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The Myers boundary condition for acoustics within flow over an acoustic lining has
been shown to be illposed, leading to numerical stability issues in the time domain and
mathematical problems with stability analyses. This paper gives a modification (for flat or
cylindrical straight ducts) to make the Myers boundary condition well-posed, and indeed
more accurate, by accounting for a thin inviscid boundary layer over the lining, and cor-
rectly deriving the boundary condition to first order in the boundary-layer thickness. The
modification involves two integral terms over the boundary layer. The first may be written
in terms of the mass, momentum, and kinetic energy thicknesses of the boundary layer,
which are shown to physically correspond a modified boundary mass, modified grazing ve-
locity, and a tension along the boundary. The second integral term is related to the critical
layer within the boundary layer. A time domain version of the new boundary condition is
proposed, although not implemented.

The modified boundary condition is validated against high-fidelity numerical solutions of
the Pridmore-Brown equation for sheared inviscid flow in a cylinder. Absolute instability
boundaries are given for certain examples, though convective instabilities appear to always
be present at certain frequencies for any boundary layer thickness.

I. Introduction

Modern turbofan aeroengines almost universally use acoustic linings within the intake and bypass ducts to
reduce noise. Simple mathematical models in simple geometries and more complicated numerical simulations
of more realistic geometries are used to optimize the type and placement of such linings in order to obtain
the greatest benefit. Commonly, the interaction of acoustics with an acoustic lining is specified using the
impedance of the lining. Taking the fluctuating pressure within the fluid to be p(x) exp{iwt} and the velocity
to be v(x) exp{iwt}, the impedance of the lining is Z = p/(v-n), where n is the surface normal pointing out
of the fluid (Z will usually be a function of frequency w). If the acoustics is on top of a mean flow that slips
across the lining, it is well known that this boundary condition must be modified [1-7]. If the fluid velocity
at the boundary is U + wexp{iwt}, then the boundary condition becomes

iwu-n=>G(w+U-V—-(n-VU) -n)p/Z. (1)

This follows from matching fluid and solid normal displacement, rather than normal velocity, and is known as
the Myers |7] or Ingard—Myers [4, 7] boundary condition, although this equation (apart from the final term)
was earlier given by, for example, Miles |1, equation (3.3")]. This, in straight ducts for which the final term is
identically zero, was shown to be the correct asymptotic limit of a vanishingly-thin inviscid boundary layer
independently by Eversman & Beckemeyer [5] and Tester [6], though the boundary needed to be extremely
thin to attain this limit in some cases [6, |8]. For numerical simulations, this condition therefore provides an
attractive alternative to resolving the thin boundary layer over the lining.

The final term in eq. () is nonzero for complicated geometries and flows for which the flow just outside
the boundary layer is non-parallel [e.g. |9, [10]. The term is necessary for a compliant oscillating boundary, as
the boundary motion causes the boundary to see a different normal mean flow velocity at different parts of its
oscillation. However, the validity of this assumption for a fixed permeable acoustic liner is questionable [see,
e.g.|11)], with the proof that eq. (D) is the correct boundary condition for a vanishingly-thin inviscid boundary
layer only having been given for straight ducts [, []. As in those papers, in this paper we will only consider
straight ducts, for which this Myers non-parallel flow term is identically zero.

* A previous version of this paper was presented as ATAA paper 2010-3942 at the 16th ATAA /CEAS Aeroacoustics Conference,
7-9 June 2010, in Stockholm, Sweden.
TResearch Fellow, DAMTP, Wilberforce Road. Member AIAA.
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Unfortunately, eq. [Il) applied with slipping flow leads to numerical instabilities [see, for example, |9, [12]
and mathematical illposedness [13]. In order to circumvent slipping flow, there has been recent interest
in acoustics within sheared mean flow [14, [15], following the foundations set by Pridmore-Brown [16] and
Mungur & Plumblee [17]. This paper will concentrate on the effect of a thin but finite-thickness invis-
cid boundary layer over the acoustic lining by incorporating the first- and second-order corrections in the
boundary layer thickness. Such a situation has been investigated before |6, 18, [18-27], at least to first or-
der; in particular, the derivation in the first part of §IIIl is similar to the derivation of |24], as detailed
in [T although [24] do not allow for temperature or density variations within their boundary layer, nor
cover the material presented in the remainder of this paper. To the authors knowledge, the present paper
is the first time that a simple asymptotically-valid Myers-type boundary condition incorporating a finite-
thickness compressible boundary layer has been proposed, compared to high-fidelity numerical simulations
of the Pridmore-Brown equation, and had a stability analysis performed.

Recently, and concurrently with the current work, Rienstra & Darau |28, 29] proposed a modified Myers
boundary condition based on a two-dimensional incompressible model. Their results are compared to those
derived here in §VII

II. Governing equations

Our governing equations are the equations of motion for an inviscid compressible perfect gas [30],

Du % P Dp

- =~ Vb, DI~ p DI’ (2)

dp
_+V ( )_07 th

ot

where D/Dt = /0t +u -V, p is the density, u is the velocity, p is the pressure, and ~ is the ratio of specific
heats.

Although what follows is equally valid for a rectangular duct, we will concern ourselves here with a

cylindrical duct, described by (z, r, ) coordinates with the z-axis running along the centreline of the cylinder.
We take the flow to be (for real integer m)

u=U(r)es + (ﬁ(r)em +o(r)e, + ﬁ)(r)eg) exp{iwt — ikz — imf}, (3a)
p = P+ p(r) exp{iwt — ikz — im0}, (3b)
p = R(r) + p(r) exp{iwt — ikz — im0}, (3c)

where the tilde denotes acoustic quantities which are assumed to be small compared with the steady mean
flow. We nondimensionalize distance by the radius of the cylinder, velocity by the centreline mean-flow speed
of sound Cy = \/vP/R(0), and density by the centreline mean-flow density R(0), implying that pressure is
nondimensionalized by vP where P is the mean-flow pressure. Under this nondimensionalization, the duct
wall is at r = 1, R(0) = 1, P = 1/, M = U(0) is the centreline mean-flow Mach number, and w is the
Helmholtz number.

