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1 The presentation includes recent developments of the theory of three worlds of mathematics as applied to the 
calculus. It blends together the nature of mathematics and the way that mathematical thinking is processed in the 
brain and related to emotional and social aspects. This is not the full story. It is focused on what may be possible 
speaking to a seminar of mathematicians in a limited time.

It is an honour to be invited to present to you my ideas of How Humans Learn to Think Mathematically. I thank 
Masami Isoda for inviting me here today and acknowledge our common interests. In particular, when we first met, he 
spoke about the way in which students built on their experience of the tangent in circle geometry and how the idea 
that it touches the circle at one point without passing through caused conflict with the more general concept of 
tangent in the calculus. Our common interests and differences and subsequent collaboration on Lesson Study have 
been a constant encouragement in the development of the theory I present today.

X

This presentation celebrates the
publication of the Japanese translation of

How Humans Learn to Think Mathematically
 in Three Worlds of Mathematics
based on perception, operation & reason.

It extends Lesson Study throughout the full range of mathematics
including historical and individual evolution of mathematical ideas.

This presentation offers an overview and 
focuses on the evolution of ideas in the 
Calculus (chapter 11, also chapter 13).

The plan is to encourage the student to 
make sense of mathematics at each stage,
to develop powerful techniques
and to learn to reason in appropriate ways.

2 This presentation celebrates the publication of the Japanese translation of How Humans Learn to Think 

Mathematically. in a framework of Three worlds of mathematics based on perception, operation & reason. X


@ It offers an overview and focuses on the evolution of ideas in the Calculus (chapter 11, also chapter 13). X

@ The plan is to encourage the student to make sense of mathematics at each stage, to develop powerful 

techniques and to learn to reason in appropriate ways. X

@ The framework extends Lesson Study throughout the full range of mathematics including historical and individual 

evolution of mathematical ideas. X

Making Sense of Mathematics
3 Let us begin with how a student may make sense of an operation in arithmetic. X

@ (run video)



In mathematics, the symbol 2+2x2 means
2+4 which is 6

because multiplication takes precedence over addition.
The student is using the experience of reading symbols 
from left to right where

2+2 is 4 and 4x2 is 8.

Making Sense of Mathematics
4 In mathematics, the symbol 2+2x2 means

@ 2+4 which is 6
@ because multiplication takes precedence over addition.
@ The student is using the experience of reading symbols from left to right where
@ 2+2 is 4 and 4x2 is 8. X

Making Sense of Mathematics
5 [run video, no comment necessary]

Making Sense of Mathematics
6 @ Making sense builds on previous experience.

@ Sometimes previous experience is appropriate and helps to make sense in a new situation, but sometimes it is 
problematic.
@ In this case, reading from left to right works in reading but requires a change in meaning in mathematics. X
@ Sense-making involves changes in meaning as mathematics becomes more sophisticated.
@ This happens surprisingly often in long-term learning and if sense is not made, later learning may become 
learning by rote without making sense.
@ This presentation considers the long term evolution of mathematical sense-making based on the increasing 
sophistication of human perception, action and reason. X



A framework for cognitive development, 
where each world is based on  

human perception, action & reason.
Actions performed for a specific reason are called operations, including 
constructions in geometry and symbolic operations in arithmetic & algebra.

Symbolic: mathematical operations performed initially  
on real world objects that may be symbolised 
and then manipulated as mental objects

Embodied: properties of physical & mental objects
formulating verbal definitions,reasoning about relationships

The Three Worlds of Mathematics

Formal: based on verbal/logical definition of properties  
with other properties deduced by mathematical proof.

7 @ The three worlds of mathematics is a framework for the cognitive development of mathematical thinking, 
where each worlds is based on human perception, action & reason.

