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In this paper we consider the performance of students on quadratic equations after 
they had developed procedural methods of solving linear equations by shifting 
symbols using rules such as ‘change sides, change signs’ (Lima & Tall, 2008). 
Knowing their difficulties with algebraic manipulation, the teachers had focused first 
on simple quadratics with only two non-zero terms and then on the use of the formula 
which they considered as a universal method to solve all quadratic equations. The 
consequence was that longer-term only a few students could solve a quadratic 
equation using the formula, and a further procedural embodiment was adopted by a 
minority of students to solve an equation such as   x2 = 9  by ‘passing the power over 
the other side and changing it to a root’ to get the single solution   x = 92 = 3. Other 
than this all other methods involved procedural symbol manipulation, often leading 
to error. While it is the duty of mathematics educators to improve student learning, it 
is also a responsibility to understand why so many students end up performing ‘rules 
without reason’ that lead to failure. 
We discuss this phenomenon in terms of embodied cognition in which the procedural 
embodiment of symbol-shifting is preferred to any embodied model (such as a 
balance to represent an equation) and the manipulation of symbols fails to have the 
richer meaning proposed by theories of process-object encapsulation. This long-term 
failure is is placed within a wider theoretical framework incorporating human 
embodiment and symbolic manipulation. 
INTRODUCTION 
In this paper we consider data collected from students who had learned procedural 
ways of solving linear equations (Lima and Tall, 2008) and were now dealing with 
quadratic equations. Their responses to the solution of linear equations was described 
as a ‘procedural embodiment’ in which the symbols were shifted around 
accompanied by rules such as ‘change sides, change signs.’ Their teachers were 
concerned with the students’ difficulties and focused on teaching the students to 
perform procedures that focused on being able to solve quadratic equations and to 
perform well on the tests. The syllabus specified that the students should be 
introduced to three methods of solution—by factorization, by completing the square 
and by using the quadratic formula. The teachers covered all three but moved on 
quickly to the use of the formula in the belief that this would enable them to solve 
any quadratic equation that would be given in a test. As we shall see, most of the 
students concerned continued to use procedural symbol-shifting and were unable to 
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make sense of the solution of an equation such as   (x − 2)(x − 3) = 0 . 

The data collected in this study came from a collaboration in which the first author 
worked with a group of teachers and their students who were aged 14 to 15 and had 
first studied the solution of linear equations at least two years before and quadratic 
equations for at least a year. She encouraged the teachers to cooperate by developing 
tests to investigate what the students remembered about the solution of linear and 
quadratic equations.  
In solving linear equations, although the teachers built their approach initially on 
‘doing the same thing to both sides’, the students remembered not the general 
principles but the specific acts that they performed as they solved the equations. This 
involved shifting symbols around in their imagination and on paper, such as ‘move a 
term to the other side and change its sign’. Lima and Tall (2008) termed such 
operations ‘procedural embodiments’ because the procedures involved the embodied 
movement of symbols as mental entities being moving around, with additional rules 
to get the right answer. 
Two specific rules dominated: 

1) ‘change sides change signs’ 
in which, for instance, the equation  is operated upon by shifting the 1 
to the right and the x to the left and changing signs to get: 

 
. 

2) ‘change sides and put it underneath’ 
in which the 2 is moved over and put underneath to get 

. 

In an attempt to use such rules, some students made mistakes, including changing 
 to 

(a)   (b)   (c)  

In (a) the 2 is passed over the other side and its sign is changed; (b) correctly ‘shifts 
the 2 over and puts it underneath’ but also ‘changes the sign’; (c) shifts the 2 over and 
puts the 4 underneath. This reveals the fragility of using procedural embodiments that 
may be misremembered and lead to a wider range of errors. 
For instance, one student began the solution of the above equation by changing sides 
in an incorrect manner to get:  
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Here the –1 on the left is shifted to the right to give +1, but the 3+x on the right 
becomes –3x on the left and the left hand side reduces to   3x − 3x . The student then 
writes 

 

which may involve ‘moving the number 0 over the equals sign and putting it 
underneath’. This equation is now problematic, but the student ‘moves towards a 
solution’ by completing the line as 