Note that U(r) and R(r) may be arbitrary functions of r as far as this paper is concerned. In reality,
gradients of U(r) are caused by viscosity and gradients of R(r) (since R < P/T, where T is the temperature)
are caused by thermal conduction and viscous dissipation (see, e.g. [11] for further details). These mechanisms
are here considered insignificant for the acoustic perturbations, which is the standard acoustic assumption,
and are considered to have been already accounted for in the mean flow through non-constant U(r) and
R(r).

Substituting eq. Bh—c) into eq. @) and taking only terms linear in the acoustic quantities gives the
linearized mass, momentum and energy equations as

. S GARRA() P
i(w—-Uk)p=— T a rme + ikRa,
dp dU
iR(w — Uk)o = dp, iR(w — Uk = ﬂp, iR(w— Uk)i = ikp — R—3,
r r

dR
i(w—-Uk)p= <w—Ukp—|——v),
dr

which, after eliminating every acoustic variable but p, gives the Pridmore-Brown [16] equation in cylindrical
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form

~/1 l 2kU/ _E ~/ _ 2 2_m_2 ~
p-i—(T-i-w_Uk = |7+ Blw=Uk)? =k = — )5 =0, (4)

where a prime denotes d/dr. The radial velocity ¥, needed for the boundary condition, is given by ¢ =
i /(R(w — UK)).
The boundary condition to be applied at r = 0 is to require p to be regular. The boundary condition to
be applied at r = 1 is p/0 = Z, giving
iwZp — w?R(1)p = 0.
The Myers boundary condition (eq. [Il), under the assumption that the mean-flow is constant apart from an
infinitely-thin boundary layer at » = 1, predicts that

iwZp — (w— Mk)’p = 0. (5)

It is this boundary condition that we propose to modify here.

III. Derivation of the modified boundary condition

In this section, we consider a thin boundary layer about » = 1 of typical width §, outside which the
mean flow is uniform, so that U(r) = M and R(r) = 1 for the majority of the flow. We will consider the
limit of small 6 with all other parameters remaining O(1) independent of . The asymptotic procedure used
here is similar to that of |24], except that [24] worked with an expansion of log(p), while here we will work
directly with the physical variables p and ¥, and that here we allow for nonconstant density R(r) (and hence
nonconstant temperature) within the boundary layer.

If the boundary layer did not exist, the solution to eq. () regular at » = 0 would be

Do(r) = EJpm(ar) where o = (w— Mk)*> — k% (6)
Accounting for the boundary layer to first order in §, the asymptotics (the details of which are given in

appendix [A]) give a composite asymptotic solution of

w—U(r)k)*R(r)

(w— ME)?
This shows very good agreement with the numerics, as is shown in section [Vl However, in order to derive
the correction to the Myers boundary condition to O(d), it turns out to be necessary to derive the pressure

within the boundary layer to O(§2). This is again done in appendix [Al with the result that, evaluated at
the wall lining r =1,

B(1) = EJpn(a) — BT, (@)d1o + O(5%),

dr + O(5%). (7)

ﬂﬂ_Ehmm_MmM@AH_(

o i(w=UQ)k) , ) 9 0
(1) = @ MhE (@B, (o) = (K + m?)0[1 EJp(a) + O(6%)],
with
- 1 B (w - U(r)k)2R(r) . B ! B (w— ME)? .
oo = /o ! (w— ME)? a, o= /0 ! (w— U(r)k)2R(T) " )

Note that, since the integrands of 61y and §I; are identically zero outside the boundary layer, 61y and 61y
are indeed both of order 4.
By stipulating that Z = p(1)/9(1), we arrive at the dispersion relation

i(w—UQ)k)Z[ad],(a) — (k> + m?*)611 0 ()] — (w — ME)?[I () — o, (a)61] = 0.

Our generalization of the Myers boundary condition is finally arrived at by substituting p, = EJ,,(a) and
0o = iaEJ), (@) /(w— Mk), meaning that p, and ¥, are the pressure and normal velocity at the wall obtained
by ignoring the boundary layer. This gives the boundary condition

k% +m? w— Mk
i(w— Mk) w—U)k
This is the main result of the paper. For most purposes, no slip implies that U(1) = 0, although setting
U(1) # 0 in order to model surface roughness [as in [26] is also possible.

Z |50+ 611150] = []50 +i(w — ME)SIod, | (9)
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A. Interpretation of the §I; term

At least part of the modified boundary condition (eq.[d) may be interpreted physically. Let us first define
the boundary layer mass, momentum, and kinetic energy thicknesses of the boundary layer to be

! ' R(nU(r) ' RMU()?
5maSS_A 1_R(7‘)d7av 5mom—A 1—Td7°7 6ke—/0 1—Td7‘.

Multiplying out §1; gives

1
6y = 2 (w?Smass — 2wkM Siom + k> M)

(w— Mk
which, when substituted into eq. (@) gives the boundary condition

w-=U@D)k

2 2
i Z(K +m*)on|.

o |i(w — U(1)k) Z + w?Oimass — 2wkM Smom + k2M26ke} = Do [1@ — Mk)
The 01y term may therefore be thought of as modifying the impedance seen by the acoustics from the actual
impedance of the boundary, Z, to an effective impedance Zy,,q given by

i(w—=U(1)k)Zmoda = i(w — U(1)k) Z 4+ w?Omass — 20kM Smom + k> M>Sye.