@ Actions performed with a specific purpose are called operations including constructions in geometry and 

symbolic operations in arithmetic and algebra. X
@ The embodied world explores the perceptual properties of physical and mental objects, formulating verbal 

definitions reasoning about relationships.  X
@ The symbolic world develops out of mathematical operations performed initially on real world objects, that are 

symbolised and manipulated as mental objects.  X
@ The formal world is based on verbal/logical definition with other properties deduced by mathematical 

proof.  X
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8 In school and in applications, most people encounter only two worlds: the embodied and symbolic X
@ The young child is born with a brain still maturing and spends the first months
@ building connections between perception and action. X
@ Using perception and operations on objects to find properties in what I term the
@ Embodied world. X
@ Operation on objects, one, two, three, four leads to the number concept 4.
@ Operations can be performed on numbers and different operations such as 2 + 2 or 1 + 3 or 4 - 3 refer to the same mental object.
@  This leads to what I term the Symbolic world where
@ operations are symbolised flexibly as both processes and mental objects. X
@ Taking a fraction of an object, such as three sixths or two quarters, can give the same quantity, leading to the concept of equivalence of 
fractions. X
@ Equivalent fractions now refer flexibly to a single rational number. X
@ Successive embodied operations with triangles and graphs correspond to symbolic operations in trigonometry and algebra. X
@ Embodiment and symbolism do not always have a simple relationship. If x is a length, x^2 is an area, but x^4 has no obvious meaning. X
@ However, symbolically, x to the fourth is just x times x times x times x, which has the meaning of four xs multiplied together. X
@ This generalises to the power law for whole numbers m, n, where x to the power m + n equals x to the m times x to the n. X
I refer to all of this as @ Practical Mathematics. X
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9
@ This shifts to a more sophisticated level that I term Theoretical mathematics 
@ where the power law used as a definition gives x to the half a new meaning as the square root of x
@ This gives a new level based on definition and deductive proof.
@ represented by Plato in Euclidean Geometry
@ with corresponding definition and deduction in symbolism
@ with a continuing interchange between embodiment and symbolism. X
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10 At a more sophisticated level, pure mathematicians shift to set-theoretic definition and formal proof introduced by 
Hilbert.
@ which extends the Formal world to a new level of
@ Formal definition with properties deduced only from the definition using formal proof
@ as distinct from the Natural form of definition and deductive proof based on familiar properties.

This extends Formal proof from Theoretical mathematics to @ Axiomatic Formal. X
From here, the research mathematician can develop new theories arising from

@ problems by considering possibilities, suggesting conjectures and seeking Proof. X
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Natural philosophy evolved into axiomatic formal mathematics  
 at the end of the nineteenth century.
Axiomatic formal mathematics has Structure Theorems: 
that prove a formal system has visual and symbolic meanings.
This gives a spiral development of more sophisticated levels of 
embodiment, symbolism and formalism.

The Three Worlds of Mathematics

The framework applies to the whole of mathematics at all levels.
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11 @ For most of us, including advanced applications, mathematics is a natural blending of embodiment and 
symbolism,
@ but for pure mathematicians and logicians the axiomatic formal world of mathematics builds properties based 
only on the formal definitions without any dependence on specific embodiments. X
@ In history, ‘natural philosophy’ evolved into axiomatic formal mathematics at the end of the nineteenth 
century. The terms ‘natural’ and ‘formal’ have a historical as well as a cognitive meaning. X
@ Axiomatic formal mathematics has Structure Theorems: that prove a formal structure has visual and 
symbolic meanings.
@ This gives a spiral development of more sophisticated levels of embodiment, symbolism and formalism. 
X
The framework applies to the whole of mathematics at all levels.  X
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12 Let us begin by considering a traditional approach to the calculus which may be considered in terms of graphical, 
symbolic and formal development.
@ this begins by considering a graph, say y equals x squared.
@ the derivative is the slope of the tangent. X
@ The formal definition of the limit is used to give
@ an informal interpretation of the derivative in which
@ dy/dx is a limit but not a quotient dy divided by dx X



Problematic aspects of the traditional approach

tangent not tangent tangent  ?

A tangent in circle geometry touches the curve at only one 
point and (possibly) does not cross the curve.

Definition: previous experience that affects current thinking 
is termed a 'met-before'. 

A met-before may be supportive or problematic.

13 A tangent in circle geometry touches the curve at only one point and (possibly) does not cross the curve.

@ This is a tangent (shows tangent)

@ This is not a tangent (shows not tangent)

@ This is a tangent (shows third picture) 
@ or is it? (extends tangent to meet curve again) X 
@ Definition: previous experience that affects current thinking is termed a 'met-before'. 

@ A met-before may be supportive or problematic. X
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Problematic aspects of the traditional approach

The experience of a tangent to a circle may be problematic 
in the calculus.

Definition: previous experience that affects current thinking 
is termed a 'met-before'. 

A met-before may be supportive or problematic.