 

to declare the (erroneous) ‘answer’ to be zero. 
Analysing all the responses, we found that no student explicitly verbalised the 
principle of ‘doing the same operation to both sides’ (although this may have been 
implicit in some solutions). Instead, all written solutions, whether successful or not, 
were written in a manner consonant with the use of procedural embodiments. 
The majority of students involved had learned procedural methods which enabled a 
few to produce correct solutions but the majority either offered no solution or used 
the methods in fragile ways that led to error. In this paper we consider what happened 
when these students moved on to study quadratics, basing our analysis within a 
context of relevant research literature. 
LITERATURE REVIEW 
The literature considered here involves two distinct strands: the specific literature on 
linear and quadratic equations, and relevant theoretical frameworks related to 
embodiment and symbolism. The latter include process-object theories and embodied 
cognition. 
Research studies on linear and quadratic equations 
 Lima & Tall (2008) reviewed the broad literature regarding the teaching and learning 
of linear equations. Some studies diagnose students’ mistakes (e.g. Matz, 1980; 
Sleeman, 1984; Payne & Squibb, 1990; Freitas, 2002) in terms of mal-rules that 
involve erroneous forms of operations; others discuss the understanding students 
have about equations (e.g. Dreyfus & Hoch, 2004); and others show students from 
different countries making similar (if not the same) mistakes, related to their 
misinterpretation of solution techniques, and the lack of meaning attributed to the 
mathematical symbols (Linchevski & Sfard, 1991; Cortés & Kavafian, 1999). We 
also considered research studies that attempted to minimise students’ difficulties by 
using concrete models (e.g. Vlassis, 2002; Filloy & Rojano, 1989). According to 
Vlassis (2002), these models have been shown to be effective in helping students to 
understand the equality between the two sides of an equation in simple cases, but 
they do not support more general situations in which negative or non-integer numbers 
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are involved. 
Research on students solving quadratic equations is much less extensive. 
Vaiyavutjamai and Clements (2006) reported that they found little research 
addressing the cognitive challenges students encounter with quadratic equations. 
Their research on Effects of classroom instruction on students’ understanding of 
quadratic equations analysed written tests and interviews to compare the responses 
of students in Thailand and Australia. They found that students could produce correct 
solutions while still having serious misconceptions. 
In addition, even when students could successfully write down a solution, Thorpe 

