 1b) may be integrated once, and matching with
the outer solution sets the constant of integration, to give

T ũ0y + T̃0uy =
u−M

(γ − 1)2T (0)
. (B 3)

Taking the leading-order part of (B 1c) and subtracting 2uy times (B3) leads to the

leading-order equation for T̃0,

1
Pr (T T̃0)yy − T̃0(uy)

2 =
Ty + 2uy(M − u)

(γ − 1)2T (0)
. (B 4)
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Figure 10. Log-log plot of the relative error of (B 6). (If a quantity q = Q+ δq, where Q is the
correct value and δq is the absolute error, then the relative error is δq/Q.) The solid lines show
the variation of the error as ω is varied with the other parameters fixed. The long dashed lines
are the same for just the leading order term. The dotted and dash-dot lines have slope 1/2 and
1 respectively. Parameters are k/ω = ±1,±i,±1 ± i,±1 ∓ i, with M = 0.5, Pr = 0.7, γ = 1.4,
x0 = 1.

The boundary conditions to apply to these are that ũ0(0) = T̃0(0) = 0 and that T̃0 tends
to a constant as y → ∞. Solving (B 4) for T̃0 gives T̃∞ = T̃0(∞) + O(ω1/2). Then (B 3)
gives

ũ0 =

∫ y

0

u−M

(γ − 1)2T (0)T
− T̃0uy

T
dy′, (B 5)

and ũ∞ = ũ0(∞) +O(ω1/2). Finally, this gives

ṽ∞ =
1

(γ − 1)T (0)
+ ω1/2

[

η̄∞
σ

(γ − 1)T̃∞ +
ik

ωη̄∞
ũ∞

]

+O(ω). (B 6)

This gives the first two terms of the asymptotic expansion for ṽ∞/ṽ0 in the low-frequency
limit for a permeable boundary. Setting T̃0(y) = F (y) and ũ∞ = A in (B 6) gives the
expression given in (5.2).

These asymptotic results have been verified against numerical results for numerous
values of all parameters. Figure 10 shows an example of this verification, plotting the
relative error in ṽ∞ for a few parameter values, and clearly showing that the error in (B 6)
is O(ω).

Appendix C. Low frequency asymptotics for compliant boundaries

In this section we derive the low-frequency asymptotics for ṽ∞/ṽ0 for a compliant
boundary. The ũ boundary condition in (2.7) implies ũ = O(1/ω), so we set ũ =
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iuy(0)/ω + ū, giving the governing equations
(

ṽ

T

)

y

+
uy(0)k

Tω
=

iω

T 2

[(

1− uk

ω

)

T̃ +
k

ω
T ū

]

, (C 1a)

(

T ūy + T̃ uy

)

y
− uyṽ

(γ − 1)2T
+

(

1− uk

ω

)

uy(0)

(γ − 1)2T
=

iω

(γ − 1)2T

(

1− uk

ω

)

ū, (C 1b)

1
Pr(T̃ T )yy + T̃ (uy)

2 + 2Tuyūy −
Tyṽ

(γ − 1)2T
=

iω

(γ − 1)2T

(

1− uk

ω

)

T̃ , (C 1c)

with boundary conditions ū(0) = T̃ (0) = 0, ṽ(0) = 1. Matching with the outer
solution (B 2b) gives ũ∞ = iuy(0)/ω to leading order and implies that ū = O(ω−1/2).

Since T̃ is forced by ū, this implies T̃ = O(ω−1/2), while the boundary condition at y = 0
and (C 1a) together imply that ṽ = O(1). We therefore expand

ū = ū−1ω
−1/2 + ū0 + · · · T̃ = T̃−1ω

−1/2 + T̃0 + · · · ṽ = ṽ0 + ṽ1ω
1/2 + · · · (C 2)

To leading order, (C 1) become
(

ṽ0
T

)

y

+
uy(0)k

Tω
= 0, (C 3a)

(

T ū−1y + T̃−1uy

)

y
= 0 (C 3b)

1
Pr(T̃−1T )yy + T̃−1(uy)

2 + 2Tuyū−1y = 0 (C 3c)

with boundary conditions ū−1(0) = T̃−1(0) = 0, ṽ0(0) = 1, T̃−1y(∞) = 0 and ū−1y(∞) =
−iη̄∞uy(0). Hence,

