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What is proof in mathematics? For a mathematician it is a formal argument to lead 

to the confirmation of a theorem without any possible room for doubt. For a student 

it may be an argument that convinces them that a statement is true. For all of us, our 

human knowledge builds on our genetic inheritance and our subsequent experiences 

that we have met before in our earlier life. Therefore our concept of proof grows as 

we build on increasingly sophisticated experiences. 

In this presentation, I will look at the development of proof through the cognitive 

development of individuals from birth to adulthood, as different individuals develop 

different ways of argumentation to lead to their own conceptions of proof. Adults 

have conceptions that may make sense to them, the question is, how to encourage 

growing students to conceptualise their own argumentation to lead to a mathematical 

form of proof. I will show that mathematical concepts have several different aspects 

that contribute to proof, beginning with the concept of number, which may be 

embodied as a number line traced with a finger, symbolised as decimal expansions 

useful for computation, and formalised as a complete ordered field. Each of these 

represents a distinct way of conceptualising number that work together as a 

conceptual blend to give various aspects of the number concept. Each of them 

involves a different form of proof appropriate in different contexts as the learner 

grows in sophistication. It is our purpose as mathematical teachers to understand 

this development and to encourage students to move through argumentation using 

embodiment and symbolism on to the formal meanings of mathematical proof. 

INTRODUCTION 

This paper is a contribution to the conference on Reading, Writing and 

Argumentation at Changhua University, Taiwan, May 2007. It focuses on the 

underlying meaning of language and symbolism in mathematics and how this relates 

to the growth of argumentation and proof as different individuals mature, It is based 

on a theory of long-term development of three distinct worlds of mathematical 

thinking in the individual (Tall, 2004) through perception and action (the world of 

embodiment) the compression of actions such as counting into concepts such as 

number (the world of symbolism) and the construction of coherent theories based on 

set-theoretic definition and mathematical proof (the world of formalism). 

We will consider how each development gives distinct forms of argumentation and 

proof which all depend on compressing ideas into thinkable concepts and blending 

conceptual structures into even more potent mental structures. 

Language is the tool which gives us the power to build sophisticated conceptions. It 

enables us to name phenomena, with terms like mamma, dadda, smile, cold, dark, 

triangle, two, infinity. The verbal utterance is related to a person, an action, a 
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sensation, a property, a situation, or any other phenomenon that we are able to focus 

upon. Language then enables us to talk about this phenomenon and give it more 

sophisticated meaning as a thinkable concept. Language allows us to compress 

experiences into small enough chunks to enable us to relate them in our minds. 

Compression can occur in many ways, in time, where events that happen over hours, 

days, or centuries can be spoken of in a single context, in space, where different 

events are considered in relation to one another, in conceptual structure where an 

action such as counting is compressed into a concept such as number. 

Concepts are connected within particular contexts, which are termed frames in 

cognitive science, such as ‘family’, which includes not only parents and children, 

brothers and sisters, iterations such as grandparents and grandchildren, emotional 

relationships such as parents caring for children, with combinations of love and 

discipline. Such frames may operate at a generic level, such as ‘family’ or at a 

specific level, such as ‘Joe, Mary and their son John’. 

Existing frames may be blended together in new ways to give creative ways of 

thinking putting together previously constructed ideas in new imaginative ways, so 

that conceptual structures become more sophisticated. 

Human development involves: 

• Compression of complex situations into thinkable concepts using language; 

• Connection between thinkable concepts in coherent frames of reference; 

• Blending frames of reference in new ways, to create new conceptions and 

solve novel problems. 

An example: Mrs Thatcher as President 

Fauconnier & Turner (2002) give many examples of conceptual blends, for instance, 

the democratic systems in the USA and Britain have an elected leader, voters, and 

various pressure groups among the voters, allowing a generic frame with elected 

leaders, voters, pressure groups that can be blended to form the argument: 

If Mrs Thatcher stood for President, then she would not get elected because the 

unions would oppose her. 