(1989) reported that the ‘±’ sign in expressions such as  may not be 

meaningfully understood. 
Gray and Thomas (2001) reported a teaching approach to quadratic equations using 
paper and pencil and graphic calculators. The students were asked to plot the graph of 
functions associated with the equation, and to find its solutions in various ways. They 
were able to perform a range of individual tasks yet lacked the flexibility to move 
easily from one representation to another. 
Our students in this current study already have a history of lacking flexibility with 
symbol manipulation and understanding the procedures to solve equations. Instead of 
any conceptual insight such as a balance or an overall principle of ‘doing the same 
thing to both sides’, they move symbols around in a procedurally embodied manner 
in an attempt to simplify the equation to give a solution. As we analyse their work 
with quadratic equations, we draw on the literature of embodiment and of mental 
manipulation of symbols. 
Theories of cognitive development 
Process-object theories state that individuals learn by encapsulating (Dubinsky, 
1991) or reifying (Sfard, 1991) a process into an object. APOS theory (Dubinsky, 
1991), states that this transformation goes from ACTIONS to PROCESSES to OBJECTS, 
which are then organized in SCHEMAS; reification theory (Sfard, 1991) suggests that 
operational conceptions are condensed and reified into structural conceptions. Both 
theories observe that encapsulation (reification) might not occur, so that students 
continue only to use procedures manipulating symbols which Sfard calls ‘pseudo-
structural objects’ that lack flexible meaning (Linchevski & Sfard, 1991). 
The erroneous solutions we observed in solving linear equations certainly involved 
what Matz (1980) called mal-rules. However, underlying these rules are mental acts 
of shifting symbols around in a manner that involves picking a term up and putting it 
somewhere else, with an extra ingredient (such as ‘change sign’) to get the correct 
answer. This in turn involves a sensori-motor action of moving objects, now 
performed imaginatively in the mind and the result transferred onto paper. 
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The term ‘embodied cognition’ refers to cognitive theories that give priority to bodily 
experiences as sources of conceptual meaning (Lakoff & Johnson, 1980; Lakoff 
1987; Lakoff & Núñez, 2000). Lakoff and Núñez (2000, p. xii) state that “human 
ideas are, to a large extent, grounded in sensori-motor experience”. This suggests 
that mathematical reasoning, which involves human ideas, is also grounded in 
sensori-motor experience. 
Lakoff and his colleagues argue that the relation between mathematical reasoning and 
bodily experiences is made by conceptual metaphors, “a cognitive mechanism for 
allowing us to reason about one kind of thing as if it were another” (Lakoff & 
Núñez, 2000, p.6); they propose that it is by means of these metaphors that 
individuals learn all mathematical concepts. 
In the solution of linear equations, the students in our study do not use the conceptual 
metaphor of a balance, they use a functional metaphor relating to the sensori-motor 
shifting of symbols as objects, including additional aspects (such as ‘change sign’) to 
give a correct solution. This strategy is capable of being integrated into a perfectly 
coherent method of solving equations that gives correct results. However, if the 
procedural solution process does not link to any appropriate conceptual meaning, it 
may be fragile and the student may begin to make errors attempting to remember the 
‘correct’ rule, as happened above in the solving of   2x = 4 . 
Process-object theories and theories of embodied cognition are each able to give 
insight into some aspects of the thinking processes involved. However, process-
object theories focus on the shift from process to object with far less attention to 
bodily experiences in learning. At the same time, the embodiment of Lakoff and his 
colleagues does not refer explicitly to the compression of process into mental object 
through encapsulation.  
To analyse our data in a way that offers a clearer insight into the meanings students 
give to equations and how they understand the rules they use to solve them, we 
realised the need for a theoretical framework that integrates embodiment with 
theories of process-object encapsulation. 
THE THREE WORLDS OF MATHEMATICS 
A theoretical framework integrating embodiment, process-object encapsulation and 
formal mathematical proof has its origins in the early nineties, with the development 
of the book on “Advanced Mathematical Thinking” (Tall, 1991). In its last chapter, 
Tall proposed the existence of (at least) three different kinds of mathematics, one (as 
in Euclidean geometry) through focusing on properties of objects and the relationship 
between those properties, one encapsulating processes into concepts as in arithmetic 
and algebra, and the third being Hilbert’s formalist view of mathematics based on set-
theoretic definitions and proof. This has subsequently developed into a practical 
framework to explain the cognitive development of mathematics of individuals from 
birth to adulthood, focusing on three distinct ways of thinking that mature over the 
years (e.g. Gray & Tall, 1994; Tall, 1995; Gray, Pitta, Pinto, Tall, 1999; Gray & Tall, 
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2001; Watson, Spirou & Tall, 2003; Tall 2004; Tall, 2006; Tall, 2008). 
The first kind of mathematics is termed ‘conceptual embodiment’ and refers to the 
way in which an individual begins by interacting with physical objects and matures 
by thinking about them as thought experiments, focusing on their properties and 
building up relationships. One branch gives the conceptual embodied world that 
builds towards Euclidean geometry and beyond. Another branch focuses on actions, 
initially on physical objects, but later on mental objects, such as counting, sharing, 
adding, subtracting, multiplying. These processes are symbolised as mathematical 
operations and may be compressed into thinkable concepts (procepts) such as 
number, sum, product, fraction, algebraic expression, and so on. This gives a new 
kind of mathematics that develops long-term through what was initially termed the 
‘proceptual symbolic world’ (e.g. in Tall, 2004). This incorporated the desire to build 
flexible thinking with symbols as processes or manipulable objects, but, as we see in 
this study, many students do not develop flexible ways of operation. They develop 
procedural ways that involve the successive steps of a learned procedure, often 
supported by an underlying procedural embodiment. Thus the world of symbolism in 
arithmetic and algebra is more properly defined in terms of both proceptual (flexible) 
thinking and procedural opoerations. 
While some students continue to see the growth of arithmetic and algebra in a simple 
flexible way, compressing sequential operations into flexible manipulable concepts, 
others build increasingly complicated procedures that are likely to become 
increasingly unstable. It is the latter that is happening with most students in this 
study. 
The two worlds of (conceptual) embodiment and (procedural/proceptual) symbolism 
interact throughout school mathematics. In what follows, these two developing 
worlds of mathematics will be termed ‘embodied’ and ‘symbolic’, on the 
understanding that these terms are used with the extended meanings given above. 
When we say ‘embodied’, we mean ‘conceptual embodied’ and when we say 
‘symbolic’ we mean ‘procedural or proceptual symbolic’. Our main concern in this 
study refers to the combination of procedural embodiment and procedural symbolism 
that appears in the working of the students concerned. 
A fuller explanation of the framework of the three worlds of mathematics can be 
found in Tall (2008). In formulating this framework we attempt to remain as 
consistent with various other theoretical frameworks as possible, even though these 
frameworks may use the same terminology in different ways. For instance, in 
mathematics education the term ‘formal’ is often used in a Piagetian sense (for 
instance, in Fischbein’s (1987) three-part theory of intuitive, algorithmic and formal 
approaches to mathematics). However, in mathematics, the term ‘formal’ is usually 
reserved for a more sophisticated form of thinking characterised by Hilbert in terms 
of axiomatic structures and mathematical proof. 
In outline, the three-world model is represented in figure 1 as cognitive growth 
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begins in the bottom left hand corner with the child interacting with the environment, 
building increasingly sophisticated descriptions and definitions upwards until 
reaching an embodied form of proof characterised by Euclidean geometry. 

