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Introduction 

This presentation was prepared as a 30-minute opening plenary for the Conference on Calculus 
in Upper Secondary and Beginning University Mathematics at The University of Agder, 
Norway, August 6 – 9, 2019. I was invited to present a personal view of the development of 
calculus over the last fifty years to set the scene for the conference. For health reasons I was 
unable to travel, so I made the video at home. It is available on YouTube at  
https://www.youtube.com/watch?v=eOwQlEPKCfY&feature=youtu.be 

At the conference, participants will present various different approaches to the calculus. 
This opening plenary is designed to respect all viewpoints and to encourage participants to 
reflect on their personal views, to seek a broader overview of the whole enterprise. The issues 
are complex and no single individual can have a complete overall picture. So, although I will 
fulfil the request to present a personal view of the evolution of calculus, I will present evidence 
from a range of sources to seek an overall view. I will also add extra detail [in smaller type]. 

The calculus focuses on how we humans perceive, interpret and predict change and 
growth. The presentation will consider how we give meaning to dynamic change, how we 
interpret operational symbols as operations which then function as mental objects that can 
themselves be manipulated. It formulates how mathematics develops in sophistication through 
practical, theoretical and formal ways of thinking. This will include very recent developments 
in my own publications that offer simple new ways of giving meaning to symbolic expressions 
and new ways of interpreting dynamic change using retina displays. 

I will begin with the human capacity for embodiment as we interact and interpret the 
world through practical activities and move to a higher theoretical level where visual 
embodiment of the limiting process stabilizes visually on the limit object. I will take an 
excursion to formal analysis where I will prove a simple formal theorem that shows that we can 
visualise infinitesimals as points on the number line. I will use the cultural theory of Raymond 
Wilder to interpret how social aspects colour our ways of thinking and invite you to reflect 
honestly on your own viewpoint. I invite you to produce evidence to challenge and improve the 
overall picture that I offer. We make advances by challenging our own thinking. 
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Introduction 

This presentation reviews the rapid evolution of calculus over the last half century. It formulates 
simple ways to make calculus meaningful to the wide range of teachers, learners and experts 
that take account of the latest developments in digital technology, the workings of the human 
brain and the cultural aspects that affect the nature of human society. 

The conference organisers invited me to offer a personal view of the evolution of calculus 
as it was 50 years ago and as it is now. I have decided to broaden this, to experiences since I 
first encountered calculus myself as a fifteen-year-old in school. 

I note that the conference is focused around four themes.  
A. The school-university transition with a focus on calculus 
B. The fundamental theorem 
C. The use of digital technology 
D. Teaching & learning in various disciplines 

This will be a personal journey. It will touch on ideas that have fascinated me as we live through 
a life-time that has seen – and continues to see – unprecedented evolution of digital technology. 
From such a vast enterprise, I seek an inner simplicity that gives human meaning to the 
mathematics of change and growth. 

Let me begin by taking you back to my first encounter with calculus as a fifteen-year-old 
schoolboy. When I began to learn calculus, my mathematics master, Mr J. H. Butler, a graduate 
of Oxford University, wrote:  

 
Figure 1: First report as a calculus student 

He was concerned that I spent too much time on a variety of activities and did not spend all my 
time on mathematics. This is still true and it is why I wish to refer to a range of other disciplines 
in my presentation, because we gain a greater insight into the ways we make sense of the 
calculus by considering the wider picture. 

I really enjoyed working from the Calculus book by school teachers Durell and Robson, 
published in the thirties. 

 
Fig 2: Introducing the derivative in the book by Durell and Robson (1933) 

It defined the derivative as the limit of δy over δx as δx tends to zero. Much later, for any real 
number dx, it defined dy to be   times dx, then, for dx non-zero,  equals the quotient 
dy/dx. 

This is based on the book by the Cambridge mathematician, Robert Woodhouse, 
published in 1803, which introduced the Leibniz notation to England after more than a century 
using mainly Newton’s approach. It spread to English speaking nations around the world, 

′f (x) ′f (x)
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including the American Mathematical Society which based its organisation on that of the 
London Mathematical Society in the 1880s. 

Note the problematic meaning of the limit where δy over δx could only be calculated for 
δx non-zero while the limit value involved putting δx equal to zero. 

