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This research was conducted using computers and oscillators at the University of Warwick,
UK. Several kinds of concept images as metaphorical objects are found, including those
related to an oscillator-generated image, and the theoretical bifurcation tree. Empirical
evidence is presented to support the hypothesis that students’ concept images consist of
metaphorical objects in the form of graphic representations of the final orbits; the notion of
period doubling is seen not symbolically, but in terms of one orbit bifurcating visually into a
‘doubling’ of the preceding orbit. Based on the empirical evidence we propose a cognitive
development that occurs with many students.

1.1 Introduction

Modern computer software offers the possibility of an enactive interface which enables the student to experiment with
mathematical situations combining information from various modes of representation including verbal, enactive, graphic,
numeric, symbolic. Our interest here is in the various uses students make of available modes and how these contribute in
combination to the construction of mathematical ideas. The research reported here concerns a working session in which
students experiment with two technological environments which each provide an example of period doubling. The first (and
more substantial) experiment uses software (logis) which draws the x = f'(x) iterations of the function f'(x) = Ax (1 — x). As A
increases from 1 to 3 and beyond, what begins as a convergent process settling on a single point bifurcates to a cycle of
length 2 at A=3, and then later to cycles of length 4, 8, and so on. The investigation here is to estimate the numerical values
of the points where bifurcation occurs and to test whether they are consistent with the sequence being a geometric sequence.
The sequence converges to a point called the Feigenbaum point and the final task is to estimate the numerical value of this
point. Our major interest is in the imagery of the mathematical concepts that are evoked by the students when they reflect on
their activities during the experiment. In particular, how visual images are used in the development of the concept of period
doubling. The second uses an oscillator with a monitor showing the X-Y plane representing the two voltages at different
points in an electric circuit with oscillating current. Initially the graph is a single closed loop, but as the voltage is increased,
this bifurcates into a period two orbit seen as a “double loop”. The purpose of this experiment is for the student to gain
experience of the period-doubling phenomenon in a practical setting.

A concept image is something non-verbal associated with the concept name by means of visual representations, mental
pictures and a set of impressions or expressions that can subsequently be transformed into something verbal (Vinner, 1991).
However, since not every concept has a visual image, it would be better to interpret that a concept image is anything
associated with the concept. The phenomenon of period doubling reminds us of the idea of process-object encapsulation in
the sense of Dubinsky (1991). Based on this view, we have investigated students’ concept images of period doubling
through their responses drawn in their mind’s eye via post-test after computer and oscillator experiment using a
methodology described in the following section.

2. Methodology

The subjects were students enrolled on the Experimental Mathematics course at the University of Warwick in 1999. Most
were the first-year mathematics students including students from computer science, economics and engineering.

2.1 Software

The software logis is written in Maple V and is an updated version of x/ogis originally written in C (Chae & Tall, 2000, to
appear). The logis software draws the graph of a function f(x) = A x (1 —x) on the closed unit interval [0, 1] and the line y =
x. Iteration is performed by inputting the following four parameters.

« avalue of A for the function f'(x) =24 x (1 —x);



*  astarting point of iteration, x;
e total number of iterations, #;
* number of initial iterations you do not want to be displayed, m.

The last facility is most important because it allows the student to draw the later iterations by which time they see only the
pictorial representation of the stabilizing cycle. This allows the final cycle itself to be seen as an object on the screen.
Although successive pictures cannot be drawn simultaneously, this allows the student to draw successive states and imagine
each state bifurcating into the next. Figure 1 shows two different values of A, the first A=2.95 when the iterations converge
slowly to a single point (non-zero fixed point) and A=3.05 which stabilizes on a cycle of length 2.
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(a) convergence to one root before A= 3 (2=2.95) (b) period doubling after A= 3 (1=3.05)
Figure 1. Graphic representations of iterations of f{x) =x using /logis
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Figure 2(a): homing in on a cycle of length 4 2(b): Omitting initial part to see the stable cycle

2.2 The experiment using computers and oscillators

Students explored the phenomenon of period doublings using the oscillator and computer with instructions distributed before
the class. After investigating the period-doubling phenomenon on on-screen, they simulated same phenomenon via the
oscillator experiment using the Poincaré map. Their first activity involved experimenting with various starting points and
increasing values of A to observe period doubling at A,=3, then at a sequence of increasing values A1, A,, ... which seem to
be increasing and bounded above and therefore might approach a limit A_ (the Feigenbaum point). To gain supporting
evidence (though not formal proof) they were instructed to compare successive terms to see if the sequence seemed to
converge geometrically and then use this information to get a numerical approximation to A_. Out of twenty students,
fourteen found a good approximation. Our research is focused on what mental conceptions the students used from the array
of symbolic, numeric and graphic information available as a result of computer and oscillator experiment.

