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Surface modes in sheared flow using the modified

Myers boundary condition

Edward J. Brambley∗

DAMTP, University of Cambridge, UK

This paper considers surface modes within a lined cylindrical duct with uniform flow
apart from a thin boundary layer, using a modified Myers boundary condition. For a fixed
frequency ω, this is shown to lead to up to six surface modes, rather than the maximum of
four previously predicted for uniform flow. Solving for the frequency ω at a fixed wavelength
(important for stability analysis), using a mass–spring–damper impedance model, gives up
to eight surface modes using the Modified Myers Boundary Condition, rather than the
maximum of six predicted for uniform flow. The different number of surface modes hints
at new behaviour, particularly with respect to stability, and is also of use for frequency-
domain mode-matching techniques, which depend on having found all relevant available
modes during matching. Numerical examples are given comparing the predictions of the
surface mode approximation to full solutions of the Pridmore-Brown equation.

I. Introduction

Consider, as a simplified mathematical model for the propagation of sound in an aeroengine intake or
bypass, a cylindrical or annular acoustically-lined duct carrying a mean axial flow. The acoustic lining
is represented by an impedance Z = p/v, where a pressure p exp{iωt} produces a normal fluid velocity
v exp{iωt} through the lining. The simplest mean axial flow is a uniform flow, which would at first seem
to be a good approximation for aeroengines owing to the high Reynolds numbers at which they operate.
This situation has been extensively studied using the Myers,1 or Ingard–Myers,2 boundary condition, which
incorporates both the impedance of the lining and the effect of slipping mean flow. This boundary condition
has been shown by Eversman & Beckemeyer3 and Tester4 to correspond to the limit of a vanishingly-thin
non-slip boundary layer over the lining.

There are two important features of this uniform flow over an impedance lining using the Myers boundary
condition. The first is that, in addition to the acoustic modes (expected to be only slightly perturbed
from their hard-walled counterparts), this system supports modes of a different nature localized close to the
acoustic lining. These modes were aptly named surface modes and where investigated initially by Rienstra5, 6

and subsequently by Brambley & Peake.7 For a locally-reacting boundary, meaning that Z is a function only
of the frequency ω and is independent of wavelength, at any frequency there are up to four surface modes, one
of which was tentatively suggested by Rienstra6 as being a hydrodynamic instability. The second important
feature of this uniform flow over an impedance lining using the Myers boundary condition is that it yields
an illposed problem,8 meaning that numerical simulations become unstable at the grid scale, that a stability
analysis is not possible, and that frequency-domain simulations are of undetermined accuracy.

Recently, progress has been made on correcting this illposedness by incorporating a thin-but-nonzero
thickness boundary layer over the lining, leading to so called modified Myers boundary conditions by Rien-
stra & Darau,9, 10 Joubert,11 and Brambley.12, 13 These boundary conditions remove the illposedness while
still retaining the simplicity of a uniform flow, with the thin-but-nonzero-thickness boundary layer being
incorporated within the boundary condition. (It should be noted that the modified Myers boundary condi-
tions are restricted to having thin boundary layers, and also ignore the effect of the critical layer within the
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boundary layer; see Brambley, Darau & Rienstra14 for further details.) The effective modified impedance
Zmod that modified Myers boundary conditions lead to is in general a function of both frequency ω and axial
wavenumber k (and, indeed, azimuthal wavenumber m), even when the underlying impedance of the liner
is locally-reacting and therefore depends only on ω. This dependence causes an increased number of surface
modes above the four previously predicted; this has been shown for a thin cylindrical shell whos impedance
includes a k4 term, leading to up to ten surface modes for any given frequency.15

The number and behaviour of the surface modes is of the utmost importance for verifying that a mode-
matching scheme is considering all appropriate modes, and for stability analysis. For stability analyses this
is particularly pertinent, since an absolute instability is given using the Briggs–Bers criterion16, 17 by the
collision of two modes in the k-plane as Im(ω) is varied, and hence if there are more surface modes there is
more potential for an absolute instability to be present.

II. Mathematical derivation

What follows is applicable to a cylindrical, annular, or planar lined surface, although for definiteness
here we will consider the cylindrical case only. The cylinder axis is in the x-direction with the cross-section
defined by polar coordinates r, θ. Nondimensionalizing by the duct radius, the centreline mean-flow sound
speed and the centreline mean-flow density gives the mean-flow centreline velocity as the Mach number M .
On top of this mean flow we consider a potential perturbation

u = Mex +∇φ, ρ = 1−
Dφ

Dt
, p = p0 −

Dφ

Dt
, (1)

where D/Dt = ∂/∂t + M∂/∂x is the convective derivative with respect to the mean flow and p0 is the
constant mean flow pressure. The potential φ is given by