There were also multiple meanings of symbolism, such as  being both a quotient 
and the symbol d/dx being an operation: 

 

It was even an operation that could be repeated to give 

. 

Then there was the meaning of dx in dy/dx and in the integral , where it is spoken as the 
integral of y ‘with respect to x’. 

Many problematic meanings still remain. 

Problematic meanings in calculus today 

Calculus is still based on an informal limit concept.  For instance, the US Advanced Placement 
Calculus speaks of four ‘big ideas’: 

• Limits 
• Derivatives 
• Integrals and the Fundamental Theorem 

with an alternative curriculum including 
• Series 

The detailed curriculum focuses on concepts that can be tested on multi-choice tests. 

Meanwhile, mathematics education research, is full of misconceptions that occur in learning. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Digital technology offers new facilities: 
• for performing fast and accurate numerical calculations 
• for the manipulation of symbols 
• for drawing dynamic pictures that offer visual and conceptual meaning 

Graphic Calculus 

My own work in the 1980s involved developing software called Graphic Calculus to visualise 
concepts. 

One program allowed the user to magnify part of the graph, to see that, close up, familiar graphs 
looked less curved and — under high magnification — they looked locally straight. 
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Figure 3: Magnify 

The derivative now is not introduced as a limit, it is the slope of the graph itself. 
It is possible to look along the graph to see its changing slope. 
It is also possible to trace it with your hand to feel it. 

It has human meaning. 

Another program plots successive lines of slope (f(x + c) – f(x)) / c on the graph, for variable x 
and small fixed c, to plot points that lie on the graph that I termed the practical slope function 
for variable x. (In the UK we called it the ‘gradient function’.) 

 
Figure 4: Plotting points on the practical slope function 

In the case of f(x) = x2, the practical slope function is 2x + c. As c is taken to be small, the graph 
stabilises visibly to the graph of 2x.  

Local straightness gives meaning to all standard derivatives. 

 
Figure 5: The practical slope function of 2^x 

For instance, looking at the graphs of 2^x and 3^x shows that they have the same general 
increasing shape but the slope of 2^x is below the original and 3^x is above. Look for a number 
e between 2 and 3 where the slope function for e^x is again e^x. 

Seeking a polynomial approximation links the visual information to symbolic calculation 
to give a sense of how quickly the approximation converges and allows e to be calculated to 
ten or more decimal places by hand. (Or you may use Excel, if you really wish to do so …) 
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The graphic approach gives visual meaning to the symbolic derivative.  (Wow!) 
But it does not deal with the rules of differentiation.  (Uhu!) 
Recent developments which I will discuss later offer new meanings to fill this gap. This will 
offer a simple way to understand how spoken articulation gives meaning to expressions and 
how to interpret the flexible meaning of sub-expressions as process or mental object. 

Integration and the fundamental theorem 

Now we turn to integration and the fundamental theorem. In this case, I take a function such as 
sin(x) and keep the same vertical scale while stretching the horizontal scale. In this case you 
can see that the graph ‘pulls flat’ (Figure 6). 

 
Figure 6: Stretch a (continuous) graph horizontally 

Taking the vertical thickness of the pixel line as ±epsilon, the idea of ‘pulling flat’ embodies 
the formal definition of continuity at x: 

Given any ε > 0, we can find a δ > 0 such that, stretched in a window width x ± δ, 
the graph lies in the pixel line f(x) ± ε.  

Drawing a continuous graph on paper involves a dynamic physical process, that produces a 
visual object: the graph. Suitably programmed, a digital picture of a continuous graph will ‘pull 
flat’ when it is stretched horizontally. 

 
Figure 7: Dynamic definition of continuity 

This offers a vital change in meaning. While a static picture in a book does not offer any insight 
into the fundamental relationship between practical continuity in drawing and the formal 
epsilon-delta definition, horizontal stretching of a digital picture of the graph offers a dynamic 
embodied meaning that links practical drawing of a continuous curve to the formal definition 
of continuity. 

This offers a new embodied insight into the fundamental theorem of calculus (Figure 8). 
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Figure 8: Visualising dA as y dx 

If we look closer at the picture where the graph has been pulled flat in a fixed window, the area 
A to a point x on the x-axis with y measured up from the x-axis can be imagined to change by 
an increase dx in x. Then the increase dA in A, calculated as y times dx, is given as dA = y dx. 