14 @ The experience of a tangent to a circle may be problematic in the calculus.
@ y = x has a tangent that coincides with the whole graph rather than touch at a single point. X
@ The second picture has y = x as a tangent at the origin, which does not touch at a single point.
so many students mark what I call a 'generic tangent' drawn to touch at a single point. X
@ The third picture is even more problematic.
@ The limit of the secants through the origin is a vertical half-line.
@ Other students imagine the tangent to touch at the origin as a 'balance tangent'. X
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15 @ If we magnify the first graph
@ we see that a small portion looks straight. X

@ If we magnify the second graph at the origin
@ this also looks straight. X

@ but if we magnify the third graph
@ eventually it looks like a half-line
@ so this is not a full locally straight line segment. X



Local Straightness

Practical idea:

A graph is locally straight if, on higher 
magnification it looks straight and 
continues to do so, however great the 
magnification.

16 This leads to the practical idea that
@ A graph is locally straight if, on higher magnification it looks straight and continues to do so, however great the 
magnification. X
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17 We now focus on the special case of calculus using the three worlds of mathematics.
@ It begins in practical mathematics with the graph of the function,
@ which looks straight when @ highly magnified. X
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18 @ The components of the tangent are dx and dy.
@ [shows dy/dx]
@ The derivative is the quotient of the components of the tangent dy/dx. X
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19 @ Our next operation is to move along the curve
@ in an embodied action that coordinates perception and operation
@ to focus on the changing slope. X
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20 [no comment]
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21 [illustrate with physical hand movements.]
As we move a hand along the curve, the slope is first negative getting less steep.
The slope at the origin is zero
and the slope then becomes positive, getting steeper. X



Local Straightness and Slope
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22 We note the numerical value of the slope.
At x =-1/2 the slope looks around –1,
at x = 1/2 the slope is around +1. X
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23 Looking at the changing value of the slope as a line, we can plot the slope as a point.
The slope as a value builds up a sequence of points which lie on a line. X

Local Straightness and Slope
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Dynamic visualisation Symbolism

Slope from x to x + h

=  
f (x + h)− f (x )

h

= (x
2 + 2xh + h2 )− x 2

h
= 2x + h

For small h the 
slope stabilises 
to 2x.

24 This gives a dynamic visualisation of the changing slope
@ which lies on a line
@ This has a corresponding symbolism
@ for the slope from x to x + h
@ which simplifies to 2x + h. X
@ For small h, the slope stabilises to 2x. X



Local Straightness and Slope
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25 For y = x cubed,
@ the slope from x to x+h simplifies to 3x squared plus 3x h
@ [draw red graph]
@ and for small h the slope stabilises to 3x squared. X

Local Straightness and Slope

More generally, use the binomial theorem

(x + h)n = x n + nxn−1h + n(n −1)x n−1h2 + ....+ hn

to show symbolically that the slope function for xn is nxn–1.

Investigate the calculations on a visual display for other values 
of n, even negative and fractional.

To be able to imagine the changing slope of a locally straight 
graph.

26 @ More generally, use the binomial theorem
@
@ to show symbolically that the slope function for x^n is nx^(n-1). X
@ Investigate the calculations on a visual display for other values of n, even negative and fractional.
@ To be able to imagine the changing slope of a locally straight graph. X
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Visualising the slope functions of sinx and cosx.
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27 Visualising the slope functions of sinx and cosx for angles in radians.
@ For y = sinx, tracing along the graph, its slope is like cosx. X
@ For y = cosx, the slope is like the graph of sinx upside down, so it is like –sinx. X



Local Straightness and Slope
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28 @ [show graphs] Visualising the slope functions of 2^x, 3^x,
@ Both slope functions have steadily increasing shape. X

@ The graph y = 2^x, has its slope function below the original graph,
@ The graph y = 3^x, has its slope function above the original graph. X

@ seek a value of e where e is between 2 and 3 and the slope of e^x is again e^x. X

Local Straightness and Slope
Seek e where 2 < e < 3 and slope of ex is again ex.
Suppose that ex can be approximated by a polynomial:

  ex = A + Bx + Cx2 + Dx3 + ...
Putting x = 0 gives e0 = A = 1.

