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Mathematical proof seems attractive to some, yet impenetrable to others. In
this paper a theory is suggested involving “cognitive units” which can be the
conscious focus of attention at a given time and connections in the individual’s
cognitive structure that allow deductive proof to be formulated. Whilst
elementary mathematics often involves sequential algorithms where each step
cues the next, proof also requires a selection and synthesis of alternative paths
to make a deduction. The theory is illustrated by considering the standard
proof of the irrationality of √2 and its generalisation to the irrationality of √3.

Cognitive units and connections

The logic of proof is handled by the biological structure of the human brain. As a multi-
processing system, complex decision-making is reduced to manageable levels by
suppressing inessential detail and focusing attention on important information. A piece
of cognitive structure that can be held in the focus of attention all at one time will be
called a cognitive unit. This might be a symbol, a specific fact such as “3+4 is 7”, a
general fact such as “the sum of two even numbers is even”, a relationship, a step in an
argument, a theorem such as “a continuous function on a closed interval is bounded and
attains its bounds”, and so on. What is a cognitive unit for one individual may not be a
cognitive unit for another; the ability to conceive and manipulate cognitive units is a vital
facility for mathematical thinking. We hypothesise that two complementary factors are
important in building a powerful thinking structure:

1) the ability to compress information to fit into cognitive units,
2) the ability to make connections between cognitive units so that relevant

information can be pulled in and out of the focus of attention at will.

Compression is performed in various ways, including the use of words and symbols as
tokens for complex ideas (“signifiers” for something “signified”). These may sometimes
be “chunked” by grouping into sub-units using internal connections. A more powerful
method uses symbols such as 2+3 as a pivot to cue either a mental process (in this case
addition) or a concept (the sum). This has become a seminal construct in process-object
theories (Dubinsky, 1991; Sfard, 1991). Gray & Tall (1994) coined the term procept for
the amalgam of process, concept and symbol which could evoke either. However, the
notion of procept is not the only instance of compression in mathematics:

Mathematics is amazingly compressible: you may struggle a long time, step by step, to work
through some process or idea from several approaches. But once you really understand it and
have the mental perspective to see it as a whole, there is often a tremendous mental compression.
You can file it away, recall it quickly and completely when you need it, and use it as just one
step in some other mental process. The insight that goes with this compression is one of the real
joys of mathematics. (Thurston 1990, p. 847)
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Compressibility of mathematical ideas relies on the nature of the connections from the
focus of attention to other parts of the cognitive structure. The cognitive structure readily
linked to cognitive unit(s) in the focus of attention will be termed the intermediate
working memory. As different items are brought into the focus of attention, the
intermediate working memory changes dynamically, opening up new connections and
shutting off others. As a consequence, different external prompts may lead to very
different connections being made.

To maximise the power of the cognitive structure, dynamic sequences of links are
routinised to be performed in the background, taking up little focus of attention. This
may produce procedural ability to carry out familiar processes, but more is required to
give the flexible synthesis of logical deductions. A powerful aspect of reflective thinking
is the ability to compress a collection of connected cognitive units—which may be
processes, sentences, objects, properties, sequences of logical deduction etc—into a
single entity that can be both manipulated as a concept and unpacked as a cognitive
schema. This idea has been formulated many times in different ways (eg the “varifocal
theory” of Skemp (1979) in which a concept may be unpacked as a schema and a schema
viewed as a concept, or the encapsulation of a schema as an object (Cotrill et al; in
press). More than just saving mental space by being a shorthand in place of a collection
of items, it carries with it, just beneath the surface, the structure of the collection and is
operative in the sense that the live connections within the structure are able to guide the
manipulation of the compressed entity. These may then become new units in new
cognitive structures, building a hierarchical network spanning several layers. Used
successfully, this offers a manageable level of complexity in which the thought processes
can concentrate on a small number of powerful cognitive units at a time, yet link them or
unpack them in supportive ways whenever necessary.