This has the useful idea that it is based on a link between the embodied action of drawing 
and the formal definition of continuity.   (Wow!) 

But on the negative side there are concerns about the meaning.  (Uhu!) 
The horizontal stretching clearly changes the visual area of the strip width dx, height y. 

But if the product y dx is interpreted as a number then this remains unchanged. This clearly 
signals the need to realise that there are (at least) two distinct interpretations of the calculus. 
One involves the variables as numbers, the other involves the variables as quantities with 
dimensions, such as time, length, area, volume, velocity, mass, temperature, density, pressure, 
national debt, share value, and any other measurable quantities that arise in applications. 

In addition, there is still the question about the exact meaning and value of dA being 
precisely equal to y dx. 

Levels of Sophistication in Calculus and Analysis 

To respond to this, we need to look at the bigger picture. 
I suggest that CALCULUS has two successive levels of sophistication. One is the 
Practical level that involves visual representation and symbolic calculation, in which 
a process approaches a limiting value. 

Then there is the 
Theoretical level that involves informal definition and deduction, focusing on the 
limit object itself. 

ANALYSIS, on the other hand, is based on 
Formal mathematics, using set-theoretic definition and formal proof. 

Users of Calculus essentially only encounter practical or theoretical mathematics, which 
involve visual and symbolic aspects. Practical mathematics involves coherent ideas that fit 
together. Theoretical mathematics introducing more coherent forms of reason, where specific 
assumptions have necessary consequences. 
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Human perception and action involve more than visual input. More broadly, they involve 
a wide range of perceptual senses and forms of action and reason that I term Embodiment. This 
is physical and mental, visual and gestural, and includes mental thought experiments. 

Symbolism involves calculation, compressing processes in time as operational symbols 
that can be mentally manipulated as objects, where the symbols have multiple meanings. 

The Practical limit is a process that gets as close as is desired. 
The Theoretical limit is the limit object. 

Embodiment suggests the limit is visually attained.  (Wow!) 
Symbolism suggests that the limit is not attained.  (Uhu!) 

Cultural aspects of mathematics 

Mathematics arises in different cultural settings. I build my framework on the insight of 
mathematician Raymond Wilder who used the anthropological term ‘culture’ to study the 
evolution of mathematical concepts. 

He wrote: 
[A culture is] a collection of customs, rituals, beliefs, tools, mores, and so on, called 
cultural elements, possessed by a group of people who are related by some 
associative factor (or factors) such as common membership in a primitive tribe, 
geographical contiguity, or common occupation. 

He used a number of anthropological terms: 
• Cultural stress involves a need in the community that requires to be resolved 
• Cultural diffusion refers to moving cultural elements between cultures 
• Cultural lag acknowledges that diffusion takes time 
• Cultural resistance occurs when a community opposes diffusion 

To these I add a positive heading to balance the negative notion of resistance: 
• Cultural stability involves maintaining a culture that seems to be working 

How do these cultural aspects affect calculus? 

In the calculus we have: 
• Stress from different needs in different communities 
• Stress from fast changing digital technology 
• Cultural lag in transmitting new ideas to communities that may not even be 

aware of them 
• Resistance to new ideas competing with stability 

A major cultural factor is the conflict between cultural stability, and changing need, which 
underlies the so-called math wars. 

Pure mathematicians seek formal proof. Users require theoretical mathematics involving limit 
objects or practical mathematics involving limit processes. The plan is top-down, the learning 
is bottom up (Figure 9). 

 
Figure 9: Directions of planning and learning 
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How does this relate to How Humans Think Mathematically? 

To gain insight into how we think mathematically, it is first useful to understand how we 
interpret what we see (Figure 10). 

 
Figure 10: The structure of the eye 

On the left is a cross section of the eye looking from above with the pupil at the bottom and the 
back of the eye at the top. On the right is a view of the central part of the back of the eye as 
seen through the pupil which includes an area called the macula, about 5.5 mm across. This 
recognises visual detail. 

In the centre of the macula is circular region called the fovea. This recognises high 
resolution colour and detail through cells called cones. There are around 200,000 cones and the 
fovea is only about 250 cones across. We will see that this has a profound effect on how we 
read symbols and how our eyes follow moving objects. 