φ = pm(r;ω, k) exp{iωt− ikx− imθ}, (2)

where, for a cylindrical duct,

pm(r;ω, k) = Jm(αr) α2 = (ω −Mk)2 − k2, (3)

where Jm is the mth Bessel function of the first kind. The Myers boundary condition becomes

1−
(ω −Mk)2

iωZmod

Jm(α)

αJ ′

m(α)
= 0, (4)

with Zmod = Z, giving allowable values for α and therefore the allowable axial wavenumbers k. Here, we will
use the modified Myers boundary condition of Brambley (Eq. 7 of Ref. 12 or Eq. 9 of Ref. 13), modelling a
thin non-slip boundary layer of thickness O(δ) at the lining. This also leads to the boundary condition (4),
but with

iωZmod = iωZ

[

1−
(

k2 +m2
)

δI1
Jm(α)

αJ′m(α)

]

+ ω2δmass − 2ωkMδmom + k2M2δke +O
(

δ2
)

, (5)

or, equivalently,

iωZmod = iωZ − (iωZ)2δI1
k2 +m2

(ω −Mk)2
+ ω2δmass − 2ωkMδmom + k2M2δke +O

(

δ2
)

, (6)

where

δmass =

∫ 1

0

1−R(r) dr, δmom =

∫ 1

0

1−
R(r)U(r)

M
dr, δke =

∫ 1

0

1−
R(r)U(r)2

M2
dr, (7)

δI1 =

∫ 1

0

1−
(ω −Mk)2

(

ω − U(r)k
)2
R(r)

dr ∼
δ1Mk

ω
for k/ω ≫ 1, (8)

U(r) and R(r) are the velocity and density of the mean-flow including the boundary layer, and δ1 =
−M/

(

R(1)U ′(1)
)

. Note that all δ quantities are of the order of the boundary layer thickness and so are
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small, and that δmass, δmom and δke are the mass, momentum and kinetic energy thicknesses of the boundary
layer respectively, while δ1 is also some sort of measure of boundary layer thickness. Here, we will use the
asymptotic result of Ref. 13 for δI1 given in (8), while noting that this approximation of δI1 is in the relevant
regime for surface modes and is exact for a linear boundary layer profile (such as assumed by Rienstra &
Darau10 for their modified Myers boundary condition).

The surface mode dispersion relation we use here is from Ref. 7, which is an extension of that given
by Rienstra6 to correct for nonzero m. In slightly different notation to Ref. 7, the surface mode dispersion
relation is

µ−
(ω −Mk)2

iωZmod

= 0 where µ2 = k2 +m2 − (ω −Mk)2, (9)

and Re(µ) is required positive, since the eigenfunction for this surface mode is asymptotically pm(r;ω, k)/pm(1;ω, k) ∼
exp{−(1 − r)µ} and is required to decay away from the surface. Since Jm(α)/

(

αJ′m(α)
)

= pm(1)/p′m(1) ∼
1/µ, Eq. (9) for the modified Myers boundary condition becomes

µ−
(ω −Mk)2

iωZ
(

1− δ1
(

k2 +m2
)

Mk/(ωµ)
)

+ ω2δmass − 2ωkMδmom + k2M2δke
= 0. (10)

This may be rearranged to give

(

iωZ + ω2δmass − 2ωkMδmom + k2M2δke
)2(

k2 +m2 − (ω −Mk)2
)

ω2

−
(

iωZδ1
(

k2 +m2
)

Mk + ω(ω −Mk)2
)2

= 0. (11)

Assuming that Z is locally reacting, so that Z is independent of k and m, then (11) gives a polynomial in k
of degree six, so that there are six surface modes, although due to the restriction that Re(µ) > 0 not all of
these may be physical for all values of Z; a similar argument was used in Refs. 6 and 7. Indeed, the results
of these two papers are recovered by setting the δ-quantities in (11) to zero, yielding a polynomial of degree
four and therefore leading to four surface modes. If Z is given by a mass–spring–damper model, so that iωZ
is a polynomial of degree two in ω, then for fixed k Eq. (11) gives a polynomial in ω of degree eight, so that
there are eight possible surface modes in ω for fixed k. This compares to the unmodified Myers result of six
surface modes, obtained by setting the δ-quantities in (11) to zero.

The limitations of (10) should be borne in mind: that δI1 is evaluated using the asymptotics given
in (8) which are only valid for k/ω ≫ 1; that the surface mode dispersion relation (9) is only valid for
Re(µ) & O(1); that, since the surface modes have Jm(αr)/Jm(α) ∼ exp{−(1 − r)µ}, the modified Myers
boundary condition (5) is only valid for surface modes provided |µ| . O(1/δ), where δ is a typical boundary
layer thickness; and that the modified Myers boundary condition (5) ignores the critical layer within the
boundary layer. These last two limitations are the most serious, and to avoid them requires a different
analysis, such as given in Ref. 14 for a constant-then-linear boundary layer profile of constant density.

