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This paper considers mathematical abstraction arising through a natural mechanism of the 

biological brain in which complicated phenomena are compressed into thinkable concepts. 

The neurons in the brain continually fire in parallel and the brain copes with the saturation 

of information by the simple expedient of suppressing irrelevant data and focusing only on 

a few important aspects at any given time. Language enables important phenomena to be 

named as thinkable concepts that can then be refined in meaning and connected together 

into coherent frameworks. Gray & Tall (1994) noted how this happened with the symbols 

of arithmetic, yielding a spectrum of performance between the more successful who used 

the symbols as thinkable concepts operating dually as process and concept (procept) and 

those who focused more on the step-by-step procedures who could perform simple 

arithmetic but failed to cope with more sophisticated problems. In this paper we broaden 

the discussion to the full range of mathematics from the young child to the mature 

mathematician and support our analysis by reviewing a range of recent research studies 

carried out internationally by research students at the University of Warwick. 

Introduction 

The term ‘abstract’ has its origins in the Latin ab (from) trahere (to drag) as: 

• a verb: to abstract, (a process), 

• an adjective: to be abstract, (a property), 

• and a noun: an abstract, for instance, an image in painting (a concept). 

The corresponding word ‘abstraction’ is dually a process of ‘drawing from’ a situation 

and also the concept (the abstraction) output by that process. It has a multi-modal meaning 

as process, property or concept. 

Gray and Tall (2001) envisaged at least three distinct types of mathematical concept: 

one based on the perception of objects, a second based on processes that are symbolised 

and conceived dually as process or object (procept) and a third based on a list of properties 

that acts as a concept definition for the construction of axiomatic systems in advanced 

mathematical thinking. Each of these is an abstraction: a mental image of a perceived 

object (such as a triangle), a mental process becoming a concept (such as counting 

becoming number) and a formal system (such as a permutation group) based on its 

properties, with the concept constructed by logical deduction. 

Our purpose in this paper is to unite these various different ways of abstracting 

concepts in mathematics into a single construct by seeking an underlying mechanism in 

human thinking that gives rise to them all and then to review how this mechanism works 

successfully in some cases but not in others. 

How do Humans do Mathematics? 

We begin with a much more fundamental question: How does a biological creature like 

Homo Sapiens do mathematics? First, many individuals develop and build on each other’s 

work to construct a body of mathematical knowledge that is recorded in books and other 

products of human culture and shared with the community. Every individual develops from 
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being a child who knows no mathematics into an adult who may learn to share the 

mathematical culture. Even mathematicians that created that culture also went through 

such a development from being a baby dependent on mother’s milk to becoming a 

sophisticated adult such as Plato, Newton or Einstein. This has profound implications when 

we analyse mathematical thinking in general and abstraction in particular. By gaining 

insight into the way that mathematical thinking develops from child to adult, we also gain 

insight into the mathematical thinking of adults and into the nature of mathematics itself. 

Homo Sapiens thinks using the biological structure of the human brain; hence 

mathematical abstraction in particular and mathematical thinking in general is built from 

the biological operations of the brain. The evidence shows that human brains, though 

exceedingly complex, are only able to concentrate consciously on a few things at once, 

requiring a mechanism to cope with the complication: 

The basic idea is that early processing is largely parallel – a lot of different activities proceed 

simultaneously. Then there appear to be one or more stages where there is a bottleneck in 

information processing. Only one (or a few) ‘object(s)’ can be dealt with at a time. This is done by 

temporarily filtering out the information coming from the unattended objects. The attentional 

system then moves fairly rapidly to the next object, and so on, so that attention is largely serial (i.e., 

attending to one object after another) not highly parallel (as it would be if the system attended to 

many things at once). (Crick, 1994, p. 61) 

In addition to filtering out information, there must also be a mechanism to enable the 

essential information to be held in the brain in an economical manner. 

Compression 

The mechanism by which information is held in an economical manner relies on a 

phenomenon that we term compression (after Thurston 1990): 

Mathematics is amazingly compressible: you may struggle a long time, step by step, to work 

through some process or idea from several approaches. But once you really understand it and have 

the mental perspective to see it as a whole, there is often a tremendous mental compression. You 

can file it away, recall it quickly and completely when you need it, and use it as just one step in 

some other mental process. The insight that goes with this compression is one of the real joys of 

mathematics  (Thurston 1990, p. 847). 

Compression involves taking complicated phenomena, focusing on essential aspects of 

interest to conceive of them as whole to make them available as an entity to think about. 

Although other species have such mechanisms to function in their own context, Homo 

sapiens has a tool that enables it to grasp a complex situation, reflect upon it at various 

different levels of sophistication and to communicate with others: language. The essential 

feature of this tool is to name a phenomenon as a word or phrase, to allow the name to be 

spoken when referring to that phenomenon and then to use language to discuss its various 

aspects and to focus on its various properties and its relationships with other phenomena. 

We use the term ‘thinkable concept’ to refer to some phenomenon that has been named so 

that we can talk and think about it. This can be any part of speech, and may refer to any 

phenomenon, such as number, food, warmth, rain, mountain, triangle, brother, fear, black, 

love, mathematics, category theory. The phrase ‘thinkable concept’ is, of course, a 

tautology, for a named phenomenon is a concept and is therefore thinkable. However, 

given the many meanings of the term ‘concept’, we choose to use the term ‘thinkable 

concept’ here to emphasise its particular use in this theoretical framework. 