These terms have a physical interpretation. To see this, first consider a theoretical acoustic lining modelled
as a flexible impermeable sheet, whose displacement 7 in the normal direction pointing out of the fluid is

governed by

9 o | 0%
d— =p—Kn—-D—+T—. 10
T A TR Y (10)
Here, p is a forcing term due to the acoustic pressure, d is a mass density, K is a spring constant, D is
a damping constant, and T is an elastic tension in the sheet. Assuming 7 and p to have exp{iwt — ik}
dependence gives ~
i(w—UWE)Z =L = —w2d+iwD+ K + 1T
n

The modified impedance Zy,,q based on this theoretical boundary model is therefore

i(w—U(1)k)Zmoa = P 02 (d = Smass) +iwD + K + k(T + M26ye) — 20kMSmom, (11)
which could be interpreted as a theoretical boundary with displacement 7m0q and governing equation

0  Mbmom 0\
(d — 5mass) (E — ﬁm%sa—x) Tlmod

o~ 87’]mod 2 512110111 8277mod
=D = Kimoa = D—5= + (T+M Oke + =)o (12)

The modified boundary layer term 01y therefore represents three physical effects:

1. The mass deficit dpass in the boundary layer causes the effective boundary seen by the acoustics to be
lighter.

2. The momentum deficit M dmom in the boundary layer causes the advection (accounted for in the Myers
boundary condition at a velocity M) to be corrected by the effective velocity deficit of the boundary
layer, Mdmom/(d — Omass)-

3. The kinetic energy deficit %M 20e in the boundary layer, together with the momentum deficit, instan-
tiate themselves as a tension along the boundary.
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Note from eq. () that these effects become significant when k and w are O(§~1/2), and that in particular
the effective tension becomes significant irrespective of w when k = O(6~1/2); these values of k and w remain
within the range of validity of the asymptotic derivation given in appendix[Al The effect of tension along the
boundary is particularly interesting, since it suggests there may be unforced travelling waves permitted along
the boundary (which would be damped if D # 0). Note that if ' = 0 the uncorrected boundary displacement
(eq. [IO) is local and does not support or prevent travelling waves, whereas the modified boundary (eq. [I2])
is always nonlocal and does support travelling waves (this effect was previously noted by Eversman [25]). In
the limit § — 0, this added tension disappears and, at fixed frequency, the wavenumbers for these travelling
waves tend to infinity as § — 0. This may well correspond to the illposedness and instability of the Myers
boundary condition at arbitrarily short wavelengths |13], although this will not be pursued further here.

B. Interpretation of the §I; term

The 6I; term is important, as it appears to be this term that is responsible for the wellposedness of the
modified boundary condition. However, the interpretation of the d1; term is tricky, and no physical expla-
nation of it is given here. It is worth noting that the presence a critical layer at » = r* (where r* is possibly
complex), for which w — U(r*)k = 0, may have a significant affect on 617, especially if [(1 —7*)/§| < 1. The
case r* € [0, 1] is explicitly excluded from our analysis, as in this case 6I; may not be well defined; this is
in line with previous analyses [e.g. [24]. For fixed w, this exclusion causes a branch cut in the k-plane. This
branch cut may be removable, as in the case of a constant-then-linear velocity profile given below, in which
case 01; may be defined for r* € [0, 1] by continuity.
Asymptotic values of §I; may be calculated, and it can be shown that, for U(1) = 0,

1 1
2% M Ur)
L ~ 1-1 d —_— 1-— d f E>1
06 /0 J/R(r)dr + = ) MR r or w/k >
—M?k
L~ —— f k<l
o~ RO o whk<

Moreover, for a constant density R(r) = 1 and a constant-then-linear boundary layer profile,

Ma-ns - <s
U(T)_{ M (1-1)>3d (13)

011 may be directly calculated to give 611 = 0Mk/w.

C. The modified boundary condition in the time domain

In order to apply the new modified boundary condition in the time domain, eq. (@) needs some coercing
into a suitable form. One possible way to do this would be to assume that the density is uniform and the
boundary layer profile is constant-then-linear (eq. [[3)) with a given momentum thickness dpom = 6/2. Then
eq. ([@) may be rearranged to give

d/(0 9\ . o (9> 972\ B OV .
&(&+M%)U+2M5mom%<ﬁ+w>p—(a-ﬁ-M%)’Ub,

where ¥ = p/Zmod 1s the velocity of the boundary using a modified boundary model incorporating the §1
terms from §ITIA] above. For example, if the desired boundary model in the time domain were as given in
eq. (IO, then o, would be given by 0 = ONmod /It With Nmeq satisfying eq. ([I2)).

IV. Comparison with numerics

In order to validate the above asymptotics, the asymptotic solution will be compared with numerical
solutions to the full Pridmore-Brown equation (]). The numerical solutions were generated using an implicit
12th order symmetric finite-difference discretization with unevenly spaced collocation points, so that the
collocation points could be clustered within the boundary layer. Typically 8000 points were used, with at
least 400 points within the boundary layer irrespective of the width of the boundary layer. The r = 1
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a) k=—-442+1.1i b) k = —44.2 + 1.1i (detail)
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Figure 1. Plots of Re(p(r)) against r, comparing the numerical solution to the Pridmore-Brown equation (), the
first-order asymptotic solution (eq. [7)), and the uniform-flow solution (eq.[6). w = 31, m = 24, and U(r) is given
by eq. (I4) with M =0.5 and § = 2 x 10~%. The values of k used correspond to a cuton upstream-propagating
mode (a and b) and a partially cutoff downstream-propagating mode (¢ and d) if the lining has impedance
Z =2+ 0.6i.

boundary condition used was p(1) = 1; a Newton—Raphson iteration was then used to find roots of the
dispersion relation p/v = Z.