A. Rescaling the surface mode dispersion relation

We may simplify the dispersion relation (11), reducing the number of free parameters by one, by introducing
renormalized variables,

µ̃ = µ/m, β = +
√

1−M2, σ = M + β2k/ω, λ = ω/(mβ),

h̃ = 2ωδmom, ∆mass = δmass/(2δmom), ∆ke = δke/(2δmom), ∆1 = δ1/(2δmom). (12)

The reduced axial wavenumber σ was introduced by Rienstra6 to remove the mean flow dependence from
the axial wavenumber k, while (µ̃, β, σ, λ) are the same as (µ, β, σ, λ) in Ref. 7. Using these, and assuming
m > 0, gives

µ̃2 = 1− λ2
(

1− σ2
)

with Re(µ̃) > 0, (13)

while (10) gives the rescaled dispersion relation

µ̃

βλ
−

(1−Mσ)2 + iZh̃∆1M(σ −M)
(

(σ −M)2/β2 + 1/λ2
)

iZβ4 + h̃
[

∆massβ4 −Mβ2(σ −M) +M2∆ke(σ −M)2
] = 0. (14)
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Line
Change in number of surface modes

R1 R2 R3 R4

ℓ1 -1

ℓ2 +1

ℓ3 +1

ℓ4 +1

ℓ5 -1

ℓ6 +1

ℓ7 +1

Table 1. The number and position of actual surface modes for varying Z shown in figure 1. If a line labelled
ℓi is crossed in the direction of the arrow shown in figure 1, then the number of actual surface modes in the
regions Ri shown in figure 1c change by the amount shown in this table.

The free parameters governing the behaviour of the surface modes are therefore the liner impedance Z, the
acoustic parameter λ, the flow parameters M and h̃, and the boundary layer shape parameters ∆mass, ∆ke,
and ∆1. A constant-then-linear boundary layer profile with constant density,

U(r) =

{

M r < 1− h

M(1− r)/h r > 1− h
R(r) ≡ 1, (15)

gives ∆mass = 0, ∆ke = 2/3 and ∆1 = 1, with h̃ = ωh.

III. Solutions of the surface mode dispersion relation

In this section, we investigate the number and position of surface modes for a given frequency ω, and
how these vary with varying impedance Z. The procedure we follow is similar to that described by Rienstra6

and was also used in Ref. 7.
For a locally-reacting impedance, meaning that Z is independent of k and m, the surface mode dispersion

relation (11) (or equivalently (14)) is of sixth order in k (or σ), and therefore there are six potential surface
modes for a given frequency ω. However, not all of these potential surface modes will satisfy the requirement
that Re(µ) > 0. The number of actual surface modes will therefore change when one of the potential surface
modes moves from having Re(µ) < 0 to Re(µ) > 0. We may therefore map the curve Re(µ) = 0 into
the complex Z-plane to denote regions of the Z-plane that have the same number of actual surface modes.
Moreover, since only impedances that satisfy Re(Z) > 0 remove energy from the fluid and are hence physical,
we may map the curve Re(Z) = 0 into the complex σ plane to separate regions of the σ plane that can and
cannot contain surface modes.

Figure 1 plots Re(µ) = 0 and Re(Z) = 0 in the complex Z and σ planes. The parameters used were
chosen to correspond to rotor-alone tones in a typical aeroengine at takeoff, with M = 0.5, ω = 31 and
m = 24, with a boundary layer of thickness δ = 10−3 and a tanh profile, as used by Rienstra & Vilenski,18

U(r)/M = tanh

(

1− r

δ

)

+
(

1− tanh(1/δ)
)

(

1 + tanh(1/δ)

δ
r + (1 + r)

)

(1− r), (16)

with constant density R(r) ≡ 1. The boundary layer parameters for this situation are

δmom = 6.9315× 10−4 δke = 10−3 δ1 = 10−3 δmass = 0

h̃ ≈ 4.3× 10−2 ∆ke ≈ 0.72135 ∆1 ≈ 0.72135 ∆mass = 0

The situation is rather complicated, and is described in table 1. For large |Z| there are two actual surface
modes present, located in regions R1 and R3 of the σ-plane, as shown in figure 1c. As Z varies and crosses
the lines labelled ℓi in figure 1a,b, other actual surface modes appear. In total, there are a maximum of two
surface modes possible in each of regions R1 and R2, and a maximum of one surface mode possible in each
of regions R3 and R4. In each of regions R1 and R2, the two actual surface modes can be made to collide
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Figure 1. Plots of Re(µ) = 0 and Re(Z) = 0 in the Z- and σ-planes using the surface mode dispersion relation (11),
for a tanh boundary layer profile given by (16) with δ = 10−3 and M = 0.5, for ω = 31 and m = 24 (giving λ ≈ 1.49).
Singularities are where the dispersion relation admits a double root. Lines labelled ℓi, regions labelled Rj , and
the singularity labelled s1 are described in the text.
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by picking a particular value of Z, labelled as singularities in figure 1a, with the locations in the σ-plane
that these collisions occur plotted in figure 1c. It is hypothesised here that the singularity in the R1 plane
may be linked to a possible absolute instability, although this is not investigated further.