Thinkable concepts are noticed before they are named. First various properties and 

connections are perceived in a given phenomenon, but it is only when these are verbalised 
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and the phenomenon is named that we can begin to acquire power over it to talk about it 

and refine its meaning in a more serious analytic way. 

As an example of the development of a thinkable concept, consider the notion of 

procept itself (Gray & Tall, 1994). As we sat looking at data from children solving 

arithmetic problems, we saw how some children seemed to use number symbols both for 

counting procedures and also as thinkable ‘things’ to operate upon. Suddenly we realised 

that this phenomenon needed a name to talk about it and the word ‘procept’ was born. At 

this point it was just a word linked to a complicated phenomenon. But by naming that 

phenomenon, we acquired the power to think about it and talk about it to each other and to 

our colleagues. 

Whereas others had talked about a process becoming encapsulated, or reified, as an 

object (Dubinsky, 1991; Sfard, 1991), they did not have a name to talk about the elusive 

underlying concept that was both process and concept. Though our invention built heavily 

on their work, it moved it to a more sophisticated level. We can now talk about different 

kinds of procepts, including operational procepts such as 2+3 in arithmetic, which always 

have a procedure to produce a result, potential procepts in algebra such as 2+3x which 

represent both a general process of evaluation that cannot be carried out until x is known 

and also a concept of an algebraic expression that can be manipulated, and potentially 

infinite procepts, including the concept of limit (Tall, Gray, et al., 2000). We can go on to 

discuss how different kinds of procepts involve different kinds of cognitive advantages and 

difficulties and move the theory to a new level of sophistication. 

This typifies the way in which a complicated phenomenon (here operating with 

symbols as process and concept) can be compressed into a thinkable concept (here 

‘procept’) to allow us to think about the phenomenon in a more sophisticated way. We 

suggest that this is the underlying mechanism of abstraction to compress phenomena into 

thinkable concepts that enables human thought in general and mathematical thinking in 

particular to operate at successively higher levels of sophistication. 

Making connections between thinkable concepts 

Having considered the compression of knowledge into (thinkable) concepts, we now 

address the manner in which the brain connects them together. This is through a biological 

process called long-term potentiation, which is an electro-chemical modification of the 

links between neurons to favour those that are useful and build stronger neuronal 

connections (Hebb, 1949). All neurons have multiple inputs from other neurons and a 

single output (the axon) that passes electrochemical messages down its length and branches 

out to connect to other neurons. A particular neuron receives charges from other neurons 

and when it reaches a threshold, it fires down its axon. This occurs typically several times a 

second. Links that fire more often are changed chemically and are more easily fired for a 

time. This leads to the ‘recency’ effect, in which we continue to be conscious of more 

recent events and can sustain a continuous train of thought. If a link is repeated and put on 

a ‘high’, it may then be strengthened to such a level that it fires automatically, making the 

link essentially permanent. This process is ‘long-term potentiation’ that builds connections 

between thinkable concepts. It operates by a process akin to Darwinian selection in which 

successful links are enhanced and dominate others in the long-term (Edelman, 1992). 

The necessary corollary of long-term potentiation is that the brain can only think using 

either built-in structures, such as vision, taste, smell and their respective connections, or 

mental constructions based on previous experience. The successive experiences that we 

have therefore deeply affect the ways in which we are able to think at later stages. 
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Homo sapiens shares a facility for learning through repetition that is common in many 

other species. Repetition can strengthen the connections in the brain to such an extent that 

repeated actions become routine and performable without conscious thought. Used 

properly, as part of a rich knowledge schema, such compression is a valuable and essential 

tool. Used on its own, to learn ‘rules without reasons’ without the subtleties of rich 

thinkable concepts, it is likely to lead to fragile knowledge that may fail as the situations 

become more complicated. 

If a child compresses ideas into thinkable concepts, this will build the tools to work at a 

more sophisticated level. If not the ideas may simply become too complicated to cope. 

Krutetskii (1976) studied the success of four groups (gifted, capable, average, incapable) in 

terms of their compression of solutions procedures and found that the gifted were likely to 

curtail solutions to solve them in a small number of powerful steps, whilst the capable and 

average were more likely to learn to curtail solutions only after considerable practice, and 

the incapable were likely to fail. Gray and Tall (1994) report a spectrum of different 

performances in arithmetic that they described as ‘the proceptual divide’ between those 

who cling to the comfort of counting procedures that, at best, enables them to solve simple 

problems by counting and those who develop a more flexible form of arithmetic in which 

the symbols can be used dually as processes or as concepts to manipulate mentally. 

‘Proceptual thinking’ occurs when counting procedures are compressed into number 

concepts with rich connections: knowing things like ‘4 and 2 makes 6’ so ‘6 take away 4 

must be 2’ and using these ‘things’ to derive new knowledge, such as ‘26 take away 4 must 

be 22 because 26 is just 20 and 6’. 