T ū−1y + T̃−1uy = −iη̄∞uy(0)/(γ − 1), (C 4a)

1
Pr (T̃−1T )yy − T̃−1(uy)

2 = 2iη̄∞uy(0)/(γ − 1)uy. (C 4b)

Let f(y) be the solution of

1
Pr (Tf)yy − (uy)

2f = −2uy, (C 5)

subject to f(0) = fy(∞) = 0. Then

T̃−1 = −iη̄∞uy(0)f/(γ − 1), ū−1 = −iη̄∞uy(0)

∫ y

0

1− uyf

(γ − 1)T
dy, (C 6a)

ṽ0 =
T

T (0)
− k

ω
uy(0)(γ − 1)T

∫ y

0

1

(γ − 1)T
dy. (C 6b)

This matches the solution at infinity (B 2), provided

T̃∞ = −ω−1/2 iη̄∞uy(0)

(γ − 1)
f(∞) +O(1), (C 7a)

ũ∞ =
iuy(0)

ω
+ iη̄∞uy(0)ω

−1/2

∫ ∞

0

1− 1− uyf

(γ − 1)T
dy +O(1), (C 7b)

ṽ∞ = −ω−1/2 kuy(0)

ωη̄∞
+ (1 −Mk/ω)

uy(0)f(∞)

σ

− kuy(0)

ω

∫ ∞

0

uyf

(γ − 1)T
dy +

1

(γ − 1)T (0)
+O(

√
ω). (C 7c)

This is the expression given in (5.5).
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Figure 11. Log-log plot of the relative error of (5.5), in the same way as figure 10. The
long-dashed lines are for just the leading-order term of (5.5), while the solid lines include all

terms.

Figure 11 shows the log-log plot of relative error against ω comparable to figure 10,
and verifies that the asymptotics above are correct to the stated order.

Appendix D. High frequency/short wavelength asymptotics

In this appendix, we solve the governing equations (2.5) in the high frequency limit
ω ≫ 1 with k/ω 6 O(1), and in the short wavelength limit k ≫ 1 with ω/k 6 O(1),
using the Method of Multiple Scales (see, e.g., Hinch 1991). To cover these two cases
together, we define

ω ≫ 1 k ≫ 1 (D 1a)

ε = ω−1/2 ε = k−1/2 (D 1b)

L = k/ω L = 1 (D 1c)

η̄2 =
i(1− uk/ω)

(γ − 1)2T 2
η̄2 =

−i(u− ω/k)

(γ − 1)2T 2
(D 1d)

In either case, η̄ is taken such that Re(η̄(y)/ε) > 0 as y → ∞ and η̄(y) is a smooth
function of y. We pose the Multiple Scales WKB ansatz

d

dy
=

∂

∂ŷ
+

1

ε
η̄(ŷ)

∂

∂θ
. (D 2)

This yields the same system of equations when evaluated along

ŷ(y) = y θ(y) =
1

ε

∫ y

0

η̄(y′) dy′. (D 3)

To avoid cluttering the notation we now write ŷ as y without ambiguity. In order to
balance terms we find that ṽ = O(1/ε), and so we introduce ṽ = ˜̃v/ε. Substituting this
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into (2.5) gives the system of equations

η̄2(γ − 1)2T T̃ − η̄ ˜̃vθ + iLũ = εT

(˜̃v

T

)

y

, (D 4a)

ũθθ − ũ =
ε˜̃vuy

(γ − 1)2T 2η̄2
− ε

T η̄2

[

Tyη̄ũθ + 2T η̄ũθy + T η̄yũθ + η̄uyT̃θ

]

− ε2

T η̄2

(

T ũy + T̃ uy

)

y
,

(D 4b)

1
Pr T̃θθ − T̃ =

ε˜̃vTy

(γ − 1)2T 2η̄2
− ε

PrT η̄2

[

2η̄
(

T T̃θ

)

y
+ η̄yT T̃θ + 2PrTuyη̄ũθ

]

− ε2

T η̄2

[

1
Pr (T T̃ )yy + T̃ (uy)

2 + 2Tuyũy

]

.

(D 4c)

We now solve this using the series ũ = ũ0 + εũ1 + · · · on the assumption that η̄(y) 6= 0
for any y (this assumption will be relaxed in §D.1).