Since figures 1a,c do not look like their equivalent with uniform flow (see, e.g., figure 2 of Ref. 7), it is
interesting to note how the uniform flow equivalents are recovered in the limit h̃ → 0 by making the boundary
layer progressively thinner. Figure 2 shows the comparable diagrams to figures 1a,c for the same parameters
but for a tanh boundary layer with thicknesses δ = 3× 10−4, and δ = 2.5× 10−4 and δ = 5× 10−5, by which
time the λ = 1.5 solution from figure 2 of Ref. 7 is becoming recognizeable.

This section has described the position and number of surface modes for the particular values λ ≈ 1.5,
M = 0.5, h̃ ≈ 0.043, and a tanh boundary layer profile. Due to space and time constraints, no further analysis
of different parameter regimes has been attempted; however, it is expected that the situation described here
is indicative of a relatively large and aeroacoustically-useful range of parameters. In the next section, we
compare the predictions of this surface mode thin-boundary-layer approximation to full numerical solutions
of the Pridmore-Brown equation.

IV. Numerical comparison

In this section, we consider the frequency ω to be given and solve for the axial wavenumber k. We will
compare the predictions of the modified Myers surface mode (MMSM) dispersion relation (11), as discussed
in the previous section, with a number of progressively less approximate dispersion relations. The first
of these we term the Short Wavelength Modified Myers (SWMM) dispersion relation, being the dispersion
relation (4) with Zmod given by (5) and with the short wavelength approximation δI1 ∼ δ1Mk/ω. Similarly,
the Full Modified Myers (FMM) dispersion relation is given by (4) with Zmod given by (5) but with the δI1
integral being computed numerically.

As a check on the accuracy of these modified Myers boundary conditions, we will also consider the
dispersion relation given by solving the Pridmore-Brown19 equation numerically. The Pridmore-Brown
equation is a direct rearrangement of the Linearized Euler Equations in the frequency domain, eliminating
all but the linearized pressure p̃, giving

p̃′′ +

(

1

r
+

2kU ′

ω − Uk
−

R′

R

)

p̃′ +

(

(ω − Uk)2R− k2 −
m2

r2

)

p̃ = 0, (17)

where a prime denotes d/dr. The boundary conditions are regularity of p̃ at r = 0 and the impedance
boundary condition (assuming U(1) = 0),

Zp̃′(1) + iωR(1)p̃(1) = 0.

The Pridmore-Brown dispersion relation (labelled PB in the figures) is given by finding a value of k such
that (17) subject to these boundary conditions possesses a nonzero solution. Eq. (17) was solved using a 12th
order implicit central finite difference method, with grid points clustered so as to provide sufficient resolution
within even very thin boundary layers (the same code was used for the numerical results in Ref. 13); typically
4000 radial points were used. The boundary condition at r = 1 was then satisfied using a Newton-Raphson
iteration to find the modal wavenumber k, with iteration starting points chosen close to predicted positions
of modes and on an evenly spaced grid to find unpredicted modes.

Since the asymptotics of Ref. 13, leading to the modified Myers boundary condition given in (4) and (5),
are based on the Pridmore-Brown equation to first order in the boundary layer thickness, what follows also
provides a useful comparison of the accuracy of this boundary condition. For comparison, we also include
here the results of the unmodified Myers boundary condition (labelled Myers in the figures), given by the
dispersion relation (4) with Zmod = Z, and the unmodified surface mode dispersion relation which follows
from it6, 7 (labelled as UMSM in the figures).

We consider here two different parameters, namely (ω,m) = (31, 24) and (ω,m) = (10, 5). For all cases
here, the boundary layer thickness is 10−3 and the centerline Mach number is M = 0.5. Two boundary layer
profiles are used: the linear profile given by (15), with the thickness defined to be h, and the tanh profile
given by (16), with the thickness defined to be δ; note that this gives δ1 = 10−3 in both cases.