The compression of complex phenomena into thinkable concepts is a natural biological 

development. However, to trigger the compression requires a specific focus on relevant 

aspects of a situation: identifying salient features to sense an underlying phenomenon that 

is named and refined into a thinkable concept. Abstraction is the process of ‘drawing from’ 

the situation to focus on the thinkable concept (the abstraction) output by that process. This 

thinkable concept is then available to be used as in more sophisticated levels of thinking. 

Abstraction may focus on the properties of perceived objects and give them names that 

are compressed by categorisation into different levels of sophistication (Rosch, 1978). A 

child may say, ‘that is a “dog”, that is a “cat”, they are both “animals”’, and a whole tree of 

classification becomes possible. It includes individuals such as ‘Rover’ or ‘Tiddles’ 

through generic ‘cat’ and ‘dog’, which are both ‘mammals’, as are also ‘elephants’ and 

‘rats’, but not ‘frogs’, however all are ‘animals’, and so on. This kind of hierarchy occurs 

in geometry, studying categories of figures such as ‘triangle’, ‘square’, ‘rectangle’, ‘circle’ 

and classifying, for example, different kinds of triangle (‘scalene’, ‘isosceles’, 

‘equilateral’, ‘acute-angled’, ‘right-angled’, ‘obtuse’), seeing that a square is a special kind 

of rectangle and both are quadrilaterals which, along with triangles, pentagons, hexagons, 

and so on are all ‘polygons’. Each category is a thinkable concept. The study of the 

properties of these objects and the actions upon them (geometric constructions) builds 

eventually into a coherent theory of Euclidean geometry. 

Abstraction may focus on actions on objects, which leads through compression to the 

computable symbols in arithmetic, the manipulable symbols in algebra and symbolic 

calculus. The symbols are thinkable concepts that we can operate on with properties such 

as ‘even’, ‘odd’, ‘prime’. They provide the basis for and extension to wider concepts such 

as ‘fraction’, ‘decimal’, ‘rational’, ‘irrational’, ‘real’, ‘complex’ and algebraic concepts as 

expressions we can ‘factorise’, ‘simplify’ and equations we can ‘solve’. 
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Eventually the focus may turn to the properties of mental objects, compressed through 

several stages until it is possible to formulate a concept definition solely in terms of set-

theoretic language and deduce further properties using mathematical proof. 

All of these cases show abstraction in action: focusing on relevant aspects and naming 

or symbolising them as become thinkable concepts, be they mental images of objects (eg 

‘triangle’), symbolism for a process compressed into a concept (eg 3+2 as a process of 

addition and the concept of sum) or for structures defined by a list of set-theoretic axioms 

(such as the complete ordered field   or the infinite cardinal 
  0

). 

This formulates all forms of abstraction in neuronal terms as the compression of a 

coherent phenomenon into a thinkable concept. Within this wider framework, however, 

there remain significant long-term differences between abstraction based on perceived 

objects, abstraction based on actions and abstraction based on set-theoretic definitions. 

These differences are well represented in the research literature. 

Earlier Theories 

The distinctions between different forms of abstraction feature in a range of accepted 

theoretical frameworks. Piaget distinguished between construction of meaning through 

empirical abstraction (focusing on objects and their properties) and pseudo-empirical 

abstraction (focusing on actions on objects and the properties of the actions). Later 

reflective abstraction occurs through mental actions on mental concepts in which the 

mental operations themselves become new objects of thought (Piaget, 1972, p. 70). Here 

reflective abstraction is seen as an activity akin to pseudo-empirical abstraction, now 

applied to mental entities rather than physical objects. 

Skemp (1971) considers the fundamental human activities to be perception, action and 

reflection. Perception involves input from the senses, action involves output through 

interaction with perceived phenomena, and reflection is the process whereby we think 

about relationships between perception and action. Skemp (1979) talked about two distinct 

systems, ‘delta-one’ which involves perception of and action on the actual world we live 

in, and a second internal system, ‘delta-two’, whereby our brains imagine internal 

perceptions and actions and reflect on them. Here we have perceptions of and actions on 

objects with reflection producing a developing mental framework. 

Fischbein (1987) focused on three distinct aspects of mathematical thinking: 

fundamental intuitions that he saw as being widely shared, algorithms that give us power 

in computation and symbolic manipulation, and the formal aspect of axioms, definitions 

and formal proof. 

Bruner (1966) focuses on three modes of operation: enactive, iconic and symbolic, 

which inhabit a similar theoretical discourse where embodiment relates to a combination of 

enactive and iconic while symbolic is subdivided into the symbolism of arithmetic and 

algebra the formalism of logical proof. 

Biggs and Collis (1982) built on the stage theory of Piaget and the modes of Bruner to 

build a theory of Structure of Observed Learning Outcomes in assessing the progress of 

students through successive modes: sensori-motor, ikonic, concrete-symbolic, formal, and 

post-formal. Within each mode there were cycles of performance—unistructural, multi-

structural, relational, extended abstract—which Pegg & Tall (2005) related to cycles of 

concept construction, dealing with one aspect, several separate aspects, related aspects, 

then the whole idea. They referred to this as a ‘fundamental cycle of concept construction 

and noted this occurring in process-object encapsulation through a single procedure, 
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several procedures (with the same effect), a process (producing the required effect possibly 

by several different procedures) and a procept. 