When we read text, the eye stops for a brief fixation to take in information through the 
fovea and shifts between fixations in jumps called saccades. Read the words on this page to get 
a sense of how your eye jumps in saccades and stops momentarily in fixations. 

Do this now, so that you have a sense of what I am talking about … 

Reading mathematical expressions 

Expressions are read in many languages left to right in chunks. 
For instance, this expression  

1 + 2 × 3 
is read as one plus two times three. 
The meaning depends on the spoken articulation. If I leave small gaps between symbols, then 
the meaning can be made more precise. Here I use three dots (an ellipsis …) to denote a brief 
gap in speech so that “1 + 2 … times 3” means that I say “1 + 2” (which is “3”) then, after a 
gap (…), I say, “times 3”. In this case, 

“1 + 2 … times 3” is 3 times 3, which is 9. 
Meanwhile, 

“1 + … 2 times 3” is 1 plus 6, which is 7. 
Once this meaning is understood, the distinction can be written symbolically using brackets as 
(1+2) × 3 and 1 + (2 × 3). 

This leads to: 
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The Articulation Principle: The meaning of a sequence of operations can be 
expressed by the manner in which the sequence is articulated. 

This Principle of Articulation can be used at any level to give meaning to the use of brackets. 
It is not a mathematical definition, but it does lead to meaning for the use of symbolic operations 
throughout the whole of mathematics. 

I have been developing this idea in recent years in invited papers that are available in draft form from 
my academic website: (http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html) where 
they are listed from Tall 2017a to Tall 2020a. For details interpreting operational symbolism, see, for 
example, Tall, 2020a, pp. 10–13. 
These represent a continual theoretical development with much in common, but each one is written 
afresh for different audiences. I am currently working on an overall paper devoted to calculus. When 
completed, it will be added to my academic website downloads page. 

How does the eye and brain perceive motion? 

To follow a moving object, the mechanism of the eye again works in saccades and fixations. 
Reading text involves a succession of fixations to read information in chunks separated by 
quickly jumping saccades. Following a moving object happens in a different way. There is an 
initial saccade to fix on the object and then the fixation moves smoothly to follow the object. 

Place your finger in front of you and move it to the left and right. The eye makes an initial 
saccade to focus on it, then moves in a smooth fixation to follow it. This will happen if you 
move your head or keep your head still and just turn your eye. 

Try this out for yourself, moving your head or keeping it still, to see how you focus 
smoothly on your moving finger while the background is blurred. 

Do this now to sense how it happens … 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Now imagine two points on a number line, one fixed, one moving (Figure 11). 

 
Figure 11: Variables and constants 

In the presentation, the moving point is animated to move towards the fixed point, to encourage 
the viewer to imagine a variable point moving towards a fixed point. This reveals the idea that 
the brain naturally imagines constants and variables, including quantities that can become 
arbitrarily small. 

The intuitive foundations for calculus are built into the human brain. 

Zooming in on a curve on a retina screen 

Looking back at the original picture from the 1933 text of Durell and Robson, it becomes 
evident that looking at this picture gives no sense of the local slope of the graph. Indeed, if one 
magnifies part of the picture, this simply thickens the lines. Figure 12 shows the original picture 
magnified in a box where the box remains the same size and the picture is magnified within it. 
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Figure 12: Magnifying a physical picture in a book 

Scaling on a retina display can be programmed to maintain the thickness. (Figure 13). 

 
Figure 13: Magnifying a curve on a retina display 

Highly magnified the graph looks like a straight line. By maintaining the thickness of the curve 
in the visual representation, the viewer can now see that the graph is locally straight. This 
changes the focus of attention from the practical limit which approaches the limit object to the 
theoretical limit which is the limit object. 

The notion of local straightness relates directly 
 to the structure and operation of the human eye! 

Using a retina display, the practical slope function stabilises on the theoretical slope function. 
This gives a visual embodiment supporting local straightness which switches attention from 

The practical limit as a process that gets as close as is desired 
to 

The theoretical limit which is the derivative as a limit object. 
It gives meaning to the derivative as a theoretical object. 

So, we must ask the fundamental question: 

Why is local straightness rejected in AP calculus? 