ex = B +2Cx + 3Dx2 + ...
Comparing coefficients gives

B = A = 1, 2C = B, so C = ½,
C =3D, so D=⅓!, etc

ex = 1 + x + x
2

2 !
+ ...+ x

n

n !
+…

The slope function of ex is

29 @ Suppose that e^x can be approximated by a polynomial.
@ [show polynomial] X

@ Putting x =0 gives e^0 is A, which is 1.
@ The slope function of e^x is
@ e to the x is B + 2Cx + 3Dx^2+ …
@ Comparing coefficients gives
@ B = A = 1, 2C = B, so C = ½,
@ C =3D, so D=⅓!, etc
@ so e to the x is 1 + x + x^2 over 2 factorial + … + x^n over factorial n + … 
X

Local Straightness and Slope

and putting x = 1 allows e to be calculated

e1 = 1 + 1 + 1
2 !

+ ...+ 1
n!

+…

First term is 1.0000000000
divide by 1 1.1000000000
divide by 2 0.5000000000
divide by 3 0.1666666666…
divide by 4 0.0416666666…
etc and add up enough terms to get 
                  e = 2.718…
It is easy to calculate, say, 10 decimal places.

  
ex = 1 + x + x2

2 !
+ ...+ xn

n !
+…

30 @ putting x = 1 allows  to be calculated by calculating successive terms @ X

@ the first term is 1.000… to as many places as desired
@ divide this by 1 to get 1.100 etc
@ divide the result by 2 to get 0.500 etc
@ divide the result by 3 to get 0.166 recurring
@ divide the result by 4 to get 0.4166 recurring
@ and add enough terms to get e to any desired accuracy,
@ for instance e=2.718
@ It is easy to calculate e to, say, 10 decimal places. X



A locally straight approach builds from the slope of straight 
lines and investigates calculating the slope of curves.
This works for locally straight curves, including

x, x2, … xn, sinx, cosx, ex.
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Local Straightness and Slope
31 A locally straight approach builds from the slope of straight lines and investigates calculating the slope of curves.

@ This works for locally straight curves, including
x, x^2, … x^n, sinx, cosx, e^x. X
@ ln(x) follows from the inverse relationship between y = e^x and x = ln(y)
@ [graph] For e^x,
@ dy/dx = y
@ [next graph] for x = ln(x), dx/dy = 1/y. X

If y = f(x) then for dx ≠ 0, we define

′f (x ) = dy
dx

Local Straightness and Slope

dy = ′f (x )dx
The equation

is then also true for dx = 0, in which case dy = 0 also.

32 @ If y = f(x) then for dx ≠ 0, we define
@ f'(x) = dy/dx
@ The equation
@ dy = f'(x) dx
@ is then also true for dx = 0, in which case dy = 0 also.
 X

y = f(x), z = g(y)
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Local Straightness and Slope

dz = ′g (y )dy = 0,then                            so dz/dx = 0.

33 If y = f(x) and z = g(y), the picture shows the graph of z = g(f(x))
@ and the components of the tangent as dx, dy, dz
@ Because these are all lengths we get the standard equation

dz/dx = dz/dy times dy/dx where dx ≠ 0. X

@ The only problem here is that it may happen that dy = 0,
@ [show red line]
@ but then dz =g'(y) dy =0 and, for any value of dx ≠ 0, we must also have dz/dx = 0. X



Functions of several variables, partial derivatives etc.

dzx, dzy are the components of the tangent plane in 
the x-direction and the y-direction.
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34 The same theoretical framework gives new insights for functions of several variables, partial derivatives etc.

@ For example, if z is a function of two variables, then we have the partial derivative equation where partial dz by dx is 
certainly not a quotient. Or is it? X
@ [reveal image]
@ let dz suffix x and dy suffix y be the components of the tangent plane in the x direction and the y direction,
@ then we can write dz as dzx over dx times dx plus dzy over dy times dy and
@ cancel to get the total differential dz equals the sum of dzx plus dzy. X

Differential Equations
The differentials dx, dy are the components of the 
tangent vector.