At O(1), setting σ = +
√
Pr and appealing to the boundary condition of decay at

infinity of ũ and T̃ , we get

ũ0 = B0e
−θ, T̃0 = D0e

−σθ, ˜̃v0 = E0 − iLB0/η̄ e
−θ − η̄(γ − 1)2TD0/σ e−σθ. (D 5)

At O(ε), we prevent a secular term proportional to e−θ arising in (D 4b). While
it is perhaps confusing to describe this term as secular, since the exponentials are
exponentially increasing and decreasing, the term secular may be justified by taking
y to be complex along a path such that Re(θ) is constant; as will be seen when the
asymptotics are compared to numerical solutions, the results derived using this method
are valid. Preventing such a secular term in (D4b) gives

(

T 3η̄3B0
2
)

y
= 0, (D 6)

and solving for ũ1 gives

ũ1 = B1e
−θ − E0uy

(γ − 1)2T 2η̄2
+

uy

ση̄T
D0e

−σθ. (D 7)

Similarly, preventing a secular term proportional to e−σθ arising in (D 4c) gives

(

η̄TD0
2
)

y
= 0, (D 8)

and solving for T̃1 (assuming Pr 6= 1) gives

T̃1 = D1e
−σθ − E0Ty

(γ − 1)2T 2η̄2
− Pr

(1− Pr)η̄

(

iLTy

(γ − 1)2T 2η̄2
− 2uy

)

B0e
−θ. (D 9)

Finally, preventing a secular term arising in (D 4a) gives

(

E0

(γ − 1)2T 2η̄2

)

y

= 0 (D10)

which is continuity of displacement, agreeing with the prediction of Aurégan et al. (2001).



Acoustics of a thin viscous boundary layer over a compliant or permeable surface 23
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Figure 12. Log-log plot of the relative error of the high frequency asymptotics for ṽ∞/ṽ0,
similar to figures 10 and 11. The dashed line has gradient −1.

Solving for ˜̃v1 gives

˜̃v1 = E1 −
iL

η̄
B1e

−θ − (γ − 1)2η̄T

σ
D1e

−σθ − (γ − 1)2η̄T 3

Pr

(

D0

η̄T 2

)

y

e−σθ

+

[

1

(1 − Pr)η̄T

(

iLTy − 2Pruy(γ − 1)2T 2η̄2
)

− iL

η̄

∂

∂y

]

(B0/η)e
−θ. (D 11)

We may now apply the boundary conditions at y = 0 to the leading order solution, to
find that B0 = D0 = 0 and that E0 = (T 2η̄2)/(T (0)2η̄(0)2) ≡ 1− uk/ω.
At O(ω−1), exactly the same secularity conditions as above occur. However, this time

the boundary conditions are ũ1(0) = iCkuy(0)/(ωL) and ˜̃v1(0) = T̃1(0) = 0, giving

B1(0) = −(1− C)
ik

Lω
uy(0), E1(0) = (1 − C)

kuy(0)

ωη̄(0)
, D1 ≡ 0. (D 12)

Note that for a compliant boundary (with C = 1), all of these terms are zero. In fact,
for a compliant boundary it can be shown that ũ2 = T̃2 = 0.
In summary, and in terms of ṽ = ˜̃v/ε, for a compliant boundary

ṽ = 1− uk/ω +O(ε2), ũ = iuy/ω +O(ε4), T̃ = iTy/ω +O(ε4),

Zeff =
Z

1−Mk/ω
+O(ε2), (D 13)

while for a permeable boundary,

ṽ =

(

1− uk

ω

)[

1 + ε
kuy(0)

ωη̄(0)

]

− ε
kuy(0)

ωη̄

(

1− uk

ω

)−3/4

e−θ +O(ε2),

ũ =
iuy

ω
− iuy(0)

ω

(

1− uk

ω

)−3/4

e−θ +O(ε3), T̃ =
iTy

ω
+O(ε3),

Zeff =
Z

1−Mk/ω

[

1− εuy(0)k

η̄(0)ω

]

+O(ε2). (D 14)

These asymptotic results have been verified against numerical results for numerous
values of all parameters. Figure 12 shows the relative error in the asymptotics for a
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few parameters, demonstrating the correctness of (D 13) and (D 14) to the stated order
of accuracy.