Cultural resistance over the centuries still operates today 

A reason for the persistence of the traditional approach to the calculus (starting from an informal 
version of the modern definition) may lie in the desire for cultural stability and its consequent 
cultural lag and cultural resistance. New forms of technology provide radical changes 
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communication, operation and imagination that cause great cultural stress by changing faster 
than current communities can cope. 

This is a natural feature of the evolution of ideas as new generations build on the 
developments of earlier generations. Today we still have the vestiges of earlier beliefs that act 
as obstacles for change. For example, consider the following Greek common notion: 

This is self-evident for counting objects or measuring figures. 

But Galileo was found guilty of heresy for suggesting that the whole numbers are in one to one 
correspondence with the squares of whole numbers. 

Cantor realised that this property is the definition of an infinite set. 

This was met with hostility and cultural rejection and led to his mental breakdown. 

I pose the question: 

Is this is happening in Calculus today?  

The meaning of infinitesimals 
Let us consider the formal theorem: 

This is self-evident for counting objects or measuring figures. 

It implies there are no infinitesimals in the real numbers. 

However, it does not imply that there are no infinitesimals on a number line … 
… just as there are no irrationals on the rational number line. 

I can prove to you that infinitesimals must occur in any ordered extension field of the real 
numbers. 

Let K be any ordered field with ℝ as an ordered subfield. Define an element x in K 
to be finite if it lies between two real numbers, a and b … 
… and to be infinitesimal if x is non-zero and lies between –t and t for every positive 
real number t. 

Then we can prove the following structure theorem: 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

The proof is a simple application of the completeness axiom.       
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 
 
 

Structure Theorem: Any finite element x in K must either be in 
ℝ, or of the form c+ε where c is in ℝ and ε is an infinitesimal. 

Greek Common Notion 
The whole is greater than the part 

Theorem 
A complete ordered field cannot contain infinitesimals 

Structure Theorem: Any finite element x in K must either be in 
ℝ, or of the form c+ε where c is in ℝ and ε is an infinitesimal. 
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Call elements in K, ‘quantities’, and elements in ℝ, ‘constants’. 
Then we have the following Theorem: 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

For finite x, the unique real c is called the standard part of x, written st(x). 

To see infinitesimal detail, we magnify the scale by defining the ε-lens pointed at c for any c 
and non-zero ε to be 

m: K→K such that m(x) = (x– c)/ε. 
This magnifies the line by an infinite factor 1/ ε focused on the point c. 
Define the field of view of m to be the set V such that (x – c)/ε is finite. 
The optical ε-lens pointed at c is μ: V → ℝ given by 

μ(x) = st((x –c)/ε) 
 

I introduced the notion of optical lenses in Tall (1982b). I proved the Structure Theorem for 
Infinitesimals in the form given here for an undergraduate course. I never published it as a 
mathematics paper because I considered it a simple exercise using the completeness axiom. When Ian 
Stewart and I wrote new editions of Foundations (1977) and Complex Analysis (1983) in 2014, 2018 
respectively, we incorporated chapters on real and complex infinitesimals using this Structure 
Theorem. It is now an essential link between formal mathematics and more sophisticated forms of 
embodiment and symbolism.  

This gives a map from the field of view V on the extended number line K to the real number 
line. When ε is an infinitesimal (in which case the ε -lens is also called an optical microscope) 
the original elements c, c + ε, c + 2ε, …, in K differ by infinitesimal quantities, but their images 
on the real line are visibly distinct. So, we can now ‘see’ infinitesimal differences under infinite 
magnification factor 1/ε (Figure 14). 

 
Figure 14: Optical ε-lens 

However, c + ε and c + ε + 2ε2 differ by 2ε2 and the optical lens maps them to the same point. 
Further details are available in the second edition of Foundations of Mathematics (2014) 

written jointly with Ian Stewart and, in more detail for real and complex analysis in our joint 
Complex Analysis (2018). 

Furthermore, the ideas apply in two or more dimensions, simply by using optical lenses 
on each component. An optical lens in n dimensions can use different magnification factors on 
each coordinate. 
For example, the magnification factor 1/ε can be used on both coordinates to see local 
straightness of a differentiable function (Figure 15). 

Any finite quantity is either a constant 
or a constant plus an infinitesimal. 
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Figure 15: Local straightness of a differentiable function 

A horizontal magnification of 1/ε and a vertical magnification of 1 can be used to see local 
flatness of a continuous function (Figure 16). 