Mathematical proof introduces a form of linkage different from the familiar routines of
elementary arithmetic and algebra. In addition to carrying out sequential procedures in
which each mathematical action cues the next, mathematical proof often requires the
synthesis of several cognitive links to derive a new synthetic connection. In the proof of
the irrationality of √2, for instance, having written √2=(a/b) as a fraction in lowest terms,
the step from “√2=(a/b)” to “a2= 2b2” is a sequential link of algebraic operations, but the
step from this to the deduction that “a is even” requires a synthesis of other cognitive
units. for instance “a is either even or odd” and “if a were odd, then a2 would be odd.”
We hypothesise that synthetic links constitute an essential difference between procedural
computations and manipulations in arithmetic and algebra and the more sophisticated
thinking processes in mathematical proof.

Data collection

To investigate the role of synthetic links in proof, clinical interviews were carried out
focusing on the proof of the irrationality of √2 and √3. Eighteen students were selected at
three different stages in the mathematics curriculum: 15/16 year old students in a mixed
comprehensive school taking mathematics GCSE, 16/17 year olds in the sixth form of a
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boys’ independent school taking A-level mathematics, and first year university
mathematics students. It would be unlikely that students would be able to produce a
proof of the irrationality of √2 without prior experience, so each was invited to
participate in a two-person dialogue, attempting to make sense of a proof presented as a
sequence of steps. At each stage he or she was asked to explain the given step and
perhaps suggest a strategy for moving on:

(i) Suppose √2 is not irrational.
(ii) Then √2 is of the form a/b, where a, b are whole numbers with no common factors.

(iii) This implies that a2 = 2b2,
(iv) and hence that a2 is even.
(v) Therefore a is even.
(vi) Thus a=2c, for some integer c,

(vii) It follows that b2 = 2c2,
(viii) giving that b2,

(ix) and hence also b, is even.
(x) The conclusion that a and b are both even contradicts the initial assumption

that a and b have no common factors.
 (xi) Therefore √2 is irrational.

After this each student was asked to suggest a proof for the irrationality of √3.

Analysis of responses

(i) the notion of proof by contradiction

Before being shown the proof, the idea of supposing that √2 was not irrational and
looking for a contradiction was not suggested by any students who had not met the proof
before. At this stage they are used to manipulating symbols through sequential action
schemas to produce a “solution”. They are unfamiliar with the possibility of proving
something true by initially supposing it to be false—a conflict likely to provoke
cognitive tension and insecurity.

(ii) translation from verbal to algebraic

Students with no previous experience of the proof found the idea of writing a fraction in
its lowest terms a familiar concept, but the idea of writing this in the algebraic form
“√2=a/b” proved less obvious, but acceptable.

(iii) a routinised algebraic manipulation

Having agreed to suppose that √2 is equal to the fraction a/b, where a and b are whole
numbers, students were usually successful in showing that this implies a2=2b2 using
routine algebraic manipulation. However, some students who had seen the proof before
and resorted to attempting to memorise it did not always handle the algebra securely.
For instance, university student S began by stating the general strategy for the proof by
contradiction, yet could not deal with many details. Instead of constructing the proof
himself, he recalled that the lecturer “… did some fancy algebra which I couldn’t
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actually reproduce.” When asked to do so, he wrote “
a

b






2

= 2”, followed by “a2=4b2”,

saying, “I think that’s what he did, but he did it in one step whereas normally I would’ve
taken two.” When asked to fill in the details, he obtained the correct result a2=2b2.
Similarly, student M said, “I remember him saying to prove that a is even” but could not
remember how. In contrast, Student L compressed the whole operation in a single step
giving further details on request. The majority were able to complete the step routinely.

(iv) a link from algebra to verbal representation

None of the students new to the proof spontaneously linked “a2=2b2” to “a is even”,
although they all readily accepted its truth. (The link loses information, saying “a2 is
twice a whole number” rather than “a2 is twice the square of a whole number”. Students
may feel instinctively uneasy losing information, without articulating their concern.)

(v) Synthesising a non-procedural step

The step from “a2 is even” to “a is even” requires a more subtle synthesis of links with
other cognitive units. Students offered a number of different strategies, including:

(a) Correct justification involving a sequence of appropriate connections,
usually along the lines “a is either even or odd”, but “a odd implies a2 is
odd”, and as “a2 is not odd”, this implies “a must be even.”

(b) Strong conviction but without justification, such as, “an even number square
has got to have a square root that is even” and “well, it just sort of is [even].”

