
Teachers as Mentors to encourage both power and simplicity in active 

mathematical learning 
 

David Tall 

 

Institute of Education, University of Warwick, Coventry, CV4 7AL, United Kingdom 

 

Introduction 

The teaching of mathematics is under stress around the world. Imposed targets in many 

countries press teachers to train their students to obtain higher marks on national tests. 

‘Teaching to the test’ can produce higher marks on standard questions, but is often 

accompanied by a sense of disappointment that many students have not understood what 

they have learnt. Techniques taught sequentially may enable the individual to do 

mathematics, but not necessarily to think about it, making the mathematics grow 

increasingly complicated. 

This presentation considers how flexible knowledge can be built by focusing on essential 

detail that leads to rich concepts that are both powerful and yet simple to use. This arises 

through a process that the Fields’ Medallist Thurston (1990) called ‘compression of 

knowledge’. I theorise that focusing on essential ideas can lead to ‘thinkable concepts’ 

that are easier to manipulate mentally and to link together in a more powerful conceptual 

structure. Over the long term, students who form rich compressed ideas are more likely to 

be able to build on them in a simpler way than students who learn procedures just to pass 

tests. As a consequence, this suggests that teachers need to act as mentors to encourage 

their students to build thinkable concepts that link together in coherent ways. 

 

Compression of knowledge and powerful mathematical thinking 

For many individuals, mathematics is complicated and it gets more complicated as new 

ideas are encountered. For others, by focusing on the essential ideas, it becomes possible 

to see mathematics in a more focused way that makes many ideas essentially more 

simple. As my colleague, and founding Chairman of the Mathematics Institute at 

Warwick, Christopher Zeeman (1977), said: 

“Technical skill is mastery of complexity, while creativity is mastery of simplicity.” 

The way in which complicated ideas can become simple to those who conceive them in a 

focused way is explained beautifully by Fields medallist, William Thurston: 

Mathematics is amazingly compressible: you may struggle a long time, step by 

step, to work through some process or idea from several approaches. But once you 

really understand it and have the mental perspective to see it as a whole, there is 

often a tremendous mental compression. You can file it away, recall it quickly and 

completely when you need it, and use it as just one step in some other mental 

process. The insight that goes with this compression is one of the real joys of 

mathematics. (Thurston, 1990, p. 847.) 

Examples of compression occur throughout the learning of mathematics, starting with the 

child learning the highly complicated action of counting the items in a collection, which is 

steadily compressed into the concept of number. Symbols in arithmetic, algebra, 



trigonometry, calculus, and so on, also usually have two complementary meanings: 

• as a process to be carried out by some procedure of calculation or manipulation, 

• as a concept in its own right, to be thought of as a mental object that can be 

manipulated, as symbols are manipulated in arithmetic or algebra. 

As a process, it allows us to do mathematics, as a concept we are able to think about it and 

make connections to other thinkable concepts in flexible ways. 

A partial list of symbols in mathematics that represent both process and concept is given 

in table 1. 

 

symbol process concept 

4 counting number 

3+2 addition sum 

–3 subtract 3 (3 steps left) negative 3 

3/4 sharing/division fraction 

3+2x evaluation expression 

v=s/t ratio rate 

y=f(x) assignment function 

dy/dx differentiation derivative 

   
f (x) dx  integration integral 

   

lim
x 2

x
2

4

x 2

1

n2

n=1

 
tending to limit value of limit 

(x1, x2, …, xn) vector shift point in n-space 

  Sn permuting{1, 2,…, n} element of Sn 

Table 1: Symbols as process and concept (taken from Tall et al., 2001) 

 

Symbols as procepts 

A symbol acting dually as a process (to do mathematics) and a concept (to think about) is 

called an elementary procept (Gray & Tall, 1994). However, different symbols, such as 6, or 

4+2 or 1+5 or 5+1, or  2 3  all represent essentially the same thing. This is called a procept. 

A procept can be broken into its constituents and reassembled in many flexible ways. For 

example, to calculate 8+6, one may know that 8+2 is 10, and breaking the 6 into 2+4 allowing 

the 2 to be added to the 8 to get 10, then the 4 is added to 10 to get 14. It is for this reason, 

that we allow the procept to be represented by different symbols, such as 4+2, 2+4, 7–1, 

provided that each symbol is just a different way of writing the same underlying concept. 

Gray and Tall found that young children learning arithmetic developed in a spectrum of 

different ways. The more successful could think of numbers as flexible procepts, deriving 

new number facts from old (‘I know 7 and 5 is 12’ so ‘12 take away 5 is 7’) while others 



remained in the safety of counting which becomes time-consuming (‘12 take away 5 is … 11, 

10, 9, 8, 7’). 