 
Figure 16: Local flatness of a continuous function 

In both this pictures, I have taken the liberty to denote the image μ(s,t) for (s,t) in V by the  same 
symbol (s,t) in ℝ, even though the original coordinates s,t are in the field of view in K and the 
image coordinates are real numbers. This is a long-standing convention in making maps where 
we denote the image of, say, New York, on a map by the name ‘New York’. In the same way, 
when we draw a map, we only represent certain level of detail appropriate for the scale of the 
map. 

The picture of local flatness (figure 16) appears here in this form for the first time. Other 
details can be found in chapter 13 of How Humans Learn to Think Mathematically (Tall, 2014). 

Optical lenses arise in Formal Mathematics. They are included here to show formal 
mathematicians that infinitesimal ideas are a fully valid part of formal mathematics. 

 
In my presentation, I did not have time to elaborate on important ideas presented in the second edition 
of Complex Analysis, chapter 15, where I put forward the argument that thinking of infinitesimals as 
‘arbitrarily small variables’ is more productive than using formal optical lenses. The reason for this 
arises in dealing with polar coordinates where small increments dr in r and dθ in θ give a small 
approximate rectangle with side lengths dr and rdθ. Using optical lenses it is not possible to 
simultaneously magnify the infinitesimal shape with sides dr and rdθ while also including the origin, 
when it is a finite non-zero distance r away. However, it is easily possible, in the mind’s eye, to imagine 
a picture of the plane with the origin and the tiny shape in the same picture and then to zoom in on the 
shape to see it look like a rectangle. (This could also be represented appropriately on a retina display.) 
For this reason, applied mathematicians use an embodied human version of the calculus to make sense 
of arbitrarily small changes. 
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I also did not have time to respond to the claim that local straightness is inappropriate for calculus 
based on the idea that, when applied to polar coordinates, it no longer works. This arises from different 
views of the meaning of a graph in the plane, as to whether it is a two-dimensional object in ℝ2, or a 
set of ordered pairs in ℝ×ℝ. This confusion has lasted for centuries and it continues today in the 
distinction between y being a function of x in ℝ×ℝ and the notion of covariation between variables x 
and y in ℝ2. Both are valid, but with very different meanings. It has taken me many years to understand 
this, although there are vestiges of the distinction in my published writing. Back in 1977, in the first 
edition of Foundations, in a section written by Ian Stewart, there is an explanation of the notion of a 
function f : ℝ→ℝ which begins with two copies of the number line ℝ and then turns the second number 
line round through 90° with the arrow going from a point on the horizontal x-axis to the vertical y-
axis being redrawn to go vertically from the point x to the height y and turning through a right angle 
to end up on the vertical axis at a height y. The relationship between x and y is then represented by the 
graph of points of the form (x, y) as (x, f(x)). Local straightness applies to this interpretation. 

The notion of co-variation involves x and y varying together, with a relationship between the 
two. This can be considered as a change occurring in time. In this interpretation there is a hidden 
parameter t. It doesn’t matter how fast t changes, as long as it goes in the same direction. This is 
related to Newton’s idea of fluxions where variables change in time. Leibniz, on the other hand, 
essentially saw the curve as an object that was made up of an infinite number of infinitesimally short 
sides. 

As individuals with different genetic inheritance and different previous experiences, we all 
develop different knowledge structures. Mine, as a Grammar School boy and an Oxford undergraduate 
and graduate, caused me to see the graph as a relationship relating the independent variable x to the 
dependent variable y. I saw the relationship as one-way and could not grasp the idea of balanced co-
variation, because I believed that y varies as x varies, but not the other way round. 

In dealing with implicit functions I was faced with a dilemma. I found the loose way that English 
text books dealt with a relationship such as x2 + y2 = 1 to ‘differentiate with respect to x to get 
2x + dy/dx = 0, and so dy/dx = –2x was, to me, unsatisfactory, because y is not a function of x in the 
previously defined sense. So, in designing the calculus curriculum for the School Mathematics Project, 
I began by introducing a parametrisation, in this case x(t) = cos(t), y(t) = sin(t) for 0 ≤ t ≤ 2π, to 
calculate dx/dt, dy/dt, where (dt, dx, dy) is the tangent vector in 3 dimensional (t, x, y) space. This is 
an alternative way of conceiving x and y as being co-variant in ordered time t, so that co-variation now 
makes sense to me. Local straightness still applies, but now it is in three dimensions. In fact, it 
naturally generalises to the multi-dimensional case, but that is another story. 