D.1. The caustic

The derivation above assumes η̄(y) 6= 0 for any y. We now suppose there is a y0
such that η̄(y0) = 0. This occurs when ω/k = u(y0), which is exactly the critical layer
for an inviscid boundary layer (Pridmore-Brown 1958; Vilenski & Rienstra 2007). In
appendix A we saw that viscosity regularizes this critical layer, and so y0 is an ordinary
point of the differential equations (2.5). However, (D 6) is clearly singular at y0. In fact,
y0 forms a caustic in the asymptotics above, caused by the fast multiple-scales variable θ
and the slow variable ŷ varying equally fast as y → y0. The relevant rescaling turns out
to be to consider z = O(1), where

y = y0 + ε2/3Q1/3z Q = − (γ − 1)2T (y0)
2

iLuy(y0)
. (D 15)

In what follows, branch cuts for all non-integer powers will be taken along the negative
real axis, so that arg(z) = −π/6 for y > y0 and arg(z) = 5π/6 for y < y0. Based on this
rescaling,

η̄2 = ε2/3Q−2/3z,
d

dy
= ε−2/3Q−1/3 d

dz
. (D 16)

We now expand to leading order in ε about y = y0 and match the resulting inner
solution with the outer solution provided by the Multiple Scales analysis of the previous

section. Writing ˜̃v = ε−1/3 ˜̃̃v, (2.5) becomes

iLT ũ−Q−1/3T ˜̃̃vz = ε2/3
[

iLuyQ
1/3zT̃ − Ty

˜̃̃v
]

+O(ε4/3), (D 17a)

ũzz − zũ =
i˜̃̃v

LQ1/3
− ε2/3

uyQ
1/3

T
T̃z +O(ε2/3), (D 17b)

T̃zz − PrzT̃ =
iPrTy

˜̃̃v

LuyQ1/3
− 2ε2/3PruyQ

1/3ũz +O(ε2/3), (D 17c)

where T , uy and Ty are all evaluated at y0. There are two possible scalings for T̃ , but

T̃ = O(ε−2/3) does not agree with our expectations from our outer solution, so we choose
T̃ = O(1). This gives, to leading order,

iLũ−Q−1/3 ˜̃̃vz = 0, (D 18a)

ũzz − zũ =
i˜̃̃v

LQ1/3
, (D 18b)

T̃zz − PrzT̃ =
iPrTy

˜̃̃v

LuyQ1/3
, (D 18c)

and hence,

ũzzz − zũz = 0 ˜̃̃vz = iQ1/3Lũ. (D 19)

We may solve (D 19) using Fourier transforms, in a similar way to obtaining the asymp-
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totics for Airy functions (see, e.g. Abramowitz & Stegun 1964), to get

ũ(z) = K1f1(z) +K2f1(ze
2πi/3) +K3, (D 20a)

˜̃̃v(z) = Q1/3L
[

K1f2(z) +K2e
−2πi/3f2(ze

2πi/3) + iK3z
]

, (D 20b)

where fn =
1

2π

∫

C

1

qn
exp{i(q3/3 + qz)} dq (D 20c)

and the contour C is taken to be from ∞e5iπ/6 to ∞eiπ/6 and passing above any pole
at q = 0. Equation (D20b) may then be used as a forcing term in (D 18c) to get the
inner solution for T̃ , but since this will not be used in what follows, we do not calculate
that solution here. In order to match this with the outer solution, we need the large |z|
asymptotics of fn(z); these are derived later in section D.2. Using these asymptotics, for
y > y0

ũ(z) ∼ −iK1

2
√
πz3/4

exp
{

− 2
3z

3/2
}

− K2

2
√
πz3/4

exp
{

2
3z

3/2
}

+K3, (D 21a)

˜̃̃v(z) ∼ −Q1/3LK1

2
√
πz5/4

exp
{

− 2
3z

3/2
}

− Q1/3LK2e
−5πi/6

2
√
πz5/4

exp
{

2
3z

3/2
}

+ iQ1/3LK3z.