The boundary layer profile used for most examples given here was chosen to be the tanh profile, as used
by Rienstra & Vilenski [27],

U(r)/M = tanh (%) + (1 - tanh(l/d)) <1+ta+h(1/5)r +(1+ 7’)> (1-r), (14)

with constant density R(r) = 1.

For this profile with § = 2 x 10~*, two comparisons between the numerical solution to eq. (@), the
first-order-accurate composite solution (eq. [7) and the uniform solution are given in figure [l Figure [ gives
a comparison between duct modes satisfying the impedance boundary condition using the numerics, the
Myers boundary condition, and the modified boundary condition (eq. [d). Despite this being for such a thin
boundary (§ = 2 x 10~%), the highly cutoff modes and the surface mode in the upper-right quadrant are
noticeably affected by the finite thickness of the boundary layer. The general trend that surface modes,
more highly-attenuated modes and upstream-propagating modes are more affected by the boundary layer
could be due to the nature of these modes, which oscillate significantly at the boundary, while modes which
oscillate less on the boundary (such as the downstream-propagating cuton modes) see less of an effect.
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a) All modes

b) Cutoff modes

T T T T T
400 400
X
200 200
Im(k) 0o p= = X B X Im(k) o
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Numeric
—400 F NewBC —400 F
Myers O
| | | | |
—40 =20 O 20 40 60
Re(k)

Figure 2. Comparison of axial wavenumbers k, plotted in the k-plane, for fully numerical solutions and solutions
of the modified (eq.[Q) and original (eq. [B) Myers boundary conditions. w =31, m =24, Z =2+ 0.6i, and U(r) is
given by eq. (@) with M = 0.5 and § = 2 x 104,

V. Stability and well-posedness

One major need for a generalization of the Myers boundary condition is that the Myers boundary condi-
tion is illposed [13], manifesting itself as numerical instability |9, [12], which we hope to alleviate using this
modified boundary condition (eq.[). Whatever the boundary condition at r = 1, it specifies either allowable
values of w if k is given, or allowable values of k if w is given; these are here referred to as modes. For the
problem to be wellposed, there should be a lower bound to Im(w(k)) for real k. For further explanation,
see [13].

Figure Bl shows w(k) as k is varied with Im(k) = 0. The parameters used are the taken from Rienstra &
Vilenski [27]. Note that for both the numerical solution and the modified boundary condition, Im(w(k)) is
bounded below (say by —5), while the Myers solution is unbounded. Hence, the numerical and modified
boundary condition solutions are wellposed. Since they are wellposed, we may apply the Briggs—Bers stability
analysis [31, 132] to these cases. As there are real values of k with Im(w(k)) < 0, there is a convective
instability present. However, we must also look for absolute instabilities, where the system chooses its own
preferred frequency and disturbances at that frequency grow exponentially in time. Absolute instability
occurs for values of w with Im(w) < 0 for which two modes collide in the k-plane giving a double root.
Only if this collision is between a mode originating for large Im(w) from the lower-half k-plane and one
originating from the upper-half k-plane does this then signify an absolute instability [see[13, for details]. For
this example, such a pinch does occur (as shown in figure B]), but for Im(w) > 0, so that in this case no
absolute instabilities are present. However, as the boundary layer thickness ¢ is reduced, this double root
moves into the lower-half w-plane and produces an absolute instability. The critical value of § for which
Im(w) = 0 for this double root is found numerically to be 8.6 x 10~* for the numerics, occurring at w = 4.3,
k =19.8495.3i, and 6 = 9.7 x 10~* using the new modified boundary condition, occurring at w = 3.7 and
k =22.84 82.1i.

For values of § sufficiently large that there is no absolute instability, the system here is convectively
unstable, with a downstream-propagating mode that has Im(k) > 0. This can be seen by applying the
Briggs—Bers [31, 132] criterion, which says that no convective instabilities are present provided Im(w) is
sufficiently negative; i.e. below all w(k) for real k. We may therefore ascertain the stability of modes by
tracking them in the k-plane as w is varied from sufficiently imaginary to real, with those that originate
in the low-half k-plane propagating in the positive z-direction and those that originate in the upper-half
k-plane propagating in the negative z-direction. This is done for Re(w) = 5 and Im(w) € [—5,0] in figure [d
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Figure 3. Plotted in the w-plane are trajectories of w(k) as k is varied with k real, for the numerically-calculated
roots, solutions to the modified boundary condition (eq.[9), and the original Myers boundary condition (eq. B]).
x and + denote values of w for which two k-roots coincide (a double root). m =0, Z = 3 + 0.15iw — 1.15i/w, with
U(r) given by eq. (Id) with M = 0.5 and § =2 x 1073.

All modes but one are seen to be stable. The unstable mode on the far right of figure 4 is the mode
previously suggested by Rienstra [33] as a possible hydrodynamic instability mode. Note that the original
Myers boundary condition fails to correctly predict the behaviour of this mode, while the modified boundary
condition gives an accurate prediction.

There are several different models for the impedance Z. For single-frequency simulations a common
assumption is that Z is constant. However, even in these situations any dependence of Z on w would be
important for stability. In order to investigate solutions for fixed Z, the same situation as figure [3] but with
7 fixed at a constant value of 3 + 1.39i (an unfeasible impedance in reality; see [34]) is shown in figure
This demonstrates that the new boundary condition also regularizes this problem even if the impedance is
taken to be constant, although in this case an absolute instability is now present, as seen in the figure.