The levels of success in achieving the compression of a complicated situation into a 

thinkable concept can be formulated in general using this fundamental cycle: focusing on 

an isolated aspect of a situation, encompassing several aspects without grasping their 

relationships, relating several aspects, grasping the situation as a whole. 

In this way SOLO taxonomy encompasses the analysis of learning outcomes, both in 

terms of the long-term growth of different modes of operation and also the local cycles of 

abstraction in which complicated phenomena are compressed into thinkable concepts. 

There are many differences between each of these theories and it would be highly 

inappropriate to attempt to combine them into a single theory. However, there are 

underlying themes that relate to the natural growth of mathematical thinking.  

Gray and Tall (2001) reviewed a range of these theories and hypothesised that 

elementary mathematical thinking builds by focusing on objects (for instance, in 

geometry), and on operations on objects represented as symbols (in arithmetic, algebra, 

etc) that operate dually as process and concept. At a later stage, in advanced mathematical 

thinking, the focus changes to the properties (of objects and operations) formulated set-

theoretically as fundamental axioms for mathematical theories. 

Based on these ideas, Tall (2004) formulated three distinct ‘worlds of mathematics’: 

the conceptual-embodied (based on perception of and reflection on properties of objects); 

the proceptual-symbolic that grows out of the embodied world through action (such as counting) 

and symbolization into thinkable concepts such as number, developing symbols that function both 

as processes to do and concepts to think about (procepts); 

the axiomatic-formal (based on formal definitions and proof) which reverses the sequence of 

construction of meaning from definitions based on known concepts to formal concepts based on set-

theoretic definitions.  (Tall, 2004, quoted from Mejia & Tall, 2006) 

This framework is consistent with the research we have performed over recent years in 

our studies of the development of the individual from the young child to the sophisticated 

adult. Gray and Pitta (1996) consider the way that more successful children focus on the 

subtle compression of knowledge of arithmetic while less successful children remain 

fixated on the more visible complication of the physical detail. Tall, Gray et al. (2001) look 

at the long-term growth of procepts through arithmetic, algebra, calculus, and on to formal 

definitions in terms of properties and proof. Tall (1999) considers the distinct forms of 

proof available as the child develops cognitively from physical interaction with the world, 

through thought experiments, the properties of procepts proved by calculation and 

manipulation and on to formal proof as a mathematical expert. Tall (2002) reviews the 

calculus in terms of an embodied enactive-iconic approach manipulating graphs, symbolic-

proceptual representations (manipulating formulae) and formal proof (in analysis). Tall, 

Gray et al. (2000) focus on the development through the proceptual-symbolic world and 

the transition to the axiomatic formal world that reveals a bifurcation between conceptual 

and procedural thinking occurring because of different levels of success in compressing 

procedures into thinkable concepts. All of these papers are available on the web 

(www.davidtall.com.papers and www.eddiegray.co.uk). 

Recent data from around the world 

Recent work with our own research students collecting data from around the world in 

Britain, Malaysia, Turkey, Brazil has further studied concept formation at various stages of 
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mathematical development of the individual. These reveal in many cases the desired 

abstraction of thinkable concepts often does not occur as required, with many students 

remaining at a fragile procedural level of operation. This has long-term consequences for 

the successful teaching of mathematics at all levels. 

The development of early arithmetic 

Early arithmetic evolves from actions of manipulating and counting collections of 

objects. It involves repeating and refining the action-schema of counting, until it becomes 

apparent that the effect of a counting procedure on a given set always gives the same 

number word leading to the thinkable concept of number. The addition of two numbers 

begins by putting two sets together and counting the combination by various counting 

procedures with a symbol such as 3+2 evoking either a process of addition or the concept 

of sum, 3+2, which is 5. 

In any context that involves an action on objects, the individual has the possibility of 

attending to different aspects of the situation: a theme that Cobb, Yackel and Wood (1992) 

see as one of the great problems in learning mathematics. In the terms of our framework 

the essential question is whether the child focuses on the actions of counting leading to a 

procedural interpretation or is able to contemplate the effect of those actions in terms of 

thinkable number concepts. 

The greater majority of young children count (and so do many adults). For a young 

child, counting can be seen as part of a stage in concept development. However, an older 

child’s extensive reliance on counting may be the result of necessity. Counting procedures 

that work with small numbers—such as calculating 8+3 by counting-on three after 8—are 

no longer practicable in dealing with larger numbers such as 855+379. Learned routines 

may be used without meaning and—when they lead to error—confusion and alienation 

may ensue. Pitta (1998) obtained data illustrating that children who succeed naturally focus 

on compressed number concepts to perform arithmetic tasks, while children who fail often 

focus on other aspects of what they see. A child looking at the picture  in a 

mathematical way may see it representing the fraction one half (the black or white parts of 

the square). Another child may see it as the doors of a lift or even an open window at night 

with a white curtain. As children grow older, some focus on the powerful use of number 

symbols as compressed thinkable concepts, some can combine both embodiment and 

symbolism in flexible ways, but others remain trapped in an increasingly complicated 

world of fragile procedures. 