(D 21b)

We now match this solution to the multiple scales outer solution, which we take to be

ũ = (T η̄)−3/2B+e
−(θ−θ0) − εE+uy, (D 22a)

˜̃v = E+(γ − 1)2T 2η̄2 − iLT−3/2η̄−5/2B+e
−(θ−θ0), (D 22b)

for y > y0, where θ0 = θ(y0). Noting that

θ − θ0 =
1

ε

∫ y

y0

η̄ dy = 2
3z

3/2 +O(ε2/3), (D 23)

expanding in terms of z to leading order,

ũ = T−3/2ε−1/2Q1/2z−3/4B+ exp
{

− 2
3z

3/2
}

− εE+uy, (D 24a)

˜̃̃v = E+(γ − 1)2T 2εQ−2/3z − iLT−3/2ε−1/2Q5/6z−5/4B+ exp
{

− 2
3z

3/2
}

, (D 24b)

so that (to the leading order considered here),

K1 = 2
√
πiT−3/2ε−1/2Q1/2B+, K2 = 0, K3 = −εE+uy. (D 25)

Similarly, expanding the inner solution for y < y0, so that arg(z) = 5πi/6, gives

ũ ∼ Q1/2B+

T 3/2ε1/2z3/4

[

exp
{

− 2
3z

3/2
}

− i exp
{

2
3z

3/2
}]

+
2
√
πQ1/2B+

T 3/2ε1/2
− εE+uy, (D 26a)

˜̃̃v ∼ −iLQ5/6B+

T 3/2ε1/2z5/4

[

exp
{

− 2
3z

3/2
}

+ i exp
{

2
3z

3/2
}]

+
2
√
πiLQ5/6B+

T 3/2ε1/2
z

+ E+(γ − 1)2T 2εQ−2/3z. (D 26b)

Taking the outer solution for y < y0 to be

ũ = (T η̄)−3/2
[

A−e
θ−θ0 +B−e

−(θ−θ0)
]

− εE−uy, (D 27a)

˜̃v = E−(γ − 1)2T 2η̄2 + iLT−3/2η̄−5/2
[

A−e
θ−θ0 −B−e

−(θ−θ0)
]

, (D 27b)
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in terms of z to leading order gives

ũ = T−3/2ε−1/2Q1/2z−3/4
[

A− exp
{

2
3z

3/2
}

+B− exp
{

− 2
3z

3/2
}

]

, (D 28a)

˜̃̃v = E−(γ − 1)2T 2εQ−2/3z (D 28b)

+ iLT−3/2ε−1/2Q5/6z−5/4
[

A− exp
{

2
3z

3/2
}

−B− exp
{

− 2
3z

3/2
}

]

. (D 28c)

Hence,

A− = −iB+, B− = B+, E− = E+ − 2
√
πQ1/2B+

T 3/2ε3/2uy
. (D 29)

These conditions give the jump in coefficients across the caustic, to leading order.
In summary, if the solution for y > y0 is

ũ = (T η̄)−3/2Be−θ − εE+uy, (D 30a)

˜̃v = E+(γ − 1)2T 2η̄2 − iLT−3/2η̄−5/2Be−θ, (D 30b)

then the solution for y < y0, to leading order, is

ũ = (T η̄)−3/2B
[

e−θ − ieθ−2θ(y0)
]

− εE−uy, (D 31a)

˜̃v = E−(γ − 1)2T 2η̄2 − iLT−3/2η̄−5/2B
[

e−θ + ieθ−2θ(y0)
]

, (D 31b)

where

E+ − E− =
2
√
πeiπ/4(γ − 1)Be−θ(y0)

L1/2T (y0)1/2ε3/2uy(y0)3/2
. (D 32)

We now consider some specific implications of this for y0 = O(1) and y0 = O(ε2/3).

D.1.1. Caustic in the interior of the boundary layer

For this case, we assume that y0 lies sufficiently within the interior of the boundary
layer that y0ε

−2/3 ≫ 1. This in turn means that θ(y0) ≫ 1, so that e−θ(y0) and eθ−2θ(y0)

are exponentially small for y < y0. Hence, in this case, the asymptotic solution is exactly
the same as if there had been no caustic. This has been confirmed by comparison with
numerical results for sufficiently high frequencies.