In the mathematics classroom we spend a great deal of time teaching students procedures: 

column addition, long multiplication, procedures to solve equations by ‘doing the same thing 

to both sides’ leading to rules such as ‘change side, change sign’. In calculus we meet the rules 

of differentiation where ‘d(uv) = vdu+udv’ is used to differentiate a product by replacing u 

and v by formulae and working out the symbolic derivative; then we move on to develop 

procedures for integration. 

I suggest that the idea of using symbols flexibly as ‘do-able’ process or ‘thinkable’ concept is 

what makes mathematics essentially simpler at successive levels of sophistication. 

 

Different ways of interpreting symbols 

Let me ask a fundamental question. Do you personally see the following formulae being 

‘the same’ or ‘different’? 

 x(x+2), x2+2x. 

Think about it for a while. 

As procedures they are different. The first adds x and 2, then calculates x times the result; 

the second squares x, also multiplies 2 times x, then adds the two results together. As 

procedures they involve totally different sequences of operations. 

As algebraic expressions, we often say that they are equivalent. There are several reasons 

for this. First, as a procedure of evaluation, for a given numerical value of x, the two 

always give the same numerical output. Secondly the equation x(x+2) = x2+2x is true for 

all x and is often referred to as an identity. Thirdly if one shifts one’s focus of attention 

from the successive steps of a procedure to the effect of the procedure, then the two 

procedures of evaluation have the same effect. 

Finally, when a function is defined to be the set of ordered pairs 

     {(x, y) 2 | y = f (x), x D} 

then the functions 

 f(x) = x(x+2), g(x) = x2+2x 

are, by definition, exactly the same function on the domain   D = . 

 

Compression from Procedure to Process to Procept 

In the mathematics education literature, a distinction is often made between a procedure and a 

process, by defining a procedure to be a specific set of steps and a process to be a 

transformation as a whole (Davis, 1983, p. 257). This means that a particular process may be 

carried out by several different procedures. With this interpretation, an algebraic expression 

may be considered as a specific procedure of evaluation, or, if we allow ourselves to think of 

equivalent expressions—such as x(x+2) and x2+2x—as being ‘the same’, then they are just 

different ways of writing the same process. At another level, by thinking of the expressions 

as functions that are both processes to evaluate and concepts to be mentally manipulated, the 

expressions now act as procepts. As procepts, two functions u and v can be operated on to 

obtain their sum u + v, difference u – v, product uv, quotient u/v and composite   u v  (where 

    (u v)(x) = u(v(x)) . 

This gives us four different stages which become progressively more sophisticated as: 



1. procedure: carried out by a single step-by-step sequence of actions; 

2. multi-procedure: several different procedures are available that give the same result; 

3. process: a function with given input-output relationship; 

4. procept: where functions act dually as a process that can be carried out by various 

procedures or as mental objects that can be operated upon. 

As the meaning shifts from one stage to the next, the mathematical techniques become more 

efficient, more flexible and more interconnected to allow richer forms of mathematical 

thinking. (Figure 1.) 

 

Figure 1: Spectrum of outcomes as symbolic compression becomes more sophisticated 

(expanded from Gray, Pitta, Pinto & Tall, 1991, p.121). 

For example, the factorization of the quadratic to solve the equation   ax
2

+ bx + c = 0 , can be 

performed by three related procedures: factorizing the quadratic, completing the square, or 

using the quadratic formula (which is derived from completing the square). A group of 

Brazilian teachers, conscious of their students growing difficulty with algebra and the need 

for them to gain success on tests, decided to focus mainly on the quadratic formula which 

could could essentially be used to solve any quadratic. Their students were asked to respond 

to the following: 

To solve the equation (x–2)(x–3) = 0, John answered in one line “x = 3 or x = 2”. 

Is the answer correct? Analyze and comment on it. (Lima & Tall, 2006). 

Only six out of 77 students gave a satisfactory answer. Three substituted the values into the 

equation, and of the remainder, the most common response, begun by 16 students was to 

solve the equation from scratch: 14 attempted to multiply out the brackets, 6 did it correctly, 

of whom 4 then used the quadratic formula and just 3 found the correct roots. No student 



mentioned the idea that ‘if the product of two numbers is zero, then one of them must be 

zero’. Using the analysis in figure 1, these students remained at the level of a single 

procedure, lacking the efficiency of having different procedures appropriate for particular 

contexts and the flexibility to think about mathematics symbolically. 