2.3 Post-test

After the experiment, we distributed a post-test to students, asking them to answer the questions and return the test within
three days. The test comprised several questions designed to reveal the students’ concept definition and concept image. For
the paper, the following question relating to students’ concept image for period doubling was selected:

e  What first comes into your mind when you think about ‘period doubling’? Please draw/give an example of
a period doubling in your mind’s eye.

3. Results and Discussion

Students’ responses are classified into three categories: 1. Embodied object as a base object, 2. Process of change from one
state to the next, 3. Encapsulated object.



Embodied object as a base object Process of change Encapsulated object
Oscillator-generated circle 1 Oscillator-generated image: 4 || ongoing bifurcation 1
- - - . . using oscillator-

Oscillator-generated period 2 orbit 1 from period 1 to period 2 generated images
Computer-generated image: period 2 1 Computer-generated image 1 The bifurcation tree || 1
orbit from 1 to 2
period 4 orbit 4 From 2 to 4 3
period 8 orbit 0 From4to 8 1

Previous experience 1
Total 7 10 2

One no-response is not included.
Tablel: The classification of students’ concept images for period doubling

Figures 3 and 4 show that most students’ concept image for period doubling is based on graphic representations generated by
the computer. Some of the responses (figure 3) reveal the visualisation as an embodied object (an orbit) and some as a
process of change from one state to the next (figure 4).
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Figure 4: Thinking about period doubling as a process of change from one state to the next

The results of figures 3 and 4 may be classified as first constructing ‘base objects’ (the pictures of the ‘final cycle’) and then
‘seeing’ the process of change from one state to the next. This process of change is the process of period doubling. This
process could be considered as the first stage of a process-object encapsulation to yield the concept of period doubling. Our
purpose is to analyse what mental representations the students use for each stage of this construction.



Considering those who evoke an image from the oscillator, we see that four out of seven give the process from period 1
to period 2 and one gives only the period 2 picture. If we see the latter as the result of the period doubling (which is highly
likely), then five out of seven focus on the move from period 1 to period 2. However, if we consider those evoking an image
from the x =f(x) computer iteration, we find that of the ten students involved, only two focus on the move from period 1 to 2
and eight focus on a move at a later level.

Why is this? If the students focus on the symbolic form of x = f'(x) iteration, then a shift from period 1 to 2 is a shift from
the orbit {x;} to {x,x,} and from period 2 to 4 is from {x;,x2} to {xi,x», X3, x4}. From a symbolic viewpoint, the simplest
period doubling is from {x:} to {x|, x»}. In the graphical representation, on the other hand, an orbit of period one is just a
point and this does not look like an orbit. Hence it is plausible that on drawing a prototypical picture of period doubling, the
individual is more likely to draw the change from period 2 to period 4 (or higher) rather than from period 1 to period 2. In
the case of the oscillator, on the other hand, the shift from period 1 to period 2 already looks like a prototypical period
doubling, and so is the natural example to draw.

This suggests strongly that the students are thinking of the visual representation in preference to the symbolic or numeric
when imagining the process of period doubling. Another piece of evidence for this is that five out of ten do not draw a fully
correct picture. Part of this freehand sketch of a period 4 orbit is quite difficult to do from memory. For example, some
students actually draw two separate orbits rather than a single connected one (figure 5).
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Figure 5: an ‘orbit’ drawn as two separate squares Figure 6: Concept image using the bifurcation tree

Thus, although the students may imagine the orbit in their mind’s eye, they may not be able to draw it accurately.

Only one student out of 20 offered an image based on the bifurcation tree (or Feigenbaum diagram) (Devaney, 1990)
introduced by the supervisor in the class discussion before the experiment (figure 6).