Strangely, I now see Einstein, entering the picture that was imagined by Newton. Einstein lives 
in four-dimensional spacetime with three-dimensional space and a fourth time dimension that is 
directional and only operates in that one direction. In such a world view, co-variation is a natural 
concept: x and y co-vary in a particular direction in time. In our imagination we can see time as a 
video, say of a train travelling in reverse, then we play the video backwards to see the train travelling 
in a forward direction. Our imagination goes beyond our real-world experience. 

Different viewpoints are enormously valuable. They enable us to see possibilities beyond our 
own personal experience. I have in recent years had the scales removed from my eyes to see such 
possibilities, but I still sense we need to stand above the differences to question our own views and to 
seek profound underlying patterns. 

We can learn by reflecting deeply on serious data produced by various studies in a range of 
different areas of expertise. For example, the report on Insights and Recommendations from the MAA 
National Study of College Calculus by Bressoud, Mesa and Rasmussen (2015) can be downloaded 
from the internet at 

https://www.maa.org/sites/default/files/pdf/cspcc/InsightsandRecommendations.pdf 
and contains a wealth of detailed information. 

Analysing the data from viewpoints in this presentation – including personal brain structure and 
operation, corporate cultural aspects and the long-term development of mathematical thinking – gives 
new ways of  forming a coherent overview that reflects the realities of how we think mathematically, 
and how our cultural evolution affects our teaching, learning and thinking about calculus. 

The question is: given the cultural pressures to maintain cultural stability in the face of cultural 
resistance, how is it possible to move ahead? My proposed solution in recent papers is, first to 
introduce principles such as the Principle of Articulation to give meaning to symbolism while linking 
embodiment and symbolism. Then I have analysed the changes in context throughout the curriculum 
to identify those aspects that remain supportive over several changes. These can give a longer-term 
sense of stability allowing the learner to reflect on those changes that are problematic so that they can 
be addressed meaningfully at the time that they arise. 

But will it happen? This is not in my gift. 
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Reflections 

I have included the notion of optical lenses to show that they justify the notion of infinitesimals 
on a number line using formal mathematical theory. However, this theory belongs in formal 
mathematics using the axiom of completeness, not in the practical or theoretical levels of 
sophistication of calculus. 

The idea of optical magnification can be visualized in Practical Embodiment in any 
program that allows embodied scaling on each coordinate. This is possible in GeoGebra. 

The original TI-92 graphic calculator allowed zooming in with differing scale factors, based on my 
advice to the company, but this is not used in any curriculum as far as I know. The current 
implementation in GeoGebra allows magnification of the plane by moving finger and thumb apart and 
has the possibility of stretching horizontally by stretching the horizontal axis. In the version I have 
seen, it needs reprogramming to allow horizontal stretching when the horizontal axis is not in the 
picture. 

I understand that currently there is competition between GeoGebra and the software Desmos for 
the larger market share. The GeoGebra interface operates on the picture itself to stretch it in various 
ways while Desmos prefers to use sliders to alter parameters. Desmos has the advantage of a broader 
classroom environment in which all the students work on their own smart phone, iPad or computer, 
connected using wi-fi. It is then possible to display the screen of any student on the teacher’s main 
display to encourage class discussion. Desmos is therefore smarter in providing an environment for 
formative assessment of how different students are progressing as compared to the summative multi-
choice tests currently used in AP Calculus. 

Stretching graphs on a retina display supports the notion of infinitesimals as variable quantities 
as envisaged in mathematical applications and also as visualised naturally by the human eye 
and brain. Infinitesimals can be imagined as processes in practical mathematics and embodied 
as objects in theoretical mathematics. They make sense as ‘arbitrarily small quantities’ in 
applied mathematics. 
In my presentation I focused on how we think about Calculus, in particular the roles of 
Embodiment and Symbolism. Embodiment includes how our brain makes sense of dynamic 
change, speaking and reading text and mathematical expressions, translating these human 
activities into operational symbolism. This symbolism involves embodying change through 
operations symbolised as mental objects that can themselves be operated on at a more 
sophisticated level. 