This is an 
equation for a 
curve whose 
tangent vector 
(dx, dy) satisfies 
the equation ...

x dx = y dy

[software by Piet 
Blokland, after 
Graphic Calculus]

35 @ The differentials dx, dy are the components of the tangent vector.
@ for example x dx = y dy
@ This is an equation for a curve whose tangent vector (dx, dy) satisfies the equation.
@ [image appears] X

@ As the pointer is moved the line segment changes direction as given by the differential equation. Clicking drops 
the line segment, allowing the user to build up a solution whose direction follows the direction given by the 
differential equation.
@ Software by Piet Blokland for windows computers based on original Graphic Calculus by David Tall. X
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36 The long-term strategy in the calculus starts with
@ practical mathematics
@ local straightness and its corresponding symbolism X

@ then we move up a level to theoretical mathematics
@ based on the natural limit definition using natural reason and the corresponding @ symbolic calculus
@ This gives the locally straight approach to the CALCULUS X

@ At a higher level we have the axiomatic formal world and the @ formal limit definition and formal proof
@ which leads to mathematical ANALYSIS X

@ I suggest that while pure mathematics requires ANALYSIS,
applications usually only need (locally straight) CALCULUS.      X



Practical continuity

Intuitively, a continuous curve is drawn dynamically 
without taking the pencil off the paper.
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to get a 
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37 @ Intuitively, a continuous curve is drawn dynamically without taking the pencil off the paper. X
@ Fix the vertical scale and stretch the curve horizontally
@ [the curve is successively stretched horizontally] @ @ @ @ @ …
@ to get a horizontal line. X

Formal Continuity

Practical idea:

Given pixel 
height ±ε

Given x0

f(x0)

x0 + δx0 – δ

δ can be found so 
that ...

If x lies between
x0 – δ and x0 + δ

x

then f(x) lies in  
the line of pixels f(x0)±ε

38 In a practical sense, suppose we are given a value of x0 and a pixel height ±epsilon.
@ so that the value of f(x0) is in the middle of the pixel height. X
@ then a delta can be found so that X
@ If x lies between x0 - delta and x0 + delta X
@ then f(x0) lies in the line of pixels f(x0)±epsilon X
@ [draws curve]

Formal Continuity

Formal definition

Given ε > 0, δ> 0 can be found so that ...
If x lies between x0 – δ and x0 + δ

then f(x) lies between f(x0)±ε

39 This gives the formal definition
@ Given ε > 0,
@ δ> 0 can be found so that
@ If x lies between x0 – δ and x0 + δ
@ then f(x) lies between f(x0)±ε.  X



Integral as area function
What is the area under a continuous function?

Practically
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 dA = y × dx so
 

dA
dx

= y

Illustrating the Fundamental Theorem of the Calculus

40 @ What is the area A under a continuous function?
@ [draw picture]    X
@ If we take a thin strip width dx and stretch it horizontally   X
@ practically
@ dA = y x dA
@ so dA/dx = y
@ Illustrating the Fundamental Theorem of the Calculus    X

A three-world approach to the calculus

A sequence of development from
Practical Mathematics
based on local straightness and practical continuity

to
Theoretical Mathematics
based on natural definition and coherent reason

and later, if required, to
Formal Axiomatic Mathematics
based on formal definition and formal proof

The three world model takes us beyond
familiar mathematical analysis …

41 @ A sequence of development from
@ Practical Mathematics based on local straightness and practical continuity X
@  to Theoretical Mathematics based on natural definition and coherent reason  X
@ and later, if required, to
@ Formal Axiomatic Mathematics based on formal definition and formal proof  X
@ The three world model takes us beyond familiar mathematical analysis …  X
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The Three Worlds of Mathematics

AXIOMATIC FORMALISM

Set Theoretic Definition & Formal Proof

Extending formal
mathematics …

42 This is the framework for three worlds of mathematics. However, it continues to evolve.
Formal mathematics takes us to new levels of sophistication which give new forms of embodiment and symbolism. X



The Three Worlds of Mathematics

AXIOMATIC FORMALISM

Set Theoretic Definition & Formal Proof

Some theorems, called Structure Theorems, prove that
a formal system has embodied and symbolic properties.

Extending formal
mathematics …

e.g.
A complete ordered field can be represented

visually as a number line
symbolically as infinite decimals.

The three world model evolves in sophistication to higher levels of
embodiment, symbolism and formalism …

43 @ Some theorems, called Structure Theorems, prove that a formal system has embodied and symbolic properties.
@ e.g. A complete ordered field can be represented as
@ visually as a number line
@ symbolically as infinite decimals. X

@ The three world model evolves in sophistication to higher levels of embodiment, symbolism and formalism … X

The Three Worlds of Mathematics

AXIOMATIC FORMALISM

Set Theoretic Definition & Formal Proof

In chapter 13 of How Humans Learn to Think Mathematically, I 
use the concept of an ordered field F that contains the real 
numbers    .!