Figure 3 shows the allowable axial wavenumbers for (ω,m) = (10, 5) with a tanh boundary layer profile
and an impedance wall with Z = 1 − 2.5i. In this case, the surface mode dispersion relation (11) correctly

6 of 15

American Institute of Aeronautics and Astronautics Paper 2011–2736



-3

-2

-1

 0

 1

 2

-0.5  0  0.5  1  1.5  2  2.5  3  3.5  4

-10

-5

 0

 5

 10

-5  0  5  10  15

-3

-2

-1

 0

 1

 2

-0.5  0  0.5  1  1.5  2  2.5  3  3.5  4

-10

-5

 0

 5

 10

-5  0  5  10  15

-3

-2

-1

 0

 1

 2

-0.5  0  0.5  1  1.5  2  2.5  3  3.5  4

-10

-5

 0

 5

 10

-5  0  5  10  15

a) δ = 3× 10−4, Z-plane b) δ = 3× 10−4, σ-plane

c) δ = 2.5× 10−4, Z-plane d) δ = 2.5× 10−4, σ-plane

e) δ = 5× 10−5, Z-plane f ) δ = 5× 10−5, σ-plane

Singularities

Singularities

Re(µ) = 0

Re(µ) = 0

Re(Z) = 0

Re(Z) = 0

Figure 2. The curves Re(Z) = 0 and Re(µ) = 0 plotted in the complex Z- and σ-planes, for the same parameters
as figure 1 but with different boundary layer thicknesses. The boundary layer has a tanh profile given by (16)
with thickness δ and M = 0.5, for ω = 31 and m = 24 (giving λ ≈ 1.49).
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Figure 3. Axial wavenumbers (k) in the complex k-plane for a boundary impedance Z = 1 − 2.5i and various
dispersion relations, for ω = 10, m = 5, and a tanh boundary layer profile (16) with δ = 10−3. Dispersion relations:
UMSM = Unmodified Myers Surface Mode, FMM = Full Modified Myers, SWMM = Short Wavelength
Modified Myers, MMSM = Modified Myers Surface Mode, PB = Pridmore-Brown numerical modes.

predicts the existence and location of five actual surface modes: two in region R2 (the top-left quadrant of
the k-plane) and one in each of regions R1, R3 and R4. The unmodified Myers boundary condition predicts
only four actual surface modes, of which the locations of only two are predicted accurately.

Figure 4a uses similar parameters to figure 3 but for the impedance Z = 1.6+0.2i. In this case, the surface
mode dispersion relation (11) correctly predicts the existence of two surface modes in region R1. This is
significant, as the surface mode analysis for uniform flow using the Myers boundary condition (Refs. 6 and 7)
predicts only one in this quadrant, which Rienstra6 tentatively predicted to be a hydrodynamic instability,
and which appears to be confirmed by recent investigations.10, 13 Figure 4b shows the same situation but
with a linear boundary layer profile, for which the short wavelength approximation for δI1 becomes exact.
While the surface modes (both numerically-calculated and predicted) move a moderate amount under this
change, what is most striking is that there is one surface mode that is present for the tanh case (figure 4a)
and not present for the linear case (figure 4b), despite all the approximations predicting it to be present in
both cases. The track taken by this mode as the flow velocity U(r) is linearly interpolated between the tanh
and linear profiles is shown in both figures 4a and b, clearly demonstrating that this mode has disappeared
and become an ordinary cut-off acoustic mode, and eliminating the possibility that the numerics has failed
to find this mode for the linear profile.

We now consider the parameters (ω,m) = (31, 24), motivated by their relevance to rotor-alone noise in an
aeroengine intake. Figure 5 is a similar plot to figure 4, but for (ω,m) = (31, 24) and Z = 0.6−2i. The surface
mode dispersion relation (11) correctly predicts two actual surface modes in region R2, one in R3 and none
in R4, while the uniform flow dispersion relations incorrectly predict a surface mode in region R4 and fail to
predict the second surface mode in region R2. However, the most interesting behaviour is seen in region R1

(the upper-right quadrant of the k-plane). The uniform flow dispersion relations predict a surface mode in
this region, but inaccurately predict its location. The modified surface mode dispersion relation (11) predicts
a surface mode much closer to the real k axis, which is backed up by the short wavelength approximation.
However, this surface mode is only present for the full modified Myers dispersion relation and the numerical
solution of the Pridmore-Brown equation for a linear boundary layer profile. Tracking this mode as the mean
velocity U(r) is linearly varied from a linear to tanh profile shows that this mode disappears into the critical
layer branch cut located on the real k axis (see Ref. 14 for further details of the critical layer).
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Figure 4. Axial wavenumbers (k) in the complex k-plane for a boundary impedance Z = 1.6 + 0.2i and various
dispersion relations, for ω = 10, m = 5, and a) a tanh boundary layer profile (16) with δ = 10−3, and b) a
linear boundary layer profile (15) with h = 10−3. “Track” refers to the motion of one particular PB numerical
mode as the boundary layer profile is smoothly deformed from tanh to linear. Dispersion relations: UMSM
= Unmodified Myers Surface Mode, FMM = Full Modified Myers, SWMM = Short Wavelength Modified
Myers, MMSM = Modified Myers Surface Mode, PB = Pridmore-Brown numerical modes.
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Figure 5. Axial wavenumbers (k) in the complex k-plane for a boundary impedance Z = 0.6 − 2i and various
dispersion relations, for ω = 31, m = 24, and a) a tanh boundary layer profile (16) with δ = 10−3, and b) a
linear boundary layer profile (15) with h = 10−3. “Track” refers to the motion of one particular PB numerical
mode as the boundary layer profile is smoothly deformed from tanh to linear. Dispersion relations: UMSM
= Unmodified Myers Surface Mode, FMM = Full Modified Myers, SWMM = Short Wavelength Modified
Myers, MMSM = Modified Myers Surface Mode, PB = Pridmore-Brown numerical modes.
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Figure 6. Axial wavenumbers (k) in the complex k-plane for four different boundary layers: a tanh profile with
δ = 10−3, a linear profile with h = 10−3 (matching the δ1 of the tanh profile), a linear profile with h = 1.39× 10−3