As another example, the following calculus problem can be solved in several different ways:  

 

   

d

dx

x
2

+1

x
 

One is to write u = x
2
+1, v = x and to use the quotient rule, which leads to an expression that 

requires several steps to simplify it. Another is to rewrite the formula as x +x
–1

, which can be 

differentiated term-by-term in a single step to give 1–x
–2

. Another, more complex way is to 

write 

 
   
y =

x
2

+1

x
 

so  
   xy = x

2
+1 

and to differentiate xy as a product to obtain 

 
   
x

dy

dx
+ y = 2x  

which, after some simplification, gives the required derivative. This is less efficient than 

either of the other methods, but gives yet another procedure to carry out the same 

process of differentiation. 

When 36 Malaysian students taking a calculus course taught mainly by procedural 

methods were asked how many solutions they could give to this problem, the 12 most 

successful students with grade A on the previous year’s examinations could offer 

significantly more procedures than the 12 who achieved grade C. (Ali & Tall, 1996). 

(Table 2.) 

Student Grade 

 

0 or 1 methods 

[procedure] 

2 or 3 methods 

[multi-procedure] 

[or process] 

A 

B 

C 

3 

7 

9 

9 

5 

3 

Total 19 17 

Table 2: Flexibility of student solution processes 

This shows greater flexibility associated with higher examination grades. 

  

Procedural and conceptual thinking 

The two examples given so far are both solvable by procedural responses. The fluent and 

efficient use of procedures is part of the development of mathematical fluency, but it is 

not enough. Procedures occur in time and it is difficult to think about other things at the 

same time as carrying out a procedure. What has been noticed with some alarm is that 

there is a growing tendency for students to be able to solve 1-step problems requiring a 

single procedure, but a loss of ability in solving multi-step problems. (LMS, 1995). 

Teaching procedures is part of the whole development, but is not sufficient for long-term 

development of mathematical sophistication. 



To reach the higher levels of flexible operation requires the making of connections and I 

conjecture that making connections is easier when procedures are compressed into 

thinkable concepts after the manner indicated by Thurston. This involves a steady 

compression of meaning in the symbolism, and can also be seen by representing the 

concepts in other ways. 

 

Embodiment and Symbolism 

Mathematical concepts can be represented as physical actions (such as a transformation), 

as models, pictures, words and symbols. Bruner (1966) described three different modes of 

operation. 

What does it mean to translate experience into a model of the world. Let me suggest 

there are probably three ways in which human beings accomplish this feat. The first 

is through action. […] There is a second system of representation that depends 

upon visual or other sensory organization and upon the use of summarizing images. 

[…] We have come to talk about the first form of representation as enactive, the 

second is iconic. […]  Finally, there is a representation in words or language. Its 

hallmark is that it is symbolic in nature. (Bruner, 1966, pp. 10–11.) 

The enactive mode through action and gesture is of particular value in mathematics.  For 

instance, we may enact the slope of a graph by moving our hand along it to sense where it 

slopes up, where it is horizontal and where it slopes down (figure 2). 

 
Figure 2: Dynamically tracing the changing slope of a curve with the hand 

 

I term the combination of enactive and iconic, together with the mental thought experiments 

that accompany them, the embodied world of mathematical thinking. It complements the 

symbolic world of calculation and manipulation in arithmetic, algebra, symbolic calculus and 

so on. (For further details, see, for example, Tall 2004, Tall, 2006, obtainable from the 

website www.davidtall.com/papers.) 

 

An example: the derivative of cosx 

Figure 3 shows the graph of cos x and the practical slope function which stabilizes to look 

like the graph of  –sin x. (using Blokland et al, 2000). In this way it is possible to see the 

slope function before the need to compute it symbolically. 

 



 
Figure 3: The gradient of cosx looks like sinx upside down 

What is important here, is that the student makes conceptual links and expects the derivative 

of cosx to be –sinx, rather than needing to use the limiting process to prove the limit exists. 

 

An example: the case of vector 

The concept of vector arises in many guises: as a displacement, a velocity, an 

acceleration, a force, expressed visually as arrows of given magnitude and direction or 

symbolically in terms of column vectors and matrices. Students can be taught 

procedurally to add two vectors together as arrows representing given magnitude and 

direction by following one after the other and using the triangle or parallelogram law. But 

this does not necessarily carry with it a conceptual meaning. 

An embodied meaning may be given through considering a vector as a translation of a 

shape in space, say by translating a triangle on a horizontal plane. (Figure 4.) 