Is it possible to help those who are struggling with counting procedures unable to cope 

with more sophisticated problems? Gray and Pitta (1997) worked with an eight-year-old 

child who had difficulty counting on her fingers and instead used mental images of 

counters in specific arrays to perform arithmetic calculations with small numbers. They 

provided her with a graphical calculator and tasks to perform such as ‘find a sum whose 

answer is 9’. Trying 5+3 gave 8, but adding another 1 gives 5+3+1 is 9. The essential 

facility of the graphic calculator is that it shows both the arithmetic expression and the 

result without the need for counting, allowing the focus of attention to be shifted from long 

procedures of counting which are no longer required to the visible relationships in 

arithmetic displayed on the screen. She found combinations such as 4+5, 3+6, 4+4+1, 

3+4+2 and as she did so, she began to see number patterns. Slowly her activities no longer 

depended totally on counting. As she worked through the programme, she became more 

adventurous, building sums such as  2 + 9 +1 6 = 6 ,   90 80 4 = 6 ,   30 15 9 = 6 , 

  5+ 20 19 = 6 ,   40 30 5 = 5 ,    10 + 30 30 2 = 8 . Over ten weeks of exploration 
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she became comfortable with larger numbers and using number patterns. At the end of the 

course she was asked what “4” meant to her, and she replied “a hundred take away ninety-

six.” Not only had she become familiar with number relations in a way highly unusual for 

a ‘slow learner’, she had developed a quality that is usually only shown by much more able 

children: a sense of humour with numbers. 

However, such remediation has not proved successful in other cases. Howat (2005) 

found that there were failing students in arithmetic with a median age of 8.5 who were 

unable to cope with place value because they had not constructed the concept of ‘ten’ as a 

thinkable concept that could be ten ones or one ten. Without this they were overwhelmed 

by the problem of coping with the arithmetic of two digit numbers since their response to 

any problem was to attempt counting on in ones.  Even when working closely with them, 

Howat found that some had cognitive difficulties that started far back in their development 

that were deeply ingrained and seemed no longer subject to her remedial action. 

The Ambiguous Number Line 

The shift to number as measurement is embodied using a number line. In the English 

National Curriculum, this is intended to give learners an overall picture of numbers in 

order on a line as part of a long-term development of successive abstractions, from a line 

drawn with pencil and ruler, to a mental image of an arbitrarily long line with no thickness 

that is subdivided to imagine fractions, finite decimals, then infinite decimals and 

eventually to the formal thinkable concept of the real numbers as a complete ordered field. 

It is a journey that is made by those who become mathematicians, but the initial path 

proves stony for many young children in school. 

In English Primary Schools (for children of median ages 4.5 to 10.5), the number line 

is introduced as a key classroom resource within the Primary National Strategy (PNS) in 

the Framework for Teaching Mathematics (DfEE, 1999). It begins with a ‘number track’ 

consisting of blocks placed one after another to count in order, then moves on to a number-

line in several different guises including a ‘washing line’ of numbers, table-top number 

lines, some marked with specific numbers, others left open to place the numbers in an 

appropriate place. The overall aim is to use these representations to promote the 

understanding of the number sequence and order of the whole numbers marked on the line, 

introducing addition and subtraction in terms of operations on lengths, then later expanding 

the children’s knowledge to include fractions, decimals and negative numbers. 

Within the documentation there is no reference to the conceptual differences between a 

discrete number track and a continuous number line, or to the subtle shifts in meaning 

involved in the introduction of broader number concepts. 

This ambiguity is reflected in schools by the way in which teachers interchangeably 

use the terms number line and number track as if they are the same idea, when they are not. 

The number track consists of discrete numbers, one, two, three, … with each number 

followed by a next number and no numbers in between. The number line is a continuous 

line on which we may mark numbers as points, with fractions between whole numbers and 

the possibility to extend the line in either direction to include positive and negative 

numbers, rationals, decimals, and so on.  

When Doritou (2006) interviewed a range of children with median ages between 6.5 

and 10.5, most of them simply described the number line in terms of some perceptual 

features of a particular line or explained a particular line in the context of an action. 

Overall, the quality of the children’s responses did not change significantly between 

children in Year 3 (aged 7.5) and those in Year 6 (aged 10.5). There was an over-riding 
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preference to label calibrated lines with whole numbers and a limited acknowledgement 

that an interval could be subdivided, linking back to their experiences with the number 

track rather than the intended number line. 

When the teachers came to use what they perceived as a number line to demonstrate 

the subdivision of intervals for fractions and decimals, most children carried an 

embodiment pre-loaded with prior active, linguistic and relational experience with whole 

number. There was no sense of the conceptual structure that underscores the use of the 

number line as an ideal representation for connecting whole number and fraction (Baturo 

& Cooper, 1999). 