 
Figure 1: The three worlds of mathematics 

Embodied actions such as counting operate in a combination of embodiment and 
symbolism which may shift over to the encapsulation of symbolic entities such as 
number. On the right-hand side, increasingly sophisticated encapsulation of process 
into mental object gives various successive forms of number: whole numbers, 
fractions, signed numbers, rationals, real numbers and so on and generalised 
arithmetic processes give rise to algebra and a symbolic form of proof based on the 
specified ‘rules of arithmetic’. 
The formal world is characterised by making deductions from definitions, in at least 
three different ways, as embodied formal in Euclidean geometry based on definitions 
of figures and principles such as congruence and parallel lines, as symbolic formal in 
algebra based on the rules of arithmetic and as axiomatic formal based on set-
theoretic definitions and mathematical proof. Some forms of proof blend together two 
or more forms, for instance, spherical geometry is a blend of embodiment of space 
and the symbolism of spherical trigonometry. 
This framework is in keeping with the viewpoint of the Advanced Mathematical 
Thinking Group of PME2 (Tall, 1991), in which formal ideas introduced in school 
mathematics may function as a transition to the full axiomatic formalism of 
university pure mathematics. It also brings the use of the term ‘formal’ closer to that 
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of Fischbein (1987), which incorporates embodied, symbolic and axiomatic formal 
aspects. 
In this study we see that the development of algebraic solution of equations could be 
based formally on the principle of ‘doing the same thing to both sides’. However, few 
of the students involved use such a principle, instead they base their solutions of 
equations on embodied actions shifting symbols around, with additional aspects to 
produce the desired answer. 
What students have met before 
In considering the development from linear to quadratic equations, we need to 
examine how the earlier learning impacts on the later experiences. Tall (2008) 
introduced the term ‘met-before’ to describe ‘a mental structure we have now as a 
result of experiences we have met before.’ In order to cope with an unfamiliar task, 
different met-befores may be blended together (Tall, 2008; Lima & Tall, 2008). 
However, such a blending can lead to two quite different effects. There may be 
aspects of the blend that give increased power from putting new ideas together, 
giving great pleasure to the learner. On the other hand, there may be aspects that do 
not fit together neatly that cause anxiety and confusion. Thus blending can offer both 
a positive advantage and a negative impediment, yielding a broad spectrum of 
possible performance from those building powerful ideas with pleasure, through to 
those who struggle to cope with the conflict, to those who can make no sense of the 
situation at all. 
Fauconnier and Turner (2002) focus mainly on the positive side of blending that 
leads to creativity and continual development of new mathematical ideas. However, 
the blending of old experience that does not fit has long been known as an 
epistemological obstacle (Bachelard, 1938). The notion of ‘met-before’ therefore 
includes both aspects that are supportive and also aspects that are problematic. 
The transition from arithmetic to algebra involves both embodied and symbolic met-
befores. Symbolic met-befores come from familiarity of the operations of arithmetic 
and a sense of the generalized operations of arithmetic that are symbolized in algebra. 
Problematic aspects arise from various sources, such as the met-before that an 
arithmetic expression is always a cue to calculate an answer, while an algebraic 
expression cannot give an answer unless the numerical values of the variables are 
known (the ‘lack of closure’ obstacle, Collis, 1978). Another met-before is the 
experience that the equals sign involves an expression on the left to be evaluated to 
give an answer on the right (as observed by Kieran, 1981). Embodied met-befores 
may arise from the use of physical or mental representations, such as the notion of 
balance to represent an equation. While the notion of a balance is often initially 
helpful, it may become problematic when dealing with equations with negative terms 
that no longer fit the specific embodiment. It was this effect that was noted by Vlassis 
when the balance idea was generally helpful in the first stages of simple equations but 
became problematic as the equations became more complex.  
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In this study we will see the influence of supportive and problematic met-befores as 
students shift from linear equations that already have problematic aspects to quadratic 
equations that introduce new features. 
THE RESEARCH STUDY 
The data presented in this paper is part of a doctoral study (Lima, 2007), developed at 
PUC/SP3 (Brazil) and the University of Warwick (UK). The research arose from a 
combined study with the first author sharing ideas with a group of high-school 
teachers whose objective was to examine their current teaching practices to seek 
ways to improve their teaching. The researcher encouraged the teachers to carry out 
their own ideas and shared in the design of research instruments and the collection of 
data. The data came from 80 high school students in three groups, one of 32 14-year-
olds, one of 28 15-year-olds, both from a public school in the city of Guarulhos/SP; 
and one group of 20 15-year-olds from a private school in São Paulo/SP, all of them 
had already been taught how to solve linear equations at least two years before this 
research took place, and quadratic equations at least one year before this research. 
In the wider study, there were three data collections, each one administered by the 
class teacher in a lesson lasting 100 minutes. The first invited the students to 
construct a concept map of their knowledge of equations, the second was a 
questionnaire and the third was an equation-solving task. After an initial analysis of 
data, twenty students were selected for interviews, conducted by the researcher, in the 
presence of an observer, and tape recorded for further analysis. Of these twenty 
students, 14 were female and 6 were male. They were not chosen by gender, but by 
the kind of work they presented – including either typical mistakes or correct 
answers. In the interviews, we wished to investigate why students performed as they 
did. In particular, they were asked to explain what kind of symbol manipulation they 
had performed and why they believed it was a proper way to proceed. In this paper, 
we focus specifically on the work students performed when they had to solve 
quadratic equations. (Detailed analyses of other parts of the study can be found in 
Lima & Tall, 2006a; Lima & Tall, 2006b; Lima, 2007; Lima & Tall, 2008.) 
Teaching quadratic equations 
The teachers in this study reported that they were deeply concerned about the 
difficulties their students had encountered with linear equations but had to move on 
to keep up with the syllabus. They therefore decided that two specific objectives were 
necessary. First, that the general idea of solving quadratic equations should be 
addressed by considering simple examples. Then, in the knowledge that the students 
already had considerable difficulties in manipulating algebra, that they should focus 
on the method most likely to give success in the examination.  
In general, the teachers in the study reported that students were taught three symbolic 
methods of solving quadratic equations: 
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1) Factorizing the expression into two linear factors and using the principle that if 
the product is zero, then one of the factors must be zero. 