This argument creates a new imaginative blend that includes Mrs Thatcher, American 

Voters, and American Unions that does not exist in reality, but allows an innovative 

argument to be put forward. The two specific frames are not parallel in every aspect; 

for instance, the President is elected by the people, but the Prime Minister is elected 

by the party in power. It has emergent concepts that are part of the new blend but not 

of the original frames, such as the idea of Mrs Thatcher campaigning for votes in 

Michigan. In reality, Mrs Thatcher could not even stand as President because she is 

not a natural born American citizen. Nevertheless the argument imagining the 

scenario of Mrs Thatcher as President brings forward a valuable comment on the 

differences between the two electoral systems. (Figure 1.) 
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Figure 1: a conceptual blend of frames (based on Fauconnier & Turner, 2002) 

The blending of frames is an essential aspect of human thinking. Although we build 

on concepts already in our minds, this need not be purely the mechanical use of ideas 

previously taught; blending enables the human mind to build new thoughts in original 

and creative ways, not only in general thought, but throughout mathematical thinking 

Complex numbers as a conceptual blend 

Another example cited by Fauconnier and Turner is the concept of complex number. 

(Figure 2). 

 

Figure 2: The complex numbers as a conceptual blend 
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The analysis is an intellectual one: seeing the arithmetic of positive and negative 

numbers being blended with the geometric transformations of points in the plane 

within a set-theoretic generic frame of operations on a field. The blend producing the 

complex numbers has many emergent concepts, such as the idea of real and 

imaginary parts of a complex number, its modulus and argument and the complex 

arithmetic which arises, adding the Cartesian coordinates and multiplying using the 

polar coordinates. The blend has new emergent properties that can create conflict 

with old ideas, such as the fact that the square of a complex number can be a negative 

number. 

This is an intellectual top-down analysis performed by individuals who already have 

the requisite concepts in their minds and is very different from the development over 

time both in the history of complex numbers and in the understanding of complex 

numbers by individuals. For instance, in historical development, the generic frame of 

sets and field operations is implicit rather than explicit when the complex numbers 

were being constructed. Our purpose here is to use a similar analysis to focus on how 

the individual may develop cognitively using conceptual blends in argumentation and 

mathematical proof. 

COGNITIVE DEVELOPMENT OF ARGUMENTATION 

Development in Geometry 

The long-term development of geometrical thinking and proof, as described by van 

Hiele, broadly goes through a sequence of stages: 

1. Playing with objects to sense their properties and connect together perception, 

touch, actions etc.; 

2. Naming objects and describing their properties to produce rich generic 

concepts: 

      e.g. triangle, square, circle, corner, side, round, 

3. Using properties to define objects, performing constructions to draw objects; 

4. Arguing that if certain properties hold, then others follow; 

5. Constructing a coherent framework of Euclidean Geometry; 

6. Developing alternative geometries on the sphere, projective geometry, 

hyperbolic, elliptic etc. 

It is not appropriate to go into further detail here. However, the broad development 

involves the development of language in geometric argumentation and proof. Initially 

the child uses language to describe properties, then, as more precision in meaning 

develops, language is used to define properties that specify when a figure is of a 

specific type. Now many specific figures are categorised with a single generic name, 

such as ‘triangle’ which may be further distinguished into sub-categories, for 

instance, an isosceles triangle is precisely a triangle with two equal sides. By building 
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on the concept of two triangles being congruent if they have certain common 

properties then it is possible to produce arguments that show that if certain properties 

occur then others follow. For instance, by joining the apex to the mid-point of the 

base to divide the triangle into two congruent triangles (3 corresponding sides), it is 

possible to show that an isosceles triangle has equal base angles. This leads to the 

construction of a coherent theory of Euclidean geometry. Subsequently (two 

thousand years in history) more subtle geometric viewpoints can occur through the 

study of geometry on a sphere (where straight lines are great circles) or the projective 

geometry of drawing a scene on a transparent surface, or more subtle forms of 

geometry with new systems of formal definitions that give rise to non-Euclidean 

geometries. 