Recently, Rienstra & Darau [28] performed a similar analysis using a two-dimensional incompressible
model, a constant-then-linear velocity profile (eq. [[3)) and a Helmholtz resonator model for the impedance,
7Z = D+idw—icot(wL). Nondimensionalizing their parameters under the assumption of a 0.2 meter diameter
cylindrical duct (chosen to exaggerate any effect of the cylindrical geometry), the corresponding stability
graph of w(k) for real k is given in figure[Gl In this case, Rienstra & Darau predict absolute instability for
d < 3.6 x 10~%. Here, the modified boundary condition and the numerics both predict a critical value for & of
3.7 x 1074, which is in good agreement with Rienstra & Darau considering their model was of a flat surface
and incompressible flow, and here the duct is cylindrical and the flow compressible. Further comparisons
with the model of Rienstra & Darau are given in §VI

So far, all of these results have assumed an axisymmetric mode with azimuthal order m = 0. However,
the new boundary condition multiplies the §I; term by k?+m?, and so large values of m may lead to different
behaviour. However, similar simulations to those shown here demonstrate that even in this case the problem
is well posed.

The critical values for § found to date are given in table [l They show a good agreement between the
modified boundary condition and the numerics, with very good agreement for thin boundary layers (as is to
be expected from a correction that is asymptotically valid in the small-§ limit). In all these cases, the system
was still convectively unstable for a boundary layer of width § = 0.1, though as ¢ is made progressively larger
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Figure 4. Trajectories of modes in the k-plane as w is varied from 5 to 5 — 5i. The points are for w = 5. Since
the modes on the far right cross the real k-axis as Im(w) is varied, they correspond to downstream-propagating
instabilities. Parameters are (as in figure @) m = 0, Z = 3 4+ 0.15iw — 1.15i/w, with U(r) given by eq. (I4) with
M=05and §=2x10"3.

NLIJmeric

4 TS NewBC -------
Myers

~ . Numeric Instability

o New BC Instability ~ x

-30 —20 —10 0 10 20 30
Re(w)

Figure 5. Trajectories of w(k) as k is varied with k real, for the numerically-calculated roots, solutions to the
modified boundary condition (eq. @), and the original Myers boundary condition (eq. [5). x and + denote
values of w for which two k-roots coincide (a double root). m =0 and Z = 3 + 1.39i, with U(r) given by eq. (1)
with M = 0.5 and § =2 x 1073,
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Nulmeric
New BC ------—-
Myers
Numeric Instability
New BC Instability — x

—0.5F a

Figure 6. Trajectories of w(k) as k is varied with k real for the numerically-calculated roots, solutions to the
modified boundary condition (eq. [9), and the original Myers boundary condition (eq. [B). x and + denote
values of w for which two k-roots coincide (a double root). m =0 and Z = 2 + 3.9iw — icot(0.3w), with U(r) given
by eq. ([3) with M = 0.176 and 6§ = 3.6 x 10~4.

U(r) profile ‘ M ‘ m ‘ Z ‘ 0 numerical | § asymptotic
tanh 05 | 0| 3+0.15iw—1.151/w | 8.6x10~* 9.7x 1074
tanh 0.5 0 34 1.391 3.0 x 1072 8.2 x 1072
tanh 0.5 | 24 | 2+ 0.8iw —icot(0.06w) | 1.7 x 10-3 1.7 x 1073
linear 0.176 | 0 | 2+ 3.9iw — icot(0.3w) 3.7x 1074 3.7x 1074

Table 1. Table of critical boundary layer thicknesses () for several different situations. For smaller values of
6 the system is absolutely unstable. For larger values of § the system is at most convectively unstable.

the frequency range for which convective instabilities can occur become smaller. For very small values of §
the solution approximates the Myers solution until k£ becomes sufficiently large that the O(d) term in the
modified boundary condition become important and the problem remains regularized. Setting § = 0 yields
exactly the Myers boundary condition and the problem once again becomes illposed.

VI. Comparison with Rienstra & Darau’s boundary condition

As mentioned previously, Rienstra & Darau [28] recently (and concurrently with the work presented here)
analysed the stability of an incompressible two-dimensional shear layer over an acoustic lining. As part of
this work, they proposed a modified Myers boundary condition |28, eq. 25] which, written in the notation
used here, is
i(w— ME)po — [20momMkw (1 — w/(Mk)) — S M?k?/2] 0,

1wl — 20momk2Po

7 =

(15)
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Putting the modified Myers boundary condition given here (eq.[dl) into a similar form for the same constant-
then-linear boundary layer profile (eq. [I3]) with R =1 gives

g _ 1w = MEk)p, + [20mom M kw — dke M 2k?] T, (16)
Wy — 26mom (k2 +m2) (1 — w/(ME)) "'y

Comparing eq. (1) and eq. ([I8) shows them to be very similar, although not identical, with both reducing to
the unmodified Myers boundary condition in the limit 6 — 0. More recently, Rienstra & Darau [29] pointed
out that such boundary conditions are not unique, and that eq. (I5) may be written for any 6 as (again
using the notation of this paper)

g i(w — Mk)po + [20mom (1 — 0)w? — 26 mom (1 — 20) Mkw + e (1 — 30) M?k?/2]%, a7
B iWTo — 20momk?Po — 2iwdmemb7, ’

where ¥/ denotes the radial derivative of the outer uniform-flow solution ¥,(r) evaluated at r = 1. This
equation is eq. (4.4) of [29]. In the 2D incompressible case considered by [28, 29] ¥/ = ik%p,/(w — Mk),
and therefore in this case eq. (I7) and the boundary condition derived here (eq. [I]) are identical for 6=1;
hence, the boundary conditions of |28, [29] are asymptotically equivalent to eq. ([IG]) for 2D incompressible
perturbations. Rienstra & Darau [29] went on to propose 6=1 /3 as a giving particularly pleasing results.
However, the identity o/ = ik*p,/(w — Mk) is only valid for 2D incompressible perturbations, with the
equivalent here being o, = — — i((w — Mk)? — k? — m?)po/(w — Mk); therefore, the modified boundary
conditions proposed in [28, eq. (25)] and [29, eq. (4.4)], corresponding to § = 0 and 6 = 1/3 in eq. (I7)
respectively, are not asymptotically equivalent to the modified boundary condition proposed here when
applied to a compressible fluid.