2) Completing the square for the given quadratic. 
3) Manipulating the equation to get a quadratic expression equal to zero and 

solving a general quadratic   ax2 + bx + c = 0  using the formula 	
  

  
x = −b± b2 − 4ac

2a
. 

Teachers in Brazil are expected to teach all three symbolic forms of solving quadratic 
equations mentioned above. However, to simplify the complexity, knowing the 
difficulties already experienced by the pupils, the teachers decided that the general 
method of using the formula would work in all cases and so this would be 
emphasized. Method (1) was used to mainly to solve equations involving just two 
terms, such as   x2 = 4  or   x2 − 3x = 0 . Method (2) was shown, but not emphasized. 

The two-term equation   x2 = 4  can be solved directly by taking the square root  

  x = ± 4  

and therefore,   x = ±2 . 
The second equation may be factorised as 
  

to see that by substituting  or  then the equation is satisfied. In this way, 
the solution of the equation involved a calculation as usual, to calculate the left hand 
side by substituting numeric values for the variable, to check that the equation is 
satisfied. The idea that the product of two factors can only be zero if one of the 
factors is zero was considered, but the method of factorization in general was not 
emphasized because the teachers were aware of the students’ difficulties with 
algebraic manipulation. In general, the teachers focused on the use of the formula that 
they believed would work in all cases. 
As in their previous handling of linear equations, the students focused on the specific 
operations that they used to solve the equations, rather than any general principles. 
The emphasis on the use of the formula in preference to other methods was reported 
by a 15-year old in interview, saying: 

 “When I looked at many of those [quadratic equations], I thought of the quadratic 
formula, I don’t know why. It could be wrong, I don’t know, but that’s what I’ve thought. 
Because the other teacher that I had, she has always said like ‘look, when you see this [a 
quadratic equation], you have to think of the formula’. (...) I remember that the teacher 
said that the formula needs a squared [unknown] with the [coefficient] a, then 
[coefficient] b together with the unknown, and then a number by itself.” 

In general, even after these teachers had offered practice in solving specific quadratic 



11 

equations, we will see that the overall impression formed by most students is the 
dominance of the formula. 
Tasks with quadratic equations 
The data used to investigate the students’ conceptions of quadratic equations came 
from two instruments, an equation-solving task, with four equations: 

; ; ;  

and a questionnaire that included two quadratic equations: 

; . 

The questionnaire also included a request to respond to the solution of the final 
quadratic equation as given by an imaginary student “John”: 

To solve the equation for real numbers, John answered in a single 
line that: 

“  or .” 

Is his answer correct? Analyse and comment on John’s answer. 