Development in Arithmetic and Algebra 

The long-term development of number concepts and arithmetic on into algebra 

begins with counting as an action taking place in time being compressed into the 

concept of number, and successive counting of sets being compressed into the 

concept of sum. All the operations of whole number arithmetic arise from embodied 

actions: putting sets together to give addition, taking a set away to give subtraction, 

taking several sets the same size to give multiplication and sharing equally to give 

division (perhaps with a remainder). Over time this leads to the broad conceptual 

frame of whole number arithmetic. 

 

Figure 3: Compression of counting actions into number concepts 

The repeated action of ‘one more’ builds up the potential infinity of whole numbers 

and their properties can be argued using both embodiment and symbolism. For 

instance, to show that the sum of the first 100 numbers is 5050 can be done ‘the long 

way, by starting with 1, counting on 2, then counting on 3, and so on up to counting 

on 100, but this can be compressed creatively by breaking up the sum 

   1+ 2 + 3+ ....+ 98+ 99 +100   

into the terms up to 50 plus the terms from 51 to 100, reversing the second sequence 

and adding them term by term to get each pair of terms adding to 101 and, with 50 
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pairs, the total is then   50 101 which is 5050: 

 

Although this sum is a specific case of the first 100 numbers, the argument works for 

other whole numbers. This argument works more easily for even numbers that can be 

split into two equal parts. Another argument is to take a second copy of 1+…+100, 

turn it round and add 1+…+100 to 100+…+1 to get twice the sum as 101+…+101 (a 

hundred times) and divide by two to get 
  
1

2
100 101. This works for any whole 

number, so generically applies to all whole numbers. Algebraically, we can use this 

to say: 

    1+ ...+ n = 1
2

n(n +1) . 

The same proof may be embodied in a picture by putting elements in successive rows 

of length 1, 2, 3, … . This gives a triangular set of objects (yellow in figure 4) and 

when a second set of the same shape is rotated and placed with it (the blue set), the 

result is a rectangular array with sides n  and n + 1,  giving a visual argument for the 

sum    1+ ...+ n = 1
2

n(n +1) . 

 

Figure 4: the sum 1+…+n is half of    n (n +1)  

Technically, it may be said that the pictorial proof is unsatisfactory because the 

picture shows not a general value of n but a specific value, in this figure the value is 

5. However, if we look at figure 5, we see that the argument is visually satisfying 

even when the number of items is so large that it is not easy to count them. 

The array is visibly rectangular. If there are n blue discs in the first row, the number 

of yellow discs in each row increases by 1 starting from 0 up to n, so there are n+1 

rows. Most importantly, all of this can be seen without counting the actual number of 

discs involved. 
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Figure 5: the generic pictorial proof 

The formula can also be proved by induction in two similar-looking but subtly 

different ways. 

One is as a potentially infinite proof: 

Prove 1+...+n = n(n+1)/2 is true for n=1 

          in the form 1 = 1.(1+1)/2. 

If true for n=k, use 1+...+k = k(k+1)/2 

          to deduce the truth for n=k+1, 

and then use the potentially infinite proof: 
It is true for n=1, hence for n=2, hence for n=3, and so on .... 

(for any whole number n) 

This can be recast as a finite proof, by basing it on the Peano Postulates in the 

following form: 

Peano Postulates : 

  is a set and s:  s :  satisfies: 

      Axiom 1: s is one-one but not onto. 

                          Let 1   where s(n)  1 for any n, define n+1 to be s(n). 
      Axiom 2: If A is a subset of   with 

       1 A, 

   and, for all k   , k  A implies s(k) A 

    then A =  . 