(matching the δmom of the tanh profile), and a linear profile with h = 1.5× 10−3 (matching the δke of the tanh
profile). a) numerical solutions to the Pridmore-Brown equation (labelled PB in figure 5); b) full modified
Myers solutions (labelled FMM in figure 5). Other parameters are as for figure 5: M = 0.5, ω = 31, m = 24, and
Z = 0.6− 2i.

Note that the tanh profile used in figures 4 and 5 has δmass = 0, δmom ≈ 7 × 10−4, δke = 10−3 and
δ1 = 10−3, while the linear profile used in these figures has δmass = 0, δmom = 5 × 10−4, δke ≈ 7 × 10−4

and δ1 = 10−3. It might be though, therefore, that the differences between the linear- and tanh-profile
results in figures 4 and 5 might be due to the two boundary layer profiles have different effective thicknesses.
However, figure 6 compares the numerical Pridmore-Brown modes (figure 6a) and the Full Modified Myers
approximation (figure 6b) for the tanh boundary layer profile with δ = 10−3 and the linear profile with
h = 10−3, h = 1.39× 10−3, and h = 1.5× 10−3; these three linear profiles match the δ1, δmom and δke of the
tanh profile respectively. While it is interesting to note the significant motion of the surface modes in region
R2 (the upper-left quadrant of the k-plane), for both the numerical solution and the full modified Myers
approximation all three linear profiles support a surface mode in region R1 (the upper-right quadrant of the
k-plane) while the tanh profile does not. This demonstrates that the shape of the boundary layer profile can
have an important effect on the presence or absence of this (probably unstable) surface mode.

Finally, we consider the motion of modes as Im(Z) varies with Re(Z) fixed (as considered by, for example,
Vilenski & Rienstra20), since this is the typical situation that occurs with, for example, a Helmholtz Resonator
impedance21 where Re(Z) is fixed and Im(Z) varies strongly with frequency and tuning parameters (such as
the depth of the resonator cell). Figure 7 shows such a situation with Re(Z) = 0.75, again for the parameters
(ω,m) = (31, 24). The value of Re(Z) = 0.75 was chosen to demonstrate a range of behaviours of surface
modes, informed by figure 1; for example, this range of Z passes close to both singularities in figure 1a. Of
the five surface modes shown in figure 7, the two closest to the origin are accurately predicted by all methods.
The surface mode in the R2 region (the upper-left of the k-plane) is notably less accurately predicted, though
is still arguably well-predicted quantitatively. In the R1 region (the upper-right quadrant of the k-plane), one
surface mode is accurately predicted and the other is qualitatively well predicted by both the surface mode
dispersion relation (11) and the short wavelength modified Myers dispersion relation, both of which agree
very closely with one another. However, both of these methods fail to predict the disappearance of these
surface modes behind the critical layer branch cut — a feature demonstrated by the numerical Pridmore-
Brown solution and also captured by the full modified Myers boundary condition. This shows that the δI1
integral is strongly connected with the behaviour of the critical layer branch cut, as predicted in Ref. 13.
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Figure 7. Trajectories of axial wavenumbers (k) in the complex k-plane as Im(Z) is varies with Re(Z) = 0.75.
Parameters are as for figure 5: a tanh boundary layer profile with δ = 10−3 and M = 0.5, with ω = 31 and
m = 24. Solutions are for FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, MMSM
= Modified Myers Surface Mode, and PB = Pridmore-Brown numerical modes, with CL labelling the critical
layer branch cut.

The fact that the full modified Myers solution and the numerical Pridmore-Brown solution show different
trends in the upper-right k-plane is explained by the close proximity of the unlabelled singularity in figure 1,
which the full modified Myers solution has placed on the wrong side of the line Re(Z) = 0.75.

V. Stability

In this section, we will consider a simplified Briggs–Bers16, 17 stability analysis of the surface modes,
similar to that performed in Ref. 13. This stability analysis involves smoothly varying ω, with the imaginary
part going from being large and negative to zero and the real part held fixed; here, we assume Im(ω) = −100 is
sufficiently negative. Modes are considered to be left-propagating (upstream propagating) if they originated
in the upper-half k-plane, and right-propagating (downstream propagating) if they originated in the lower-
half k-plane. This stability analysis presented here is simplified, in that we will not search for absolute
instabilities (for further details of a full stability analysis, see, e.g., Ref. 13).