Figure 2: John’s Problem (question 8 of the questionnaire). 
Interviews with selected students gave additional personal comments on how they 
interpreted the tasks and their solutions, which gave insights into how they might be 
thinking. The next section considers data regarding the six equations and “John’s 
problem”. 
DATA COLLECTION 
A total of 68 students gave their answers to the equation-solving task and 77 students 
responded to the questionnaire, due to absences on the day each instrument was 
administered. From an analysis of all the instruments, our main findings are that the 
students mainly interpreted an equation as a calculation, building on their previous 
experience working with numbers. For instance, when asked, “what is an equation?” 
in the questionnaire, 36 out of 77 students (47%) answered that “it is a calculation in 
mathematics” or some equivalent response. Less than half the students mentioned the 
unknown. Instead, the responses often focused on the equals sign interpreted as a 
signal to perform a calculation consistent with their earlier experience of the use of 
the equals sign in calculations in arithmetic. 
Specifically, in the equation-solving task and the two quadratics in the questionnaire, 
not one student completed the square or used factorization, not even in the case of 
equations   t2 − 2t = 0  or   3l2 − l = 0 . Fifteen students (22%) solved the equation 
  m2 = 9  to find the solution but only one (of three students who used the formula) 
considered the negative solution. In total, 18 students (23%) used the formula in at 
least one of the six equations from either instrument. Apart from the use of the 
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formula and the solution of   m2 = 9  by transforming it to   m = √9 , all other methods 
involved an erroneous strategy to translate the quadratic into some kind of linear 
equation. 
Further evidence that the students took the formula as the “right” way to solve 
quadratics arises in the responses to “John’s Problem” (Figure 2). Thirty students out 
of 77 (39%) claimed that his solution was correct. Three (4%) mentioned the formula 
saying things like “He must have used the quadratic formula in his mind.” Eleven 
students (14%) declared that “John didn’t solve the equation” essentially “because 
he did not use the formula.” Four students (5%) used the formula to solve the 
equation and compared the result with John’s solution. One of these used the formula 
incorrectly and obtained different values from John, insisting that John was wrong 
(Figure 3). 

 

“Ah! I don’t know, but I think that 
John is wrong and I think that my 
way is right; I said my way, not 
my results, ok?” 

Figure 3: A student’s use of quadratic formula and his comments about it. 
Apart from the use of the quadratic formula, every written strategy used by the 
students attempted to relate back to their earlier experiences with linear equations, by 
somehow converting the equation into a linear form. Nine students (13%) simply 
replaced ,  or  respectively by m, r and a, and then solved the equation as if it 
were linear. Others used the exponent of the squared term to square its coefficient 
(Figure 4), and nine students (13%) replaced  by 2m, often with an intermediate 
calculation that suggests  represents ‘two lots of m’ or ‘m and m’, which becomes 
2m (Figure 5). 
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Figure 4: Multiplying the 
coefficient by the power 

 Figure 5:  taken as the same 
as  

In solving the equation , several students responded as shown in Figure 6. In 
interview one of these students explained, “the power two passes to the other side as 
a square root.” In this explanation, the student makes it clear that there is a 
movement of the exponent and a transformation in the power for a square root. In the 
interview, neither this student nor any other mentioned the possibility of another 
(negative) root. 

 

Figure 6: Passing the exponent to the other side as a square root 
Satisfactory responses to “John’s problem” (Figure 2) may also be regarded as 
involving movement of symbols, this time to “put” numerical values for the variable 
“into” the equation. Four students (5%) (three in the questionnaire and one during 
interview) said that John is right “because putting  or  gives the number 
zero”, while another two substituted each value in the equation (Figure 7). 

 

Figure 7: Replacing values for x in the equation. 
One of those performing the substitution explained in interview: 

Student: To see if the answer is right, I have put 3 here [in the place of x] to see what 
result I would get, and then another calculation with 2. 
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Interviewer: Why have you put 3 in place of x, and then 2 in place of x? 
Student: Because here it says that x is equal to 3 so, if x is 3, then I replace the number to 
see what I get.  
Interviewer: And what happens if the result is the same as the one in the equation? 
Student: If it is zero, then x is 3. 