Structure Theorem for an ordered field extension F of     ,!

A linear map m(x) = (x-r)/ε maps r to 1 and r + ε to 0
allowing us to see infinitesimal detail. (see Chapter 13.)

x ∈F ∈!An element            is said to be finite if a < x < b for a,b        .
∈!It is infinitesimal if x ≠ 0 and –r < x < r  for all positive r 

a finite element x is uniquely of the form r + ε 
where r is real and ε is infinitesimal or zero.

Extending formal
mathematics …

44 @ In chapter 13 of How Humans Learn to Think Mathematically, I use the concept of an ordered field F that contains 
the real numbers R. X
@ An element x in F is said to be finite if a < x < b for a, b in R.
@ It is infinitesimal if x ≠ 0 and –r < x < r  for all positive r in R. X
@ The Structure Theorem for an ordered field extension F of the real numbers,
@ a finite element x is uniquely of the form r + ε where r is real and ε is infinitesimal or zero. X
@ A linear map m(x) = (x-r)/ε maps x to 1 and x+ ε to 0 allowing us to magnify infinitesimal detail. (see Chapter 13.) 
X

The Three Worlds of Mathematics

AXIOMATIC FORMALISM

Set Theoretic Definition & Formal Proof

Structure Theorem for an ordered field extension F of     ,!

A linear map m(x) = (x-r)/ε maps r to 1 and r + ε to 0
allowing us to see infinitesimal detail. (see Chapter 13.)

a finite element x is uniquely of the form r + ε 
where r is real and ε is infinitesimal or zero.

Extending formal
mathematics …

–2 10–1 2

r
F

r +

F

m

m(r)
–2 10–1 2

m(r + )

45 The function m maps points r and r+epsilon which differ by an infinitesimal to points a finite distance apart. X



The Three Worlds of Mathematics

AXIOMATIC FORMALISM

Set Theoretic Definition & Formal Proof

Extending formal
mathematics …

graph in F2

x

sl
straight line

ope f (x)

y = f (x)

(x, f (x)) (x, f (x))

(x + h, f (x + h))

(x + h, f (x + h))
magnification m 

The theory extends to a formal theory using infinitesimals
in which a differentiable function magnifies to a straight line.

46 It is possible to define a formal theory using infinitesimals in which a differentiable function magnifies an infinitesimal 
part of a locally straight graph to a straight line. X
This offers a formal justification of infinitesimals using modern set theory. I have taught an undergraduate course 
using these ideas after a standard mathematical analysis course and it was very well received. I would not use such 
an approach until students have made sense of the axiomatic formal world. For a first course in the calculus, I 
believe it is more sensible to begin with a locally straight practical approach. X

Long-term strategy in Calculus

Formal

Symbolic

Practical
Mathematics

Embodied

Theoretical
Mathematics

Local
straightness

corresponding
symbolism

Natural Limit
Definition
& Reason

Symbolic
calculus

Formal Limit Definition & Proof

CALCULUS

ANALYSIS
Axiomatic

Formal

SET-THEORETIC CALCULUS 
USING INFINITESIMALS

47 The framework for practical and theoretical calculus extending to axiomatic analysis therefore extends further to
@ set-theoretic calculus using infinitesimals.
I have taught this several times to undergraduates who have already taken a first year analysis course and it was 
very well received.
For a first introduction to calculus, I now always use a locally straight approach as it builds naturally on the students' 
experience.  X

Implications of the Three World Framework
The full framework from birth to maturity and on to research can be 
found in How Humans Learn to Think Mathematically.

The framework at university including structure theorems,
embodiment & 
symbolism is in the 
2nd edition of
Foundations of
Mathematics
(Stewart & Tall 2014)

planned to be 
translated into 
Japanese by Kyoritsu 
Shuppan
Due 2018 …

48 @ The full framework from birth to maturity is given in How Humans Learn to Think Mathematically.

@ [picture appears] X
@ The framework at university including structure theorems, embodiment & symbolism is in the 2nd edition 
of
Foundations of Mathematics (Stewart & Tall 2014)

@ [picture appears] X
@ This is currently planned to be translated into Japanese by Kyoritsu Shuppan. Due 2018 … X
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Thank you for listening
http://homepages.warwick.ac.uk/staff/David.Tall/

49 Thank you for listening.