(c) Empirical verification, trying some numeric cases and asserting that there are
no exceptions.

(d) Inconclusive reasoning, offering related statements, justified or otherwise,
which did not help further the argument, such as, “If you could say that a2

had a factor of 4, then that [a even] would definitely be true.”

(e) False reasoning, using incorrect links. An example which occurred more
than once was the claim that if a2 was an integer multiple of 2, then a was an
integer multiple of √2.

(f) Unable to respond without help.

The correct justification was not evoked initially by most students new to the proof or by
some of those who sought to remember the proof by rote. The cognitive units “a is even”
and “a2 is even” coexist in the focus of attention so they may be seen as happening at the
same time rather than one implying the other. “a2 is even” seems to have a stronger
natural link to “a is even” than to “a is odd”, thus failing to evoke the alternative
hypothesis.

Some students responded in several of the given categories. For instance, Student S
began with response (b) asserting the authority of the lecturer, saying, “the root of an
even number is even—he just assumed it.” When challenged, he went on to reason
inconclusively and then to try specific cases:
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Interviewer: So the root of six is even.
Student S: Good point. [five seconds pause]
Interviewer: If a number is not even, what is it?
Student S: It’s odd.
Interviewer: So you’ve got a choice of odd or even, does that help you?
Student S: Yeh, I see, it’s got to be rational,  I think,  so … a rational root is either … odd or

even and if the square is even, then the rational root is even. Is that clear?
Interviewer: Uh, well …
Student S: So what I’m thinking is the root of 4, 4’s even and 2’s even, root of 16 equals 4,

… ’s even. I can’t remember any other simple squares in my head that are even …

Students who could not proceed (category (f)) were given a prompt referring to the odd-
even dichotomy. This often led to a response of type (a), (d) or (e) above. For example,
the prompt “Every integer is even or odd” was often followed by the response, “An odd
number squared is odd”. The thought of looking at concrete examples (category (c)) was
not something brought to mind by this kind of cue.

(vi) From “a is even” to “a=2c for a whole number c”

The translation from the verbal statement “a is even” to the algebraic statement “a=2c”
was usually straightforward, but again students such as university student M—who
admitted trying to memorise proofs—had a faulty recollection of what to do:

Interviewer: If you know that a is even, how can you write a? How do you write down that a is
an even number ?

Student M: If you put a 2, … you put an a in front of it, like 4a  ... I don’t know, I’m sorry.   I
can’t remember.

(vii)–(ix) The chance to repeat earlier arguments

Having concluded that “a=2c for a whole number c”,  the next steps of the proof often
evoked earlier ideas. No student had any difficulty with the procedural steps substituting
“a=2c” into “a2=2b2” and simplifying “4c2 = 2b2” to get b2= 2c2. Students invariably saw
that this  situation was similar to the earlier case for a, and asserted that b is also even.

(x)–(xi) establishing the contradiction

Some students new to the proof did not recall that a/b was assumed in lowest terms, and
so did not see that “a and b both even” gives a contradiction. Student C remained silent
for 45 seconds until reminded: “we cancelled out until we had no common factors,” then
immediately responded:

“Oh, right, … that can’t be the case because if they are both even numbers, then they will
have common factors, like two.”

Those who had seen the proof before in school or at university immediately grasped the
contradiction, including those who had misremembered the detail of earlier steps.

Generalising the proof to the irrationality of √√√√3

When proving the irrationality of √3, all students began by supposing that √3 was equal
to a fraction a/b in its lowest terms, a typical remark being, “I presume you start in the
same way.” On translating this to a2=3b2, all of them evoked the link with a being “even
or odd” and were unable to proceed further. (Just one student wondered whether the
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“eveness” might relate to the 2 under the square root sign.) A suggestion that the
equation a2=3b2 tells more than “the oddness of a” usually evoked divisibility by 3, but
this led to a further sticking point in attempting to prove that “a2 is divisible by 3”
implies “a is divisible by 3”. None of the students could do this unaided. In particular
none considered the algebraic argument squaring the three cases a=3n, 3n+1 or 3n+2 (a
synthetic connection requiring the coordination of three different possibilities).