I have identified three significant levels of sophistication: 
• Practical limit processes 
• Theoretical limit objects 
• Formal limit definitions and proof 

In the learning and teaching of these ideas, I propose that we build up to the limit concept 
through practical and theoretical experiences, not down from a formal definition, as yet 
unknown to the learner, presented in a manner that focuses on a process that seems unfinished. 

In the limited time available, I did not include essential parts of my broader framework which 
incorporates affective aspects of mental activity, including confidence, anxiety and so on that 
are included in chapter 5 of How Humans Learn to Think Mathematically (Tall, 2013). 

There I built on earlier work of Skemp, based on Freudian psychology where he 
formulated a theory of goals (to be desired) and anti-goals (to be avoided).  

A goal that one believes is achievable is accompanied by a feeling of confidence, which 
may change to frustration if it proves subsequently to be difficult to achieve. Frustration sensed 
by a confident person is likely to act as a positive encouragement to redouble the effort to 
achieve the goal. Moving towards a goal gives pleasure and moving away from it gives 
unpleasure—a term used in Freudian analysis to denote the opposite of pleasure.  
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Coping with an anti-goal is quite different. According to Skemp, an anti-goal that one 
believes one can avoid gives a sense of security but, when it cannot be avoided, the emotion 
turns to anxiety. Moving towards a goal instils a sense of fear, while moving away gives relief.  

This theory is represented in figure 17 (which I drew in Tall, 2013, p.120) where arrows 
represent movement to or away from a goal or anti-goal and smiling or frowning icons represent 
the belief related to the ability to achieve a goal or avoid an anti-goal. 

 
Figure 17: Emotional reactions to goals and anti-goals 

This reveals the vast difference between positive emotions of confidence and pleasure relating 
to goals that are considered achievable and emotions relating to anti-goals which offer, at best, 
a sense of security and relief and, at worst, a sense of anxiety and fear. 

Since 2013, I have studied the literature on neurophysiology more closely, comparing its 
studies of fMRI scans which only note changes over a period of two seconds or so, as compared 
with what can be observed in a classroom by an observer familiar with the structural operation 
of the brain. In particular, I have taken great interest in the operation of the limbic system which 
links to automatic body regulation and operates quickly before the frontal cortex can make a 
considered decision. Here the mathematician and neuroscientist Stanislaus Dehaene has 
provided some very interesting data recording the parts of the brain that respond to various 
forms of mathematical thinking and suggests that the brain recruits areas related to handling of 
number and shape and space to think mathematically that are not related to areas involved with 
language. 

Without language there would be no sophisticated mathematics, for it is in naming ideas 
that we can begin to think about them and communicate them in increasingly sophisticated 
ways. However, as human beings our brains develop specialised functions that we pass on to 
later generations, accumulating mathematical knowledge. This relates to our natural abilities to 
repeat sequences of actions and to name operations using operational symbolism, leading to a 
compression of knowledge where the symbols become mental objects that can themselves be 
operated upon. 

The question of meaningful and rote learning can now be considered in a different light. 
If rote-learning is prioritised over making meaningful links, then, in the long term, the 
compression of knowledge is less likely to occur in ways that enable more sophisticated levels 
of mathematical thinking. 

Cultural stability operates to preserve those aspects which are considered to be important. 
But does it serve us well in the long-term? 

I have proposed the need to think about cultural resistance 
that may impede our progress. 

This requires a reflection on the subtle aspects that underpin our personal thinking. I seek a 
deeper simplicity in my life. I have a few more years on this earth and I wish to spend it in quiet 
contemplation and have no desire to become involved in emotional disputes. I do welcome any 
comments that cause me to rethink my position as this can help me improve my understanding. 
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Meanwhile, I encourage the participants to enjoy the conference, but do not forget to dream! 

We have new tools to make more sense in the future, so use them wisely. In a time when we 
have a wealth of technology to support our human thinking, remember the words of Richard 
Buckminster Fuller: 

You never change things by fighting the existing reality. To change something, 
build a new model that makes the existing model obsolete. 

 
Figure 18: Build a new model that makes the existing model obsolete 

Today we have technology for computation, symbol manipulation, interactive retina graphics 
and a verbal interface using a version of artificial intelligence. The evolution of ideas goes on 
into the future. 
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