Not one student said that John’s answer is correct by referring to the principle that 
guarantees that when a product is zero, one of the factors must be zero. Instead, some 
responses explicitly focused on the need to carry out the calculation to test whether 
the solution could be adjudged correct: 
“If he guesses that, as it equals zero, x should be 3 or 2, it is wrong. But maybe, he is 
very clever, calculated in his mind, and supposed that this is the answer.” 
or 
“I don’t know, but I think it is wrong because he didn’t do the calculation, he just put 
the results that were by the side of x.” 
DATA ANALYSIS 
The data show that, although all the teachers said that at some stage they had showed 
methods other than the use of the formula to solve some quadratic equations, none of 
these methods were evident in the students’ responses for either the questionnaire or 
the equation-solving task. It was not expected that students would complete the 
square to solve a quadratic equation, since the teachers gave it a low priority, and also 
because of the complexity it involves. However, it was expected that for equations 
  t2 − 2t = 0  and   3l2 − l = 0  students would factorize the expression and use the 
algebraic principle that if a product is zero, than one of the factors is zero. 
This did not happen. There is a range of possible reasons for this. The teachers 
strongly emphasized the use of the formula as a general method to solve any type of 
quadratic; it was the last method to be taught and practiced and was therefore fresher 
in the mind. Meanwhile, in general, the other methods are more complicated. To get 
an answer, it is quicker and easier to quote the formula rather than go through the 
steps to complete the square. The method of factorizing to get a product equal to zero 
only works in simple cases and involves subtle algebraic manipulation. The main 
exception to this general principle is when the equation is given as a product, say 
  (x − 3)(x − 2) = 0 , where the use of the formula requires an initial algebraic 
manipulation to get it into the form   ax2 + bx + c = 0 . 
Even the procedural use of the formula to solve the equation proved to be too 
difficult for most students. Of the 18 students who tried to use the formula, only 
seven were successful in solving at least one of the six equations. In general, even the 
use of the formula was unsuccessful. 
Overall, the data reveals that, in building on an essentially procedural approach to 
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linear equations, a small number of students had some success using the formula, a 
few added an additional procedural embodiment to solve   x2 = k  by shifting the 
power of 2 to the other side where it became a square root sign,  x = k . All other 
attempted solutions were either incomplete or used erroneous methods to rewrite the 
equation as a linear equation. 
This experiment reveals the degeneration of procedural embodiments amongst this 
group of students as their procedural rules fall apart. 
ORGANIZING A THEORETICAL FRAMEWORK 
It may appear that the data collected in this study relates to the APOS theory of 
Dubinsky (1994), but only in the sense that the students’ actions and processes were 
not encapsulated as objects, rather they were manipulated as ‘pseudo-structural’ 
entities in the sense of Sfard and Linchevski (1994). The data in this study goes 
beyond a single failure to encapsulate processes flexibly in linear equations to reveal 
a further deterioration at the next stage when solving quadratic equations. 
The embodied theory of Lakoff (1987) also has some relevance in two distinct ways: 
the conceptual embodiment of an equation as a balance supports simple linear 
equations but fails to extend to more subtle cases where negative quantities do not fit 
the simple model. Instead the students build on a procedural embodiment that relates 
to how they think about their actions in terms of mentally moving symbols around 
and adding a touch of magic to get the right answer, such as changing signs, putting 
symbols underneath, or switching powers to roots. This method of procedural 
embodiment involves using an array of different rules in different contexts that for 
many students prove to be complicated and liable to error. 
Theories of process-object encapsulation only operate here in the sense that the 
required encapsulation does not occur and the students operate in what Sfard terms a 
‘pseudo-structural’ manner. In this study, virtually all the students operated in this 
way. Thus formulating the development in terms of APOS theory only operates in a 
reduced form in which Actions may possibly be seen as Processes, but not Objects. 
For this reason we see the importance in seeing the symbolic world of arithmetic and 
algebra having a spectrum of interpretations. At one end of the spectrum is a flexible 
compressed form of mathematics in which algebraic expressions can be mentally 
compressed and manipulated fluently as mental concepts. At the other is a more 
complicated procedural form of mathematics in which the student only operates using 
what Skemp called ‘rules without reason’. 
The distinction between instrumental understanding and relational understanding 
(Skemp, 1976) and between conceptual and procedural learning (Hiebert & 
Carpenter, 1992) has long established this phenomenon. Dubinsky and his colleagues 
(for instance, Dubinsky & Harel, 1992) show that college students often reach, at 
best, a process level of meaning for the function concept rather than as an object at a 
higher level (e.g. in a space of functions). Students who are measured on successive 
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standards throughout their school lives are likely to focus on what they need to do to 
get through examinations, rather than to understand what the concepts are about, 
intimating that procedural operations may be desired to pass the test. 
In arithmetic, Gray and Tall (1994) formulated the ‘proceptual divide’ in which some 
children continued to use procedural counting methods which limited their 
performance while others used the symbolism more flexibly and were able to develop 
ways of generating new relationships from known facts. In our study with linear and 
quadratic equations, we have a corresponding phenomenon in algebra where most of 
these students remain fixed in procedural methods of solution. 
In a world where ‘success’ is measured in terms of knowing what to do in 
examinations, this data  suggests that simply teaching students what to do and getting 
them to practice techniques may give unstable knowledge structures at one stage that 
fail even more seriously at the next. 
The data is consistent with a broader interpretation of embodiment and symbolism as 
represented in the three-world model of mathematical development. There are two 
distinct forms of embodiment, one is the embodiment of perception, as involved in 
the conceptual embodiment of figures in geometry and mental thought experiments 
such as imagining an equation as a balance between the two sides, the other is the 
embodiment of action, as seen in the operations of arithmetic becoming number 
concepts and the possibility of the operations being conceived less flexibly as 
procedural embodiment shifting symbols. 
The formal aspects observed in this study do not relate to the explicit use of the laws 
of arithmetic to manipulate symbols. They do not even relate to the general solution 
of equations by ‘doing the same thing to both sides’. Instead specific rules are used 
based on the sensori-motor shifting of symbols, with additional aspects to get the 
correct answer such as: 