It should be noted that eq. (@) is also not unique, as multiplying both numerator and denominator
by 1 — 2i0mom(1 — 0)(w — Mk)i,/Po and using the identity @,/p, = (w — ME)/(wZ) 4+ O(0) gives the
asymptotically-equivalent expression for arbitrary 6 (where 6 is 0(1)),

i(w— Mk)po + [20mom(1 — 0)w? — 26mom (1 — 20) Mkw + e (1 — 30) M2k?/2]%,

26
i ~o -2 mom kz 2 ~o i,
iwv 0, ( +m )p + wi(w —ME)

7 =

[W2(k2 4+ m?) + (w0 - MR - 0)/2] 5,

However, here we will continue with = 1, for which this reduces to the originally-derived eq. (I6]), in order
to avoid the term involving (w — Mk)*/Z? in the denominator.

We now compare the boundary condition derived here (eq. [If) with the boundary condition of Rienstra &
Darau (eq. IT) for § = 0 (as originally derived in [28]) and § = 1/3 (as proposed in [29]), as well as with the
unmodified Myers boundary condition and the numerical solution, using a constant-then-linear boundary
layer profile. Figure [7l gives such a comparison for the parameters used by Rienstra & Darau [2§], for w =1
and m = 0. The surface mode (shown in detail in figure [fb) is not correctly predicted by the unmodified
Myers boundary condition, while all of the modified boundary conditions give reasonable estimates. The
estimate of Rienstra & Darau for 6 = 1 /3 is the most accurate in this case; this is expected, as the surface
modes are inherently an incompressible phenomena [33], and therefore the flexibility of Rienstra & Darau’s
boundary condition for varying 0 may be used without penalty. Note that their 6 = 0 estimate is comparably
as accurate as the one for the boundary condition given here. For the downstream-propagating plane wave
shown in figure [7ld, however, the situation is reversed, with the boundary condition proposed here giving
superb accuracy while both boundary conditions of Rienstra & Darau are less accurate than the unmodified
Myers boundary condition. This too is expected, as it is for modes such as this that compressibility is
important. Figure[Zc indicates that the cut-off modes are almost equally well modelled by all of the modified
boundary conditions (with, if anything, Rienstra & Darau’s =1 /3 being the most accurate in this case),
with the unmodified Myers boundary condition being notably less accurate.

We now move to a more aeroacoustically relevant Helmholtz number of w = 31 and Mach number
M = 0.5, with a thicker boundary layer of 6 = 10~2 intended to be more indicative of a fully-developed
turbulent boundary layer (and chosen so as to exaggerate any discrepancies between the exact and asymptotic
predictions). Taking the lining to consist of Helmholtz resonators of depth L = 35 mm with a facing sheet
of mass reactance d/R(1) = 20mm (as used in [29]), and taking the duct to have radius 1.25m gives
a nondimensional impedance of Z = 2 — 0.35i. We continue with m = 0 and the constant-then-linear
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Figure 7. Comparison of the proposed boundary condition of Rienstra & Darau (eq.[I7) with § = 0 |28, eq. (25)]
or 6 = 1/3 [29, eq. (4.4)], the modified boundary condition proposed here (eq. [I6)), the unmodified Myers
boundary condition (eq. [B]), and the numerical solution, for a constant-then-linear velocity profile (eq. [13).
Parameters are as for [28] with a 0.2 meter diameter cylindrical duct, giving M = 0.176, § = 3.6 x 10~%, and
Z =24 3.9iw —icot(0.3w), with w =1 and m = 0 (giving Z = 2 + 0.6671).

boundary layer profile for a fair comparison with |28, [29]. For these parameters, a comparison of the various
boundary conditions is shown in figure 8 FigureBla shows the almost-propagating modes, and demonstrates
that for upstream-propagating modes (shown in more detail in figure Bc) the modified boundary condition
given here again correctly predicts the attenuation rate of these modes (given by Im(k)), while either of the
predictions of Rienstra & Darau are less accurate. Figure [fld shows a similar plot for the low-radial-order
downstream-propagating modes, which in this case shows the modified boundary condition proposed here to
give superb accuracy. The surface mode shown in the lower-right of figureBld is only correctly predicted by
the boundary condition proposed here, with neither of Rienstra & Darau’s boundary conditions predicting its
existence. Interestingly, for the upstream-propagating cutoff modes (shown in figure8b) with approximately
50 < Im(k) < 90, none of the boundary conditions appears to accurately replicate the numerical solution.
This situation looks to be similar to the situation where a surface mode is in close proximity to the cutoff
acoustic modes, and indeed this may well be the case here. This is supported by the observation that this
behaviour is highly dependent on the value of the impedance used.