Procedural conceptions of fraction 

After the initial challenges of handling whole numbers, the shift to handling fractions is 

a problematic one for many children. Instead of a single name for a single number, like ‘3’, 

a fraction has many names: ‘two-thirds’, ‘four-sixths’, ‘sixteen twenty-fourths’. A fraction 

begins as an embodied activity of breaking an object or collection into equal parts and 

assembling the required number of parts. Whereas two-thirds, four-sixths and sixteen-

twenty-fourths involve quite different procedures and produce parts of different sizes, the 

quantity in each case is the same. The major act of abstraction shifts attention from the 

sharing procedure as a sequence of steps to the effect of that procedure, namely the 

quantity produced in the result. Focusing on the effect, one-third is the same as three-

sixths. If fractions are seen as procedures, then addition is almost too complicated to 

contemplate, but if fractions with the same effect are seen as ‘the same’ then adding one-

third and one-half is the same as adding two sixths and three sixths, a process not unlike 

adding two apples and three apples. The child with proceptual flexibility of number is 

more likely to see the essential simplicity of adding fractions than the child with a 

procedural view that may involve learning complicated rules which may have little 

meaning, such as ‘put the fractions over a least common denominator’. 

As part of the Malaysian Vision for 2020 to develop the country’s economy to the 

highest standards by that date, the Malaysian curriculum is designed to teach fractions in a 

caring and helpful way to include such things as seeing that multiplication can be done in 

different ways to give the same result. For instance, ‘two-fifths of twenty-five’ can be 

performed either by working out a fifth of twenty-five, which is five, then multiply by two, 

to get ten or by multiplying two times twenty-five to get fifty and divide by five, also to get 

ten.  

To ensure that all children can accomplish these tasks, a teacher encourages the pupils 

to remember the procedures, reciting successive parts of the procedure and inviting the 

children to fill in missing words. For instance, the teacher might say (in Bahasa Malay), 

‘How do we work out two-fifths of twenty five?’ and draw three circles on the board one 

above the other for numerator and denominator of the fraction, the other for the whole 

number. ‘What do we put in the top circle? The nu…’ to which the class gleefully says ‘the 

numerator.’ ‘What do we put in the bottom circle? The de…’ ‘Denominator’. ‘Of means 

mul…’, ‘multiply’, and so the lesson continues, building up the ritual of the procedure of 

multiplication by a fraction. 

In a study observing the classroom and interviewing the students, Md Ali (2006) found 

that children’s achievement in fractions was indeed improving, but that although the 

teachers subscribed to the aspirations of Vision 2020 to help children ‘really understand 

mathematics’, they general consensus was that they felt constrained by the teaching 

schedule and the need for success in the National UPSR Examination. Success in 
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examinations was achieved procedurally with some degree of flexibility in choosing which 

procedure to use—but the compression of knowledge into flexible thinkable concepts to 

solve unfamiliar fraction problems proved elusive. 

‘Magic’ embodiments in algebra 

The shift from arithmetic to algebra involves an abstraction from the computable 

operations of arithmetic to the use of expressions representing generalised arithmetic 

operations. Such a transition proves relatively easy for some who have a flexible 

proceptual approach to arithmetic, but it is far more difficult for those who continue to 

think of expressions purely in procedural terms. Working with a group of committed 

teachers in Brazil, Rosana Nogueira de Lima (de Lima & Tall, 2006) found the teachers 

concerned with teaching their students how to solve equations. 

In linear equations, they elected to teach the students the principle of ‘doing the same 

thing to both sides’ to maintain the equality and manipulate the equation to give the 

solution. In practice the students focused not on the general principle but on the actions 

they performed. Subtracting 2 from both sides of the equation    3x + 2 = 8  and simplifying 

to    3x = 8 2  was soon seen as ‘change sides, change signs’ while the final simplification 

of    3x = 6  by dividing both sides by three to get 
   
x = 6

3
 soon became ‘move the 3 over 

the other side and put it underneath’. The students interpreted these moves in an embodied 

way, ‘picking up the terms and putting them somewhere else’ with additional actions such 

as ‘change signs’ or ‘put it underneath’. This ‘procedural embodiment’, carried out by 

mentally moving the terms with an additional meaningless piece of ‘magic’ to get the right 

answer was used successfully by some but proved fragile for others who made errors 

mixing up the rules such as shifting the 3 in    3x = 6  with the additional magic of ‘changing 

signs’ to get
   

x =
6

3
. Such errors may increase the confusion of students who may then try 

alternatives to get the correct answer, producing what appear to be random errors. 

In solving quadratics, the problems became worse as the teachers, knowing the 

difficulties with linear equations, focused only on teaching the formula because it gives a 

solution for any quadratic. However, this single procedure lacks flexibility and it is often 

necessary to manipulate the equation to get it into a form to use the formula. A problem 

arose when the students were asked to show that the equation    (x 2)(x 3) = 0  had roots 

2, 3. Most students failed to respond at all and those that did attempted to multiply out the 

brackets to solve the equation using the formula. Few succeeded. 

Here we see lack of flexibility in abstracting thinkable concepts has a cumulative 

effect. Some students see the essential simplicity of an algebraic expression as a potential 

calculation that can be manipulated in its own right and develop an effortless mastery of 

algebra. Meanwhile others who focus on procedures become entrapped in more 

complicated activities that increase the cognitive strain and may become unmanageable. 