In order to vary ω, the dependence of Z on ω is needed. Here, we choose a Helmholtz resonator impedance
model21 of the form

Z(ω) = R+ iωdL− i cot(ωL), (18)

where d is the added mass of the facing sheet nondimensionalized by the mean flow centerline density and
the resonator depth, and L is the resonator depth nondimensionalized by the duct radius. Here, we take
d = 4/7 (as in Refs. 10 and 13) and vary L to give the required impedance at the given frequency.

Figure 8 shows the Briggs–Bers trajectories as Im(ω) is varied from −100 to 0 with Re(ω) = 10 fixed,
for the same parameters as figure 3. Four of the five surface modes and all the acoustic modes are seen to
be stable, with the only (for this impedance) surface mode in region R1 (the upper-right quadrant of the
k-plane) being a downstream-propagating instability. This is in line with Refs. 6, 10 and 13.

Figure 9 shows the Briggs–Bers stability analysis for the modes in figure 4a. This figure shows the lower
surface mode in region R1 (the upper-right quadrant of the k-plane) as being a downstream-propagating
convective instability and the other surface mode as being an upstream-propagating stable mode. However,
note that by varying the impedance around the singular point in the complex Z-plane (similar to the
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Figure 8. Briggs–Bers trajectories of modes in the complex k-plane for Im(ω) ∈ [−100, 0] with Re(ω) = 10 for
various dispersion relations. Parameters are as for figure 3: m = 5, a tanh boundary layer profile (16) with
δ = 10−3 and M = 0.5, and a Helmholtz resonator impedance (18) with R = 1, d = 4/7 and L = 3.544024 × 10−2.
Dispersion relations: FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, PB =
Pridmore-Brown numerical modes.
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Figure 9. Briggs–Bers trajectories of modes in the complex k-plane for Im(ω) ∈ [−100, 0] with Re(ω) = 10 for
various dispersion relations. Parameters are as for figure 4a: m = 5, a tanh boundary layer profile (16) with
δ = 10−3 and M = 0.5, and a Helmholtz resonator impedance (18) with R = 1, d = 4/7 and L = 0.11446. Dispersion
relations: FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, PB = Pridmore-Brown
numerical modes.
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Figure 10. Briggs–Bers trajectories of modes in the complex k-plane for Im(ω) ∈ [−100, 0] with Re(ω) = 31
for various dispersion relations. Parameters are as for figure 5a: m = 24, a tanh boundary layer profile (16)
with δ = 10−3 and M = 0.5, and a Helmholtz resonator impedance (18) with R = 1, d = 4/7 and L = 0.109365.
Dispersion relations: FMM = Full Modified Myers, SWMM = Short Wavelength Modified Myers, PB =
Pridmore-Brown numerical modes.

unlabelled singular point in figure 1) these two R1 surface modes can be made to exchange places, hinting
at the existence of an absolute instability in this case for at least some impedances.

Even more confusingly, figure 10 shows the Briggs–Bers stability analysis for the modes in figure 5a. In
this case, for the full modified Myers and the numerical Pridmore-Brown dispersion relations, the surface
mode in regionR1 is hidden behind the branch cut, while for the short wavelength modified Myers dispersion
relation this surface mode would be a downstream-propagating convective instability. Note that this surface
mode does exist if the boundary layer profile is taken as linear (see figure 6), and in this case a similar
analysis shows this surface mode to be a downstream-propagating convective instability.

That one of the surface modes in region R1 (the upper-right quadrant of the k-plane) seems to always
be an instability, and is predicted to always be present for any impedance (although it may in fact be hiding
behind the critical layer branch cut) is in line with Refs. 6, 10 and 13, and also with the observations of
Ref. 14 for thicker linear boundary layers.

VI. Conclusion

This paper considers the problem of determining the modes, and in particular the surface modes, of a
cylindrical lined duct with coaxial flow and a thin sheared boundary layer. The surface mode approximation
developed by Rienstra6 and Brambley & Peake7 is extended, with the thin boundary layer accounted for
using a modified Myers boundary condition in the form proposed by Ref. 13, which is asymptotically correct
to first order in the boundary layer thickness for arbitrary boundary layer profiles. The resulting dispersion
relation is given in its most readily-useable form in (11), although a rescaled version given in (14) shows the
number of free parameters in (11) may be reduced by one. These free parameters are: the lining impedance Z;
the centerline Mach number M ; the acoustic parameter λ = ω/

(

m(1−M2)1/2
)

; the boundary layer thickness

measured on the lengthscale of a far field wavelength h̃ = 2ωδmom; and the boundary layer shape parameters
∆mass = δmass/(2δmom), ∆ke = δke/(2δmom), and ∆1 = −M/

(

2R(1)U ′(1)δmom

)

. The first three parameters,
Z, M and λ, are the same as for the uniform flow surface mode approximation.7 Rather than the four
surface modes predicted by the uniform flow surface mode dispersion relation, the sheared flow surface mode
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dispersion relation (11) is shown to support up to six surface modes, as described for particular parameters
in figures 1 and 2. This helps explain the patterns seen numerically by Vilenski & Rienstra20 (for example,
figure 8b of Ref. 20).