The results given above are generally indicative of results obtained for a variety of impedances; for
space reasons, not all results calculated are reproduced here. It is emphasized that the boundary condition
proposed here (eq. [d) is capable of modelling three-dimensional perturbations with nonzero m, boundary
layer profiles other than constant-then-linear, and nonuniform boundary layer densities. Since the boundary
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Figure 8. Comparison of the proposed boundary condition of Rienstra & Darau (eq.[I7) with § = 0 |28, eq. (25)]
or 6 = 1/3 m, eq. (4.4)], the modified boundary condition proposed here (eq. [16]), the unmodified Myers
boundary condition (eq.[B]), and the numerical solution, for a constant-then-linear velocity profile (eq. [13]), for
M =0.5,8=10"2, w =31, Z=2+0.016iw — icot(0.028w) = 2 — 0.35i and m = 0.

conditions of Rienstra & Darau @, ] were derived assuming two-dimensional perturbations to a constant-
then-linear uniform-density boundary layer, for nonzero m or for nonlinear boundary layer profiles the
boundary condition proposed here is expected to give even better agreement with numerical solutions than
the boundary conditions of m, @], although this is not investigated further here.

VII. Conclusion

The main conclusion of this paper is that the new modified Myers boundary condition, derived asymptot-
ically for thin boundary layers and given in eq. [@)) (with 61y and 617 given in eq. (8))), solves the illposedness
problem associated with the standard Myers boundary condition. It can therefore be expected to alleviate
the numerical instabilities associated with simulations using the Myers boundary condition in the time do-
main (applied, for example, as suggested in §IIIIC), as well as allowing a rigorous stability analysis (which
is helpful for numerical simulations in the frequency domain).

The stability analyses conducted on the examples given here indicate that these examples are absolutely
unstable for sufficiently thin boundary layers, and are convectively unstable otherwise. The only unstable
mode found is the one predicted as being a hydrodynamic instability by Rienstra ﬂﬁ]

The new terms in the boundary layer are encapsulated within the §Iy and §I; terms, which are integrals
over the boundary layer and are valid for arbitrary boundary layer profiles. The 6y term may be calculated
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knowing only the mass, momentum, and kinetic energy thicknesses of the boundary layer. These three terms
can be physically interpreted as a change in boundary mass, change in convected boundary speed, and a
tension along the boundary. The §I; term is more difficult to classify, but expressions are given in JIIIIB
in the high- and low-frequency limits, and an exact expression is given for §I; for a constant-then-linear
boundary layer profile. It is the d1; term that is responsible for regularizing the Myers boundary condition,
though it should be stressed that both terms are important in order that the new boundary condition be
asymptotically accurate. The 0I; term is also strongly linked to the presence of a critical layer at r = r*,
for which w — U(r*)k = 0. The case r* € [0, 1] is explicitly excluded from our analysis, leading to a branch
cut in the k-plane (for w considered fixed). For certain profiles, this branch cut may be removable, as is the
case for a constant density and constant-then-linear boundary layer profile given in eq. (I3]), while for other
profiles it may not be removable, possibly leading to algebraic growth [35]. The true nature and significance
of the critical layer remains uncertain, and appears to depend strongly on the boundary layer profile [see,
e.g. (36, [37].

The asymptotics have been derived under the assumption that O(§?) quantities may be neglected in the
boundary condition; this is valid provided k, m and w remain O(1), or indeed provided they remain o(1/9).
For example, once k becomes sufficiently large that a wavelength becomes comparable to the boundary layer
thickness, the asymptotics described in this paper can be expected to be inaccurate, although the modified
boundary condition will remain well posed. In light of this, it is interesting to note that the proposed
boundary condition appears to remain accurate for the majority of modes for the parameters w = 31 and
d = 0.01, as used in figure 8] where it might have been argued a priori that w = O(1/4). It should also be
noted that the unmodified Myers boundary condition was derived under the assumption that O(d) quantities
may be neglected, and therefore the range of validity of the modified Myers boundary condition proposed
here is greater than that of the unmodified Myers boundary condition.

While the derivation here has been for a straight cylindrical duct, exactly the same analysis is possible for a
rectangular duct, leading to exactly the same modified boundary condition (a brief note on the mathematical
derivation of this is given in appendix [AlBl). However, we have excluded curved ducts with non-parallel
flows, for which the final term in the Myers boundary condition (eq. [ is nonzero. Whether this term can
be incorporated into a similar modified boundary condition, or indeed whether or not this term is correct
for a permeable lining [11), see, e.g.], is not considered here.

As well as regularizing the Myers boundary condition, the new boundary condition may be used to gain
insight into the effect of a boundary layer on the modal wavenumbers. The new boundary condition has been
shown to be at least as accurate as the Myers boundary condition in all cases considered, and significantly
more accurate in the majority of cases, as shown in figures[2l [l [7] and Bl Moreover, when compared with the
boundary conditions of Rienstra & Darau [28,[29], the cut-on acoustic modes are found more accurately with
the boundary condition presented here, as seen in figures [[l and B The boundary condition of Rienstra &
Darau [29] for § = 1/3 is shown to be more accurate for one surface mode shown in figure [@b; however,
the = 1 /3 boundary condition fails to predict the existence of a different type of surface mode shown in
figure Bld. The modified boundary condition presented here also has the advantage of being usable for three-
dimensional perturbations for which m # 0, for nonlinear boundary layer velocity profiles, for nonconstant
boundary layer temperature/density profiles, and for cylindrical as well as rectangular ducts.

For all examples considered here, R(r) = 1, and S0 0mass = 0. However, cases when 0.5 7# 0 are both
realizable in practice and potentially interesting mathematically, especially for w > 1, since 61y includes an
W2 0mass term. Such situations will be investigated further in future.

A. Derivation of the boundary layer asymptotics

In this appendix, we derive the acoustic field within a thin boundary layer of width § correct to O(42).
For those not interested in the derivation, a summary of the major results derived here is given in the final
paragraph of this appendix.