1) for addition or subtraction: change sides, change signs: 
e.g.  becomes 3x = 2x + 8 + 2. 
2) for multiplication or division: change sides, put it underneath, or move it from 

the bottom and put it on the other side on top: 

e.g.  becomes . 

Those procedural embodiments are now met-befores in these students work when 
they move to solve quadratic equations. As they are used to such kind of 
embodiments, they develop two further procedural embodiments, both of which are 
inadequate: 

3) for a square power: move it to the other side and change it to a root  

e.g.  becomes , revealing only one root. 
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4) to modify the square power of the unknown to see the equation in linear form: 
e.g. i 3l2–l=0 becomes 9l–l=0 (by squaring the coeffiction) or  3l–l=0 (by 

simply forgetting the power), both of which are erroneous. 
The data reveals the severe limitations in this procedural approach. The analysis of 
the relationship between practical embodiments (such as a balance to model an 
equation) and symbolic algebra reveal the problems of short-term learning 
experiences that work with simple examples but can fail in long-term development of 
more sophisticated meaning.  
DISCUSSION AND CONCLUSIONS 
This paper has investigated how an understanding of linear equations based on 
procedural embodiments affects students’ work with quadratic equations. 
We find that, in the case of linear equations, the participants in this study did not 
build on embodied models, such as a balance, they do not encapsulate processes as 
mental objects, nor do they use formal principles such as ‘do the same thing to both 
sides’. Instead of a conceptual embodiment underlying the symbolism of solving 
equations, such as a balance, they develop a procedural embodiment of symbol 
shifting in the mind and on paper to ‘move towards’ getting an answer. The 
procedural embodiments in linear equations involving ‘change sides, change sign’ 
and ‘pass the coefficient over the other side and put it beneath’ are extended with a 
new procedural embodiment to ‘move the power over the other side and change it to 
a root’. In using the latter procedure, they invariably found only the positive root. 
The teachers in this study are aware of the general nature of student difficulty, so they 
re-adjusted their goals to teach those aspects of linear and quadratic equations that, to 
them, seem to be the easiest and the most general. This is a natural goal to seek a 
level of success appropriate for students who are already finding algebra difficult. An 
approach that seeks positive advances is a widely used tactic to encourage students to 
succeed. However, this positive view needs to be balanced by the negative side: the 
met-befores that cause the students frustration, then anxiety, leading to a switch to the 
goal of seeking success in being able to carry out the procedures necessary to pass the 
examination. Here we have data that shows that such a strategy enabled a small 
number of students to be able to solve specific quadratic equations, but it did not help 
in general to encourage students to construct flexible meanings in algebra. 
In considering the cognitive development of arithmetic, Gray and Tall (1994) 
formulated the notion of ‘the proceptual divide’ between those students who 
successfully developed flexible relationships between symbols operating dually as 
process or concept and those who remained locked in the use of lengthy counting 
procedures. Those who develop a flexible proceptual knowledge structure in 
arithmetic have a powerful generative engine to derive new facts from known facts 
while those who operate in a procedural manner have longer sequences of operations 
to perform that make arithmetic even more difficult for those who are already 
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struggling. This research reveals a continuation of the proceptual divide into algebra 
where most of the students concerned do not develop a flexible proceptual use of 
symbolism that would make algebraic manipulation fluent and simple, instead they 
use procedural methods that have little conceptual meaning that is fragile and error-
prone. We hypothesize that the difficulties that occur widely in algebra are an 
extension of the proceptual divide between those who develop flexible proceptual 
meaning in arithmetic and those who remain focused on lengthy procedural 
operations. Proceptual flexibility is the foundation of algebra as generalized 
arithmetic and gives meaning to the flexible manipulation of algebraic symbolism. 
Without a meaningful flexibility in arithmetic, an approach that focuses on 
procedural learning may lead, as here, to the use of procedural embodiments shifting 
symbols in a manner that may be fragile and prone to error.  
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