 

Proof 

Let 
 
A = {n 1+ ...+ n = 1

2n(n +1)}  

1. show 1 A, 

 2. show k A implies k+1 A, 

3. use axiom 2. 
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This is now a proof with just three steps (1, 2, 3 above). It reveals an enormous 

compression from a potentially infinite proof with the same step carried out time and 

time again and again, ad infinitum, to a proof with just three steps. The infinite part of 

the structure is now subsumed in the axioms themselves, because any set A with a 

map s satisfying axiom 1 must be infinite. 

When such proofs are presented to students, the symbolic and pictorial proofs are 

usually seen as meaningful, but the proof by induction appears confusing to many. 

Why? The symbolic and pictorial proofs show why the argument is meaningful. 

Superficially, the induction proof uses the result to prove the result. The subtlety of 

the quantifiers—that one wishes to prove it true for all n, while using the result for 

any n so far—is potentially confusing. 

It leads to a new world of mathematics: the formal world built on set-theoretic 

definition and mathematical proof. While formal deduction builds in an increasingly 

sophisticated way throughout the worlds of embodiment and symbolism, there is a 

significant change in the formal axiomatic form of mathematical thinking in that it 

signals a change in focus from having definitions based on known objects in the 

earlier stages, shifting round to build proofs on axioms where the mathematical 

objects involved are based on formal definitions. 

 

Figure 6: Argumentation and Proof in three different worlds of mathematics 
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This leads to increasingly sophisticated developments of argumentation and proof as 

each individual grows over their lifetime. Some will make the journey, but many may 

be confused by the conflicts which occur in conceptual blends which may not seem to 

make sense. 

In the embodied world, there is an increasingly sophisticated use of language to 

define and deduce properties of categories of objects that are then built into a 

deductive theory. While Euclidean proof has a formal deductive framework, it still 

builds on mental imagery of known geometric figures to build its deductive 

framework. Even some forms of non-euclidean geometry now have embodiments 

that give them meaning in a new way, and it is only when we reach formal 

geometries defined set-theoretically in terms of axioms that we enter the formal 

world in its fullest form. 

The cognitive development of symbolism is quite different from that found in 

geometry, involving an increasingly sophisticated compression of actions into 

manipulable symbols in arithmetic, algebra, symbolic calculus and other topics such 

as clock arithmetic modulo a given whole number. 

In both embodiment and symbolism it is possible for arguments concerning specific 

cases to be conceived by the human mind as typical generic representations of a 

whole category of cases, which leads on to symbolic proofs using algebra. 

There is an interface between embodiment and symbolism which enables both 

embodiment to give meaning to the symbolism (as in the number line, or graphs of 

functions in the Cartesian plane) or to provide symbolism to underlie the geometry 

(as in algebraic geometry).  

At more advanced levels of embodiment and symbolism, definitions and deductions 

arise built on experience that form a transition stage before the switch around to 

formal arguments based on axiomatic systems that occur in mathematical proof. All 

of this development is built on the increasingly sophisticated use of language 

blending together frames of reference with underlying mathematical similarities. 

(Figure 7.) 

Formal axiomatics is an ideal form of proof desired by mathematicians. The truth is 

that, as biological creatures, we all re-cycle what we know. For instance, our 

experience of arithmetic is not replaced by the formal definition of the real numbers, 

we continue to use the connections made in our brain when we learnt simple 

arithmetic as a basis for thinking about numbers. Therefore, despite the claim of 

mathematicians that the real numbers are simply a formal complete ordered field, 

they remain, in all of us, a subtle multi-blend of embodiment as a number line we 

trace with a finger, a decimal number system we use for calculation and a complete 

ordered field we use for formal proof. (Figure 8.) 
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Figure 7: The cognitive development of argumentation 

 

Figure 8: The real numbers as a multi-blend 
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A mature mathematician may handle this blend believing that the formal definition 

coincides with the symbolic and that the embodied definition gives a useful but 

limited approximation to the same underlying structure. Learners often sense conflict 

between the different aspects of the blend. 