A further suggestion focusing on factorisation into primes was sufficient to help all the
university students and some sixth formers to produce suitable arguments although often
expressed in an idiosyncratic manner. Student T, for instance, said:

“ ... the (square) root of a2, I mean a, that doesn’t involve the factor 3. Therefore you’ve still
got a factor 3 which you can divide into a.”

She seems to be saying that if 3 does not divide one of the a-factors of a×a, then it must
divide the other a. Student J in the youngest group also imagined a2 as a product of two a
factors saying:

“ that has got repeated factors of that, so you can’t get [ten seconds pause] … just imagining
how many factors of things. … They’re going to have the same factors. So yes, 3 would
have to divide a.”

Discussion

Figure 1 is a representation of some of the typical linkages that may occur in an initial
proof that √2 is irrational, omitting idiosyncratic links (which occur widely in individual
cases). It is a collage of difficulties encountered by students where links denoted by

 often prove more difficult than those denoted by  and those in
grey scale are intermediate links which may or may not be evoked in detail.

Figure 2 displays a compressed proof structure available as an overall strategy to many
students who had experienced the proof before. Even Student S, who remembered little
detail and used loose terminology to describe his ideas was able to say,

I’d take the case where I assumed it was a rational and fiddle around with the numbers,
squaring, and try to show that … if it was rational then you’d get the two ratios a and b both
being even so they could be subdivided further, which we’d assumed earlier on couldn’t be
true so our assumption it was rational can’t be true.

(a) The overall notion of proof by contradiction (which becomes less
problematic with familiarity)

(b) translation between familiar terms :”odd and even” and algebraic
representations are acceptable, but not always initially evoked,

(c) The step “a2 even implies a even” is initially not easy to synthesise and
remains so for those in the sample who attempted to remember the proof by
rote. For some the cognitive units “a2 even” and “a even” coexist and the
direction of implication is not relevant; for others the idea “a2 even” is more
strongly linked to “a even” rather than to the operative alternative “a odd”.

(d) The repetition of the argument to show b is also even was readily evoked by
most students.
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√2 is either

rational irrationalor

a2 = 2b2

a2 is even

a is even

b2 = 2c2

b2 is even

b is even

contradicts a and b have
no common factors

so √2 cannot 
be rational

√2 must be
irrational

a, b have no common factor
Suppose √2
is rational

√2 = a/b in
lowest terms

a is even
or odd

odd times odd
gives odd

(2a)2 = 4a2

If a is odd
then a2 is odd

even times even
gives even

If a is even
then a2 is even

square of even
is even

square of odd
is odd

If the final digit
is even then the
square is even

some possible cognitive
units to link together

a = 2c
for some integer c

a is even

often recall
of earlier
deduction

(2c)2 = 2b2

a2 = 2b2

substitute

simplify

recall

(i)

(ii)

(iii)

(vi)

(v)

(vi)

(vii)

(viii)
& (ix)

(x)

(xi)

recall
(ix)

(viii)

Figure 1: Observed cognitive units and connections in a typical initial proof of √2 irrational
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(e) The assumption that a/b is in lowest terms, was not easily recalled by
students meeting the proof for the first time, but became part of the global
strategy in the long-term.

(f) The link in the proof of “√2 irrational” to the colloquial terms “even-odd”
was more powerful than the link to “divisible or not by 2”, thus blocking the
natural extension to the corresponding proof for irrationality of √3.

Summarising the broad development of the proof of the irrationality of √2 and √3 we see
that there are several initial difficulties that make it a formidable challenge for the
uninitiated. Some become less problematic with familiarity, but there is sufficient
difficulty to cause a bifurcation in understanding. Some students make meaningful links
that allow them to compress the information into richly connected cognitive units. Others
remember some of the ideas they were told—even the overall strategy of the proof—yet
rely on the authority of their teacher rather than building their own meaningful links
which might enable them to reconstruct the subtle detail.

a2 = 2b2 is even
If √2 is rational: 
√2 = a/b for integers, a, b

with no common factors

contradiction

a is even
a = 2c

substitute &
simplify to

b2 = 2c2

b is even

√2 is
irrational

If not, a2 is odd

Figure 2: a compressed proof that √2 is irrational by deriving a contradiction

√2 = a/b in lowest terms deduce a, b both even contradiction

Figure 3: A compressed strategy for the proof
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