Complications in the function concept 

As we move through into the secondary curriculum we come to concepts like the 

notion of function, which the NCTM standards see as being an essential underpinning of a 

wide range of mathematics. In some countries, such as Turkey, the function concept is 

taught from its set-theoretic definition and seen as a fundamental foundational idea. It is 
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quite simple. There are two sets A and B and for each element x in A, there is precisely one 

corresponding element y in B which is called   f (x)  (eff of eks). That’s it! 

However, this is used in the curriculum to weave a huge web of knowledge: linear 

functions, quadratic functions, trigonometric functions, exponentials and logarithms, 

formulae, graphs, set diagrams, and so on. How does one help the student make sense of 

this complicated array of ideas? Two routes are possible. One is to focus on the simplicity 

of the definition and continually link back to it to make powerful connections. Another is 

to look at the individual difficulties and teach the students how to cope with them. 

Bayazit & Gray (2006) reports a study of the teaching of two teachers with very 

different approaches. Ahmet saw his duty to mentor the students and help them make sense 

of the function concept. At ever opportunity, he emphasised the simple property that a 

function 
   f : A B  mapped each element of the domain A to a specific element in the 

domain B. For example, in considering when a graph could be a function, he looked at the 

definition and related it to the fact that each x corresponded to only one y, and linked this 

to the ‘vertical line’ test. When he considered the constant function, he considered the 

definition and revealed the constant function    f (x) = c  as the simplest of functions which 

maps every value of x in A onto the element c in B. Likewise, when he studied inverse 

functions, such as the square root, the inverse trigonometric functions and the relationship 

between logarithm and exponential, he patiently referred everything to the definition. With 

piece-wise functions, which were new to the students, he again used the definition to 

confirmed that these too satisfied the simple requirement that for every x there was a 

unique y. 

The other teacher, Burak, was well aware of his students’ potential difficulties and 

misconceptions. He considered that students rejected the constant function because ‘it did 

not vary with x’. He interpreted the students’ difficulties with the inverse function as an 

indicator of their inability to move back and forth between the elements of domain and co-

domain. He knew that students had problems with the discontinuities of the graphs of 

piecewise-defined functions, predicting that they would draw lines to fill in any gaps. 

However, he made no effort to eliminate these obstacles during his teaching. Instead he 

gave the students the details he considered that they needed to answer the examination 

questions. He taught the ‘vertical line test’ as a specific test for functions, practising 

examples to get it right. He introduced the inverse function with a simple case, finding the 

inverse of
   y = 2x + 3 , by seeking to express x in terms of y, subtracting 3 from both sides 

and dividing by 2 to get 
   
x =

y 3

2
 then interchanging x and y to get 

   
y =

x 3

2
. He dealt 

with the problem of the constant function by affirming that a function does not need to 

involve x and that its graph is a horizontal line parallel to the x-axis.  He dealt with piece-

wise functions by showing students how to cope with particular examples. 

He would often indicate that an examination or test required particular tactics: 

If you want to succeed in those exams you have to learn how to cope. 

Do not forget simplification. It is crucial, especially [in] a multiple-choice test. 

Even though he was aware of student difficulties he did not attempt to address them 

meaningfully as teachers had done in other studies (Tirosh et al., 1998; Escudero & 

Sanchez, 2002). His students scored significantly lower than those of Ahmet who had 

concentrated on building the notion of function as a thinkable concept by linking the 

definition to many different function contexts such as set diagram, formula, graph rather 

than focus separately on how to cope with specific difficulties in different cases. 
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Drawing Together the Threads 

The theoretical framework for the development of mathematical thinking through the 

compression of phenomena into thinkable concepts encompasses learning over a life-time. 

It begins with young children learning to count, which requires a process of mental 

compression of the counting-schema into the concept of number.  Arithmetic knowledge 

builds on operations of addition, subtraction, sharing and multiplication where the more 

successful student sees the symbols as flexible thinkable concepts that dually evoke 

processes ‘to do’ and concepts’ to think about’. Such students use old knowledge to create 

new and have the flexibility to formulate and solve new problems. The less successful stay 

more with their perceptions of the real world and their inflexible counting procedures that 

cannot cope with the increasingly sophistication of situations that they encounter. 

We have found the use of a graphic calculator representing both the arithmetic 

expression to be computed and the result of the computation can enable a child to focus on 

relationships rather than on the time-occupying procedures of counting, although serious 

cases of difficulty may not respond even to this remediation. Our framework suggests that 

abstraction of thinkable concepts by focusing on the proceptual relationships between 

numbers rather than the procedures of counting leads naturally to more successful 

operations with arithmetic. 

The physical representation of number as a number track, then a number line has strong 

perceived properties that encourages many children to cling to an interpretation of the 

number line as a counting and computational tool for whole numbers, so that they fail to 

grasp its measurement characteristics to recognise it as a visual and dynamic image of 

numbers beyond whole numbers. However, this occurred in a situation where much 

activity was provided without an apparent focus on the change of meaning from counting 

on a discrete number track to measuring on a continuous number line. We hypothesise that 

children learn from their experience and if that experience does not focus on the thinkable 

concepts required for more powerful thinking then that thinking may not occur. 