 
Figure 4: Translating an object 

The effect of the translation can be seen by the relative shift of any point on the triangle, 

or on the hand that moves it, represented by an arrow from starting point to finishing 

point. One may regard all these arrows as ‘equivalent’ with the same magnitude and 

direction. A more powerful alternative is to imagine a single arrow of given magnitude 

and direction that can be shifted to start at any point whose endpoint then gives the 

finishing point. This gives the notion of free vector. Addition of free vectors is then 

accomplished by placing one after the other to obtain the unique free vector that has the 

same effect as the two free vectors traced sequentially. (Figure 5.) 



 
Figure 5: The sum of two vectors as the total effect of two translations. 

If students conceive vectors as actual journeys, they may add them naïvely by doing one 

journey after the other, jumping in the middle as necessary, rather than the mathematical 

addition as free vectors. (Figure 6.) 

 
Figure 6. Adding together vectors 

 

The error adding vectors as journeys arises through seeing them as actions, rather than as 

free vectors conceived as the effect of the actions. Taking this embodied approach to 

teaching vectors, focusing on the effect of a transformation, Poynter (2004) was able to 

significantly improve students’ understanding of the mathematical notion of free vector. 

 

Linking embodiment and symbolism 

Mathematical symbolism arises from embodied actions such as counting, sharing, 

ordering, measuring, and so on. In this way, embodiment can give initial meaning and 

equivalence of symbols can be seen as actions having the same effect. For instance, 

equivalence of fractions (Figure 7.) 

 

 
Figure 7: equivalence in terms of actions with the same effect 

 

If the results of the actions are seen as objects, then picking up the four sixths and placing 

them over the two thirds shows that they are the same (in terms of quantity, if not in 

terms of the number of pieces). 



Algebraic identities such as    a
2

b
2

= (a b)(a + b)  can be given an embodied meaning as 

in the following picture (figure 8). 

 

Figure 8:    a
2

b
2

= (a b)(a + b)  

This embodiment is straightforward when a and b are positive and a > b. But it soon gets 

complicated when   b > a  or when the values a and b are positive or negative. This requires 

meaning given to negative lengths (by reversal) and negative areas (by turning over). Figure 

9 shows the picture when a < 0, b > 0 and |b| < a. Can you see its meaning? 

 

Figure 9:    a
2

b
2

= (a b)(a + b) for   a < 0 ,    b > 0 ,    b < | a |  

Matters become even more complicated with the embodiment of formulae for higher powers: 

     a
3

b
3

= (a b)(a
2

+ ab+ b
2 )  

     a
4

b
4

= (a b)(a + b)(a
2

+ b
2 )  

The former can be ‘seen’ in three dimensions, but the embodiment of the latter in four 

dimensions is far more sophisticated for mortals living in three-dimensional space. The 

situation becomes far more complicated when a and b have a mixture of positive and 

negative signs. Fortunately the symbolic manipulation is the same in all cases. For instance, 

the difference of two fourth powers is no more than the difference of the squares of a
2
 and b

2
 

that can be handled in two easy stages: 

  

   

a
4

b
4

= (a
2

b
2 )(a

2
+ b

2 )

= (a b)(a + b)(a
2

+ b
2 ).

 

As mathematics gets more sophisticated, the power of symbolism carries the successful 

mathematical thinker further. However, to do this requires not only meaning through linking 

symbolism to embodiment, but also meaning within symbolism itself. I suggest that such 

meaning occurs through switching focus from the steps of a procedure to its effect and the 

flexible use of symbols as procepts to give sophisticated meaning to symbol manipulation. 



Making connections in the classroom 

The teaching and learning of mathematics may be approached in a range of possible ways, 

related to what is learnt, how it is learnt, and the responsibilities of the teachers and learners 

to themselves and to others. In a traditional transmission approach, the teacher provides a 

class of learners with an introductory explanation, followed by graded exercises for them to 

work on their own to build up specified concepts in an organised sequence. On the other 

hand, in a student-centred classroom the learners are seen as the architects of their own 

learning by discovery, with the teacher as a facilitator and organiser of resources. A more 

sophisticated approach is a connectionist classroom, in which the teacher as mentor 

orchestrates classroom activities, encouraging the learners to make connections by focusing 

on essential ideas, working in groups, sharing ideas and being challenged by problems.  

To categorise individual teachers in a study of the effective teaching of numeracy, Askew et 

al., 1997 designed a battery of phrases of the type given in Table 3. (The ones in the figure 

are modified slightly and I take responsibility for this.) The brief phrases only tell part of the 

story, though taken as a whole they reveal broad trends. 

As you look down the list to see which items you tend to agree with personally, you may find 

yourself choosing some items from one column and other items from others.  To test myself, 

I decided to consider each line of three choices in turn and award a maximum of 3 points to 

the line in total, dividing the points according to my strength of feeling. I might give all 3 

points to a single preference, or 2 points to a strong preference and 1 point to a weaker 

preference, or use just two points to give one each to two statements that I preferred equally 

over the third. My own scores were transmission 4, connectionist 12, discovery 4, showing a 

strong agreement with many of the connectionist items in the table, and with some agreement 

with elements of transmission and discovery. 