For the uniform flow surface mode approximation, as Im(Z) → −∞ four surface modes are present, with
two surface modes tending to infinity in the k-plane, while as Im(Z) → ∞ no surface modes are present. The
caused Rienstra (section 6 of Ref. 6) to propose a method of finding all modes by tracking modes from their
hard-walled values as Im(Z) is reduced from +∞. With a boundary layer present, we find that there are
two surface modes tending to two finite values of k as |Z| → ∞ in any direction (provided Re(Z) > 0), with
at least one of these values not corresponding to a hard-walled mode. It would seem, therefore, that this
tracking procedure need not to be restricted to reducing Im(Z) from +∞ but does need to be augmented
by finding at least one of the surface modes by independent means.

The fact that the modified Myers boundary condition leads to a maximum of six surface modes, rather
than the four predicted for uniform flow is important not only for finding all the modes for a given set of
parameters, but also for ascertaining stability. Indeed, the surface mode dispersion relation (11) shows that
there are two modes in a region of the k-plane (labelled R1 in figure 1) that was predicted for uniform
flow to contain only one, possibly unstable, surface mode. The stability analysis of section V suggests
that one of these surface modes is indeed a downstream-propagating instability while the other is a stable
upstream-propagating evanescent wave. These two modes may collide for a particular impedance, labelled
as a singularity in figure 1, and will interchange places as the impedance varies around this singularity.
This means it is difficult to attach labels to these modes and say one is stable and the other unstable. It
is hypothesised here that this behaviour may indicate a possible absolute instability, although this is not
investigated further here.

The differential equation governing the pressure in a sheared flow is the Pridmore-Brown equation (17).
Approximate solutions to this equation are found in this paper using a number of methods, being (in order
of complexity and accuracy): directly numerically integrating the Pridmore-Brown equation (the PB results
in figures); solving the modified Myers boundary condition of Brambley,13 derived asymptotically to include
first order effects in the boundary layer thickness (the FMM results in figures); solving a short wavelength
approximation to this modified Myers boundary condition (the SWMM results in figures); and assuming the
flow to be constant and applying the Myers,1 or Ingard–Myers,2 boundary condition (the Myers results in
figures). One results of this paper is therefore a comparison of these four methods for a number of different
parameters. Unsurprisingly, the more complicated the method the more accurate the results, although the
results here confirm the conclusions of Ref. 13 that the Myers boundary condition with uniform flow is a
good approximation for the acoustic modes and a rather poor approximation for surface modes.

Section IV gives a range of examples for particular parameters. While all of these examples have M =
U(0) = 0.5 and R(r) ≡ 1, the analysis presented here is valid for general U and R. Two boundary layer
profiles were used: the constant-then-linear profile (15) and the tanh profile (16), as used by Vilenski &
Rienstra.20 In general these two boundary layer profiles give similar results. However, as shown in figure 6,
it is possible to find parameters for which the linear profile supports an unstable surface wave while the tanh
profile does not; moreover, this effect is shown here to be due to the difference in boundary layer profile and
not because one boundary layer is effectively thinner than the other. Further investigation is ongoing into
the stability implications of this.

For the surface modes, the examples of section IV show very good agreement between the full modified
Myers solutions and the direct numerical solutions of the Pridmore-Brown equation, and generally very good
agreement in the majority of cases between these and the short wavelength solution and the surface mode
solution given by (11); the unmodified Myers solution and its corresponding surface mode approximation
show much worse accuracy for the surface modes, and indeed miss two surface modes entirely. While this
good accuracy for the modified equations might be seen to be due to the very thin boundary layer used,
in fact the small parameter of interest is the scaled boundary layer thickness h̃ given in (12), which for the
examples given here is h̃ ≈ 0.04, which is not enormously small.

One aspect ignored by the current work is the presence of a critical layer and its associated branch cut in
the complex k-plane. This branch cut is hinted at in figure 5 and shown explicitly in figure 7, since numerical
solutions of the Pridmore-Brown equation and solutions of the full modified Myers dispersion relation are
seen to “hide” behind this branch cut for certain values of the impedance Z. Investigation of the critical
layer necessitates a different approach, and this is considered for linear boundary layer profiles in Ref. 14.
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