The procedural teaching of fractions, even though it improves performance on 

examinations nevertheless can leave the student inflexible and less able to cope with 

problems beyond the scope of the narrow framework taught so that success may be 

achieved within the examination. Again, the focus on different procedures in counting 

produces gains in accuracy and efficiency but does not extend so easily to more 

sophisticated problem solving. 

The shift to algebra requires a sense of the general operations of arithmetic, and we 

hypothesise that a child who is proceptual in arithmetic is more likely to have the 

flexibility of arithmetic symbols as thinkable concepts to carry over to the manipulation of 

algebraic expressions. Data to support this explicit hypothesis still needs to be collected. 

What we do have is data that a group of children taught by the principle of ‘do the same 

thing to both sides’ focus on the specific experience they see before them and solve 

equations by shifting symbols with a perceived ‘magic’ of changing signs or shifting the 

number 3 in    3x = 6  over the other side and ‘putting it underneath’. 

The case of the research on the function concept shows the positive way in which a 

gifted teacher can assist in the abstraction of powerful thinkable concepts by relating the 

simplicity of the definition to all its representations and relationships. Meanwhile the 

desire to focus on a host of specific instructions to pass the examination may be counter-

productive. 

What does the available evidence tell us? The overwhelming message is that the 

pressure to ‘teach to the test’ leads to the teaching of specific procedures that compresses 
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the routine procedure into an automatic way of solving specific problems without 

necessarily producing the conceptual flexibility to think in a more sophisticated way. The 

‘natural process’ of the brain to focus on relevant data and to form thinkable concepts is 

here focusing on the steps of the procedure, not what the procedure is intended to do. For 

so many learners the focus is on the steps needed to perform column subtraction, long 

division or factorisation of quadratics. The procedure of factorisation turns    x
2

+ x 6  into 

   (x 2)(x + 3)  which can be seen as converting one thing into something that (looks) 

different. These two expressions are different as procedures of evaluation, but they are the 

same in effect. Being able to ‘see’ 8+6 as 8+2+4 and then as 14, or to ‘see’ 
  

1

2
+

1

3
 as 

  

3

6
+

2

6
 

and ‘hear’ ‘three sixths and two sixths’ to get ‘five sixths’ transforms arithmetic 

procedures into flexible thinkable concepts. In the same way, ‘seeing’    x
2

+ x 6  and 

   (x 2)(x + 3)  as different ways of writing the same thing is a significant simplification 

that turns algebraic expressions into thinkable concepts that can be handled fluently. 

If at one stage a learner fails to focus on the relevant aspects to produce the subtle 

thinkable concepts and instead learns the steps of the procedure to carry out a specific task, 

then the human brain lacks the thinkable concepts to build on the sophistication required at 

the next stage and is more likely to resort to the primitive strategy of learning by rote. The 

effects are cumulative. As all of us go through the long-term development of learning 

mathematics, if compression of knowledge required for the next stage does not occur, then 

procedural learning becomes more likely, not only in the children we are teaching, but in 

those who are adults and have already been through their mathematics education. Thus, 

despite the widespread call for more meaningful conceptual learning, the perception that 

the way to learn mathematics procedurally proliferates and is held, not only by children, 

but also by many teachers, administrators and politicians. 

To improve long-term conceptual learning, the framework formulated here suggests 

that the whole curriculum must be framed with an awareness of the abstraction process to 

produce thinkable concepts at every stage. This requires the teacher as mentor to 

encourage children to focus on the appropriate essential ideas in a way that enables them to 

compress the phenomena into thinkable concepts. This in turn requires mathematics 

educators to aid the development of such a vision by working to formulate how this can be 

attempted in ways that make sense both to the teacher and the many different learners. 

This journey will not be easy. In the UK, the National Numeracy Strategy (DfEE, 

1999) was initiated as a response to low attainment in mathematics in many schools and it 

informed teachers, through its annual objectives that built new ideas on those previously 

taught, what should be taught in mathematics during each school year. It also explained 

how the mathematics specified should be taught by presenting a recommended three–part 

lesson format: mental/oral phase, main phase and plenary phase and advocated that the first 

and last phase, together with part of the main phase, should be taught with the whole–class 

together. While this strategy was not enforced by law, the majority of schools responded to 

the initiative, partly due to pressure from government agencies such as OfSTED (Denvir & 

Askew, 2001).  

In an evaluation of mathematics provision for 14 to 19 year-olds OfSTED (2006) 

reported that the majority of teaching preparing students for examinations by “teaching to 

the test” might ensure that students pass examinations but it would not ensure 

mathematical flexibility. The government report intimated that the problems arose from the 

inadequacies of teaching.  
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Our theoretical framework suggests differently. We believe that the natural process of 

abstraction through compression of knowledge into more sophisticated thinkable concepts 

is the key to developing increasingly powerful thinking. It occurs naturally with the most 

able and others can be helped by using techniques that encourage a focus on the essential 

elements to compress into thinkable concepts. But there is no evidence that it can work for 

all children. Until we grasp the nature of the required sophistication to compress 

complicated phenomena into thinkable concepts and are able to express it in a way that 

makes sense to teachers, students and, if possible, to politicians, mathematics will remain 

for many a world of overbearing difficulty relieved only partially by limited rote-learning. 
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