Teacher’s beliefs 

Transmission Connectionist Discovery 
About pupils being numerate 

Primarily the ability to perform 

calculations by standard procedures 

Calculation methods which 

are both efficient and effective 

Finding the answer to a calculation 

by any method  

Heavy reliance on 

paper & pencil methods 

Confidence & ability in mental 

methods 

Heavy reliance on 

practical methods  

How pupils learn to become ‘numerate’ 

Individual activity based on 

following instructions 

Interpersonal activity through 

interaction with others 

Individual activity based on 

actions on objects  

Pupils vary in their ability to become 

numerate 

Most pupils are able to 

become numerate 

Pupils vary in the rate at which 

their numeracy develops 

Pupils learn through being 

introduced to one mathematical 

routine at a time and remembering it 

Pupils learn through being 

challenged and struggling to 

overcome difficulties 

Pupils need to be ‘ready’ before 

they can learn certain mathematical 

ideas  

How to teach pupils to become ‘numerate’ 

Teaching has priority over learning Teaching and learning are 

complementary 

Learning has priority over 

teaching  

Teaching is based on verbal 

explanation so that pupils understand 

the teacher’s methods 

Teaching is based on dialogue 

between teacher and pupils to 

explore understandings 

Teaching is based on practical 

activities to enable pupils to discover 

methods for themselves  

Application is best approached through 

‘word problems’ 

Application is best approached 

through challenges that need to 

be reasoned about 

Application is best approached 

through using practical equipment  

Table 3. Teacher orientation towards numeracy (selected from Askew et al., 1997) 

In the original research, teachers were classified using these categories and the improvements 

of their students was traced over a period as measured using National Curriculum tests and 

classified as highly effective, effective or moderately effective. (See Table 4, selected from 



Askew et al, 1997, pp. 31, 32). The data showed that those who were strongly connectionist 

were all highly effective, those who were strongly transmission or discovery oriented were 

only moderately effective, while those with no strong orientation were in a spectrum between 

the two extremes, with the majority being effective rather than highly or moderately 

effective. 

 Highly Effective Effective Moderately Effective 

Strongly Transmission   Beth 

Cath 

Elizabeth 

Strongly Connectionist Anne 

Alan 

Barbara 

Carole 

Faith 

  

Strongly Discovery   Brian 

David 

No Strong Orientation Alice Danielle 

Dorothy 

Eva 

Fay 

Erica 

Table 4: The relation between teacher orientation and effectiveness. 

 

Discussion 

Even though the data from the previous section relates to a single study focusing on 

numeracy, its potential implications are clear. The teacher who acts as a mentor, 

balancing the act of teaching and learning to encourage students to make connections is 

likely to be more effective. 

In many curricula, the emphasis is on giving meaning by relating the mathematics to real-

world problems, suggesting the need to link symbolism to human embodiment.  

Embodiment works fine initially with simple cases but we have seen it may grow more 

complicated as the context becomes more sophisticated. Hence it is necessary to seek 

sense not only in embodiment but also within symbolism itself. 

Here the symbolic procedures need to be conceived in ways that are easy for the human 

brain to comprehend. I suggest that this involves compression of knowledge, switching 

the focus of attention from step-by-step procedures, not just to more efficient step-by-step 

procedures, but to the effect of those procedures. By doing this we see equivalent 

procedures having the same effect as representing one and the same process which can 

then be manipulated symbolically as a thinkable concept, giving a flexible procept. 

In whole number arithmetic, increased power arises from decomposing and recomposing 

numbers as procepts to give flexibility in arithmetic operations. In fractional arithmetic, 

increased power comes from shifting focus from fractions such as 2/3 and 4/6 as different 

sharing procedures to processes representing one and the same rational number. In 

algebra, different procedures of evaluation—such as    (x 1)(x +1)  and   x
2

1 —having 

the same effect can be conceived as a single process that becomes a manipulable concept 

as a function. The shift from action to effect and on to thinkable concept occurs both in 

embodiment and symbolism. It gives the underlying mechanism to shift attention from 

routine procedures to build increasingly sophisticated mathematical thinking. Some 

students remain with procedures that become increasingly complicated to use. Others are 

more successful at developing more flexible thinking. There is a major role for teachers 

to act as mentors encouraging a greater number of students to compress knowledge into 



thinkable concepts that are appropriate for connecting ideas together in sophisticated and 

simple ways. 
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