Our governing equation is the cylindrical form of the Pridmore-Brown equation (eq. ) for the acoustic
pressure in a sheared flow,

~/1 l 2kU/ _E ~/ _ 2 2_m_2 ~
p-i—( + 7~ )P+ (Bw-UR? =k = )5 =0, @)

with the radial velocity given by o = ip’/(R(w — Uk)). Here, U(r) is the mean-flow velocity and R(r) is the
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mean-flow density, nondimensionalized so that U(0) = M, the Mach number, and R(0) = 1. We consider
a thin boundary layer about r = 1 of typical width §, outside which the mean flow is uniform, so that
U(r) = M and R(r) =1 for r outside the boundary layer.

If the boundary layer did not exist, the solution to eq. @) would be p(r) = p,(r),

Do(r) = EJp(ar) o = (w— Mk)* — k2.
Expanding this for r = 1 — dy, and utilizing Bessel’s equation to write J// in terms of J,, and J/ . gives
ﬁoﬂs—éy):aEJm(a)——éyaEJ;Aa)——%62y2E{aJ;(a)ﬁ—(az——nﬁ)Jm(a)}+—O(&U. (18)

This is our outer expansion, that the inner expansion within the boundary layer must match with.
To consider the boundary layer, it is helpful to first rearrange the governing equation to give

(=tm) * (- =om)7=° "

Substituting » = 1 — dy into eq. (I9]) and using a subscript y to denote d/dy gives

<<w—pm> = (%) - (1 - %)m 0(8°).

In a slight but obvious abuse of notation, U(y) is used to represent U(r) with » = 1 — dy, and similarly for
R. We pose the solution p = pg + 6p1 + 62p2 + O(63). To leading order,

(w—U)k) Ry

/
w— k2 Y

Yy
]50=Ao+Boy—Bo/ 1-
0

Matching with the outer solution (eq.[I8]) for large y at leading order gives Ag = EJ,,,(a) and By = 0. Since
By =0, at first order we similarly find

(w—U)k) Ry
(w— Mk)?

Yy
ﬁ1=A1+Bly—Bl/ - dy,
0

while matching with the outer solution (eq. [I8) for large y gives By = —aEJ! («) and A; = Byly, with

(. (w—Uyk) R(y)
h‘A e ¢

2

At second order we find

2 2

. Y (w-UWIk) R Vo (w-UW)k)RY) .,
p2_A2+B2/0 (= Mk dy +B1/0 Y (= Mh)? dy
Yy 2 y' ~ k2 + m2 Lo
_ AQ/O (w—U(y)k) R(y )/0 1 o U(y”)k)zR(y”) dy” dy'.

Rewriting this in terms of bounded integrals to aid matching with the outer solution gives

Y w— VeV R(y y W / /
pom st iy, 1 CEUOI gy [ y,<( U R(W)
0

2

0 (w— ME)? (w— ME)?

— ! (w—U(y/)k)2R(y/) _ v _ 2 (1.2 2 (w— ME)? W
Ao/o < (w — ME)? : /0 o= Mb - (& +m)(w—U(y”)k)QR(y”) e

_ 24 m2 Y Y _ (W_Mk)z "o ’
Ao (K + )/O (/0 1 o U R R dy Il> dy

— Aos ((w — ME)? —k* — mQ)y2 — Aol (K* +m?)y,

— 1) dy’ + %Bly2
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where the integrals are bounded provided we define

o0 (w— Mk)?
I = 1-—
/o (w—Uy)k)*R(y)

We now match this to the outer solution (eq. ) for large y by equating powers of y. The y? terms match
identically using our definitions of Ay and B; above. Matching the y terms gives By = Aol (k? +m?), while
matching the constant terms gives

Az = Boly + By /OOO y <1 _ (w —(wU_(y])\I;Il)f(y)> dy

(@U@ RO\ (7 arm (52 o2y &= MF)? ,
*AO/O< (= MR 1>/0( MR ) T e VY

o Y (w— ME)? ,
+A0(k2+m2)/0 </0 1— (w—U(y’)2)R(y’) dy —Il> dy.

Fortunately, for the modified Myers boundary condition we do not need to evaluate As!

A. Summary
Now that we have the inner solution through the boundary layer, we may calculate p and v at the wall r =1,
y =0. Using © = ip’/(R(w — Uk)), we find that
(1) = EJp(a) — aEJ (a)dIy + O(6?),
i(w=UQ)k)

(1) = CESTE [«ET, () — (K> + m*)6[1EJm(a) + O(6%)]

where we may rewrite 01y and 617 in terms of integrals over r as

ot (w- U(r)k)*R(r) : Y (W= ME)? ;
oo = /0 ! (w— ME)? @ oh = /0 ! (w —U(r)k)*R(r) ar

To first order, we may form the composite solution for the pressure,

" w—U(r)k)’R(r
De(r) = Jm(ar) — aJ;n(oz)/O 1- ( (wU_( ])\];i)f( ) dr. + O(6?).

B. Derivation for a rectangular duct

For a rectangular duct, we take a solutions of the form p = p(r) exp{iwt — ikx — imz}, where m is no longer
restricted to taking integer values, z is the coordinate perpendicular to the flow in the plane of the liner,
and “r” is the coordinate normal to the liner. The equivalent of the Pridmore-Brown eq. (@) in this case is

- 2kU’ R\ . _
P+ (w—Uk: - E) P+ (Rlw—Uk)* = k* —m?*)p = 0.

Using exactly the same procedure as above leads to exactly the same result as derived above, although the
algebra is slightly different since the 1/r geometric term is not present in this case.
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