D.1.2. Caustic near the wall

For this case, we assume that y0 = O(ε2/3) so that the boundary at y = 0 occurs within
the inner scaling region of the caustic. This scaling implies ω/k = ω̄ε2/3 with ω̄ = O(1),
and that k ≫ 1. We are therefore in the short-wavelength limit for which ε = k−1/2 and
L = 1. Setting ω − u(y0)k = 0 gives

y0 =
ω̄ε2/3

uy(0)
+O(ε4/3), θ0 ≡ θ(y0) = −2

3

( −ω̄

uy(0)Q1/3

)3/2

+O(ε2/3). (D 33)

The solution for y = O(1) is still given by (D22a,b) and the solution within the caustic
region by (D 20a,b), with K1 and K3 still given by matching the two (D25). However, the

boundary conditions ˜̃̃v(0) = ε4/3 and ũ(0) = iCε4/3uy(0)/ω̄ now fall within the caustic
region, and must be applied to the inner solution (D 20a,b). This leads to

(

C
1

)

=

(

−A11 1
A21 1

)(

B+T (0)
−3/2ε−11/6

iE+ω̄ε
−1/3

)

+O(ε2/3), (D 34)



Acoustics of a thin viscous boundary layer over a compliant or permeable surface 27

where

A11 = −2ω̄

uy

√
πQ1/2f1

( −ω̄

uyQ1/3

)

, A21 = 2
√
πiQ5/6f2

( −ω̄

uyQ1/3

)

, (D 35)

and all functions of position (such as uy) are evaluated at y = 0. Inverting gives

ṽ∞
ṽ0

= −Mk

ω

A11 + CA21

A11 +A21

(

1 +O(ε2/3)
)

. (D 36)

For a compliant boundary with C = 1, this is exactly what would have been obtained
had the caustic been ignored. For a permeable boundary with C = 0 the caustic plays
an important role, although in the limit ω̄ → ∞ the impact of the caustic disappears, as
it has to to recover the y0 = O(1) asymptotics above.
If C = 0 and ω̄ is small, expanding about ω̄ = 0 gives

E+ =
ε1/3f1(0)

Q1/3uy(0)f2(0)
− iε1/3ω̄f0(0)

uy(0)2Q2/3f2(0)
+O(ω̄2, ε), (D 37a)

B+ =
−iε11/6T (0)3/2

2
√
πQ5/6f2(0)

+O(ω̄2, ε5/2), (D 37b)

which predicts, to leading order,

ṽ∞
ṽ0

=
−eiπ/3k1/3Mf1(0)

uy(0)2/3f2(0)(γ − 1)2/3T (0)2/3
. (D 38)

Numerical calculation gives

f0(0) ≈ 0.355, f1(0) = −i/3, f2(0) ≈ −0.259, (D 39)

so that arg(Zeff/Z) = −1/3 arg(−ik) with arg(−ik) ∈ (−π,π), while |Zeff/Z| = O(k−1/3)
as |k| → ∞.

D.2. Asymptotics of fn

Here we derive the large |z| asymptotics of

fn(z) =
1

2π

∫

C

1

qn
exp{i(q3/3 + qz)} dq, (D 40)

along a contour C from ∞e5iπ/6 to ∞eiπ/6 which passes above any pole at q = 0. We will
do this using the method of steepest descent (see, for example, Hinch 1991), in a similar
manner to the derivation of the asymptotics of the Airy function. Writing z = reiθ,
q = r1/2q̃ and φ(q̃) = i(q̃3/3 + q̃eiθ) gives

fn(z) =
1

2πr(n−1)/2

∫

C

1

q̃n
exp{r3/2φ(q̃)} dq̃. (D 41)

We now deform C onto a steepest descent contour, along which Im(φ) is constant and
Re(φ) is bounded above. As an aid to locating this contour, we find the saddle points of
φ to be at

q̃m = exp{iθ/2 + iπ/2−mπ}, m ∈ {0, 1}, (D 42)

in the neighbourhood of which,

φ(q̃) = − 2
3e

3iθ/2−mπi − eiθ/2−mπi(q̃ − q̃m)2 +O
(

(q̃ − q̃m)3
)

. (D 43)
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Locally about these saddle points, the steepest descent path, indexed by the real variable
p, would be

q̃ = q̃m + pa, a = e−iθ/4+imπ/2. (D 44)

Based on this, the asymptotic contribution from integrating across saddle point m in the
a-direction would be

Im =
a exp

{

r3/2φ(q̃m)
}

√

2π|φ′′(q̃m)|r(2n+1)/4

1

q̃nm

(

1 +O(r−3/2)
)

(D 45)