The mathematical curriculum is usually seen as a continual expansion of the number 

system from counting numbers, broadening to positive and negative integers, 

fractions, rationals, reals, then complex: 

 

For the developing student, however, the different structures involved can cause 

serious conflict. For example, if we ask the question: 

 How many numbers are there between 2 and 3? 

 the answer is different in different cases: 

   none; 

 
 

 lots (a countable infinity); 

   even more (an uncountable infinity); 

   none (because the complex numbers are not ordered). 

Mathematically, of course, as sets we have , but as mathematical 

structures, they are thoroughly different.   is the smallest mathematical structure 

that starts with an element and repeats continually with each element having a new 

successor,  is the smallest ordered integral domain, 
 

 is the smallest ordered field, 

  is the only complete ordered field. 

Cognitively, successive number systems encountered in school are not contained one 

within the next; they are successive blends where one expands into the next, sharing 

some properties but having others that are not carried over from the smaller system to 

the expanded system. For instance, Natural numbers build from counting objects and 

this can be represented as a number track built with successive cubes set out in line, 

counting them one after another. Each number has a next number and there are no 

numbers in between. However, when the focus shifts to measuring, then the numbers 

can be written on the number line as they are on a ruler, with the numbers at the end 

of successive unit lengths and the space in between divisible into fractions. (Figure 

9). 
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Figure 9: number track and number line as a blend of two frames 

Does the difference between number track and number line matter? The English 

National Curriculum specifically starts with a number track and later uses various 

number-line representations to expand the number line in both directions and to mark 

positive and negative fractions and decimals. Doritou (2006, Warwick PhD) found 

that many children had an overwhelming preference to label calibrated lines with 

whole numbers, with limited ideas that an interval could be sub-divided. Their 

conception of the number line did not change significantly between children in Year 

3 (aged 7.5) and those in Year 6 (aged 10.5). This suggests that the children’s early 

experiences of counting and number track did not expand to give the broader 

properties of the number line. For some reason, the blend of number track and 

number line was not apparent to many children, with the number line being invested 

mainly with the earlier discrete properties of whole number. This applies also to the 

introduction of the fraction concept where the blend of whole number arithmetic is 

expanded as a blend with fractional arithmetic. 

The transition from arithmetic to algebra is difficult for many. For example, the 

conceptual blend between a linear algebra equation and a physical balance works in 

simple cases for many children (Vlassis, 2002, Ed. Studies). However, the blend 

breaks down with negatives and subtraction (Lima & Tall 2007, Ed. Studies). I 

conjecture that there is no single embodiment that matches the flexibility of algebraic 

symbolism, causing another difficult transition in expansion of mathematical 

concepts. 

Students conceiving algebra as generalised arithmetic may find algebra simple. 

However, those who remain with inappropriate blends may find it distressing and 

complicated. 

This successive obstacle of blending as the number system expands with its 
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combination of powerful connections that enhance understanding for some and 

conflicting factors that cause anxiety for others underlies the difference between 

success and failure in developing mathematical thinking. 

SUMMARY 

This survey of the development of meaning in mathematical thinking reveals an 

underlying development of argumentation and proof as the individual is faced with a 

succession of acts of increasing sophistication through: 

• Compression of complex situations into thinkable concepts using language; 

• Connection between thinkable concepts in coherent frames of reference; 

• Blending frames in new ways, using embodiment, symbolism and formal 

definition and proof to build theories and solve novel problems. 

In teaching students to develop methods of argumentation and proof, we need to be 

aware of their cognitive development and the way in which their previous 

experiences will build conceptual structures that can help or hinder their 

development. New ideas which mathematicians may see as logical extensions of 

simpler ideas may be subtle conceptual blends for students who have different 

experiences to build upon. There is need for much more detailed understanding of the 

strengths and conflicts of conceptual blends that give powerful insight on the one 

hand and confusion and anxiety on the other. 
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