The only other student sketched a picture based on the period doubling of a sine curve by relating one sine curve with
another of period twice the length (figure 7). This image could have arisen from previous experience
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Figure 7: concept image based on sine curve
3.1 Theoretical formulation

We now formulate the results found in terms of processes and conceptual representations. First we see that the most
elementary images that the students evoke are in the form of a single ‘final’ cycle. This relates to the picture seen by the
student on the screen. This is not to say that they may not understand that a potentially infinite process of approaching the
limit cycle is in progress, only that they refer to the different stages of bifurcation in terms of the visual image of the
stabilized graphical orbits. A graphical visualisation is ‘embodied’ in the sense of Lakoff & Johnson (1999) or Lakoff &
Nunez (2000), in that it is an object as perceived by the visual senses and can be traced physically by pointing, to give it a
sensori-motor aspect. It is on such an embodied object that the thinking processes operate, imagining it to change
dynamically from one stage to the next. We have termed such an object a ‘base object’ in the sense that the construction of
period doubling is based on such objects.

The second stage is to relate one stage of the cycle to the next, say from period two to period four. This is a dynamic
process in which period doubling takes place. It occurs as part of potentially infinite recursive iteration.

Given the wide reference to ‘process-object theories’ (Tall et al., 2000), we may ask if the period doubling process is
encapsulated as a period doubling concept. It turns out that there are some interesting features here. The behaviour near the
point of bifurcation is not easy to discern from the computer screen alone. For A<3 students can see convergence to a point
and for A>3 they can see an orbit of period 2. But what happens at A=3 in the picture is not clear: does it converge slowly to
a point, or to a tiny period two orbit? Chae and Tall (2000) reveal that this can cause an epistemological obstacle. Although
convergence occurs at A=3, it is so slow that some students (who do not check convergence symbolically) may sense that the
process does not converge. Instead, as we have seen, many students have a mental image of the successive final cycles and
are aware approximately where period doubling is. This limited knowledge, without fully knowing what happens at or near
the noint concerned. is sufficient to allow the student to be able to find a numerical anobroximation to it. We therefore



hypothesise that the concept of period doubling occurs most of all only at an impressionistic embodied level seen onscreen
and imagined visually, but not as a fully encapsulated mathematical object.

None of the students actually draw more than a single instance of the process in the x = f (x) iteration (we have already
noted the difficulty of drawing the later pictures). One student evokes an oscillator image of the ongoing doubling process
(figure 8). His diagram is indicative of the development, although his diagrams are in error.
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Figure 8: Ongoing period doubling

The student giving a mental picture in terms of a bifurcation tree has an image of the total potential infinity of bifurcations
(again in a visual sense) as one of the most successful students in the group. We, therefore, suggest that this is a possible
next stage. Thus we see the concept of period doubling in this experiment being seen as a visual process onscreen and related
to the corresponding numerical data. The initial process of convergence to a point and later to a cycle of length 2, 4, ... is
seen as an impressionistic embodied object that can be imagined visually. This may be seen to take part in a successive
dynamic process of period doubling, which is sufficient to act as a basis for numerical exploration of the Feigenbaum limit
of the bifurcation points. Thus the computer experiment has a powerful role to play in which visual imagery is an integral
part of a symbolic and numeric process, coming to the fore and acting as a cognitive support for the concept of period
doubling.

4. Conclusion

The data above show that 17 out of 20 students constructed a concept image from graphic representations generated by
computers or oscillators. This finding supports the hypothesis that graphic representations play an important role in forming
the concept image of period doubling. A natural cognitive sequence appears to be exhibited in which students see first the
process of iteration, then the embodied visual image of the final cycle at each stage. This visual image is a base object that
takes part in a process of period doubling bifurcation seen in terms of the imagined move from one stage to the next. The
visual process is sufficient to act as a basis for finding numerical approximations to the points where period doubling occurs
although there may be cognitive difficulties interpreting precisely what happens at the point of bifurcation. The most
successful person in the group saw the total structure within the Feigenbaum diagram that represents the potentially infinite
process of period doubling in a single visual representation. In this way we see the interactive computer software provides an
environment for student exploration that overcomes the great difficulty of the symbolic theory by supporting it visually with
dynamic computer images.
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