I0 =
exp

{

− 2
3r

3/2e3iθ/2
}

2
√
πr1/4eiθ/4

×



















1 n = 0
−i√
r
e−iθ/2 n = 1

−1

r
eiθ n = 2

(D46)

I1 =
i exp

{

2
3r

3/2e3iθ/2
}

2
√
πr1/4eiθ/4

×



















1 n = 0
i√
r
e−iθ/2 n = 1

−1

r
eiθ n = 2

(D47)

We now consider which saddle points the steepest descent contour passes over. Fig-
ure 13 shows φ(q̃) in the q̃ plane, together with the contour C. This shows that, for
−2π/3 < θ < 2π/3, only the m = 0 saddle point contributes, giving

f0(re
iθ) ∼ 1

2
√
πr1/4eiθ/4

exp
{

− 2
3r

3/2e3iθ/2
}

, (D 48a)

f1(re
iθ) ∼ −i

2
√
πr3/4e3iθ/4

exp
{

− 2
3r

3/2e3iθ/2
}

, (D 48b)

f2(re
iθ) ∼ −1

2
√
πr5/4e5iθ/4

exp
{

− 2
3r

3/2e3iθ/2
}

. (D 48c)

For 2π/3 < θ < 4π/3, both saddle points and the pole at q̃ = 0 contribute, giving

f0(re
iθ) ∼ 1

2
√
πr1/4eiθ/4

[

exp
{

− 2
3r

3/2e3iθ/2
}

+ i exp
{

2
3r

3/2e3iθ/2
}]

, (D 49a)

f1(re
iθ) ∼ −i

2
√
πr3/4e3iθ/4

[

exp
{

− 2
3r

3/2e3iθ/2
}

− i exp
{

2
3r

3/2e3iθ/2
}]

− i, (D 49b)

f2(re
iθ) ∼ −1

2
√
πr5/4e5iθ/4

[

exp
{

− 2
3r

3/2e3iθ/2
}

+ i exp
{

2
3r

3/2e3iθ/2
}]

+ reiθ, (D 49c)

with the final term being the contribution from the pole.
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Renou, Y. & Aurégan, Y. 2010 On a modified myers boundary condition to match lined
wall impedance deduced from several experimental methods in presence of a grazing flow.
AIAA paper 2010-3945.

Rice, E. J. 1969 Propagation of waves in an acoustically lined duct with a mean flow. Tech.
Rep. SP-207. NASA.

Richter, C. & Thiele, F. H. 2007 The stability of time explicit impedance models. AIAA
paper 2007-3538.

Rienstra, S. W. 2003 A classification of duct modes based on surface waves. Wave Motion 37,
119–135.

Rienstra, S. W. 2007 Acoustic scattering at a hard–soft lining transition in a flow duct. J. Eng.
Math. 59, 451–475.

Rienstra, S. W. & Peake, N. 2005 Modal scattering at an impedance transition in a lined
flow duct. AIAA paper 2005-2852.

Riley, K. F., Hobson, M. P. & Bence, S. J. 2002 Mathematical Methods for Physics and
Engineering , 2nd edn. Cambridge.

Schlichting, H. 1968 Boundary-layer Theory , 3rd edn. McGraw-Hill.
Tam, C. K. W. & Auriault, L. 1996 Time-domain impedance boundary conditions for

computational aeroacoustics. AIAA J. 34 (5), 917–923.
Tester, B. J. 1973 Some aspects of “sound” attenuation in lined ducts containing inviscid

mean flows with boundary layers. J. Sound Vib. 28, 217–245.
Vilenski, G. G. & Rienstra, S. W. 2007 On hydrodynamic and acoustic modes in a ducted

shear flow with wall lining. J. Fluid Mech. 583, 45–70.


	Introduction
	Governing equations
	Mean flow
	Small perturbations in the boundary layer
	The fluid–solid boundary condition
	Impedance models of the boundary

	Implications of the governing equations
	The boundary-layer solution outside the boundary layer
	The effect of boundary layer thickness

	Numerical results
	High frequency results
	Low frequency results
	Effect of the boundary layer on acoustic duct modes

	Asymptotics
	Low frequencies for permeable boundaries
	Low frequencies for compliant boundaries
	High frequencies and short wavelengths

	Stability
	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	The caustic
	Asymptotics of fn


