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The purpose of this paper is to highlight the different forms of
proof afforded by different types of mathematical representation.
The form of proof generally accepted by mathematicians is logical
proof with formal concept definitions and deductions using the
predicate calculus (although there are many subtle differences in
acceptability of a proof in the mathematical community). However,
the cognitive development of a notion of proof must take into
account the differing forms of representation available to the
learner at various levels of sophistication. In particular, there are
two very different parallel developments of visualisation and
symbolisation with different forms of proof.

Introduction

“Proof” is regarded as a central concept in the discipline of mathematics. It is
important for two reasons.

(1) (Local) Based on explicit hypotheses, a proof shows that certain
consequences follow logically,

(2) (Global) Such logical consequences themselves can be used as
“relay results” (Hadamard 1945) to build up mathematical
theories.

In the recent past (eg since the mid nineteenth century in England), Euclidean
geometry has been considered as an introduction to both (1) and (2). However,
this has fallen out of favour because of the difficulties encountered by children
(eg Senk, 1985, showed that only 30% of students in a full-year geometry
course reached a 70% mastery on a selection of six problems in Euclidean
proof). The NCTM standards in the USA suggest that there should be increased
attention on short sequences of theorems and decreased attention to Euclidean
geometry as an axiomatic system, favouring (1) over (2). In England the demise
of geometry has proceeded further. The Association for the Improvement of
Geometry Teaching (which later became the Mathematical Association) was
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formed in 1871 to address the problem of making geometric proof meaningful,
a task that was never satisfactorily completed. Geometry stayed as an equal
partner with arithmetic and geometry in secondary school until the mid
twentieth century. It has since been replaced in the English National Curriculum
by the study of “Shape and Space” with Euclidean proof only being mentioned
in passing. For instance, in the final level of the Curriculum, attainment target
10 of “Shape and Space” mentions

knowing and using angle and tangent properties of circles,

and “Using and Applying Mathematics” suggests under the heading “handling
proof and definition” that pupils should:

Find their own proof that the angle in a semi-circle is a right angle and its
converse, stating what prior results have been assumed.

Thus it is that geometry as the introduction to a global deductive system in
school has been replaced by occasional references to knowledge and use of facts
and investigations of how to prove isolated theorems. Attention is now firmly
focused in school on the local aspects of proof. Moreover, in investigations in
the British curriculum, it is changing its style to expressing generalisations,
often in algebraic form.

This change in emphasis from verbalising visual ideas in geometry to
generalising arithmetic ideas in algebra requires us to consider carefully the
meaning of the term “proof” and its development from short deductions in
various areas of elementary mathematics to the global structure of formal proof
in advanced mathematics.

Even at the formal level, the use of the single word “proof” disguises the fact
that there are many different views of proof, dependent on different historical
and cultural contexts. For instance, Cantor’s elegant proof that there exists a real
number that is not the solution of an algebraic equation was not accepted by
many of his contemporaries. It was rejected for publication in Crelle’s Journal
by Kronecker in 1873, because the proof presented a counting argument that
there are “more” real numbers than solutions of algebraic equations but failed to
construct one.

By acknowledging that different standards and types of proof exist even at a
formal level, we can begin to appreciate that different forms of proof are likely
to be appropriate in different contexts. In this paper, consideration is focused on
different forms of proof which might be appropriate at various stages of
cognitive development, dependent on different representations of knowledge
that may be available.
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Cognitive development of representations and proof

In Tall (1995), following the ideas of Bruner (1966), I outlined how enactive
representations based on interactions with the environment and communication
through action and gesture provide a foundation for mathematical growth, and
how visual and symbolic representations reveal differing kinds of development
which interact with each other and, at an advanced level, give rise to the need
for formal definition and proof. These can be represented in outline by the
following diagram:

Enactive

Symbolic

Numeric

Platonic

Visual

Formal

Graphic Cognitive
Development

Formal
Viewpoint

Cognitive development of representations

At the foundation is enactive interaction with the environment. On the visual
side the representations take on successively more subtle meaning. Visual
concepts begin as gestalts whose meaning is refined through interaction, verbal
description and discussion. In geometry, figures are classified into distinct types
(circles, squares, rectangles, etc) then into hierarchies (squares as a subset of
rectangles as a subset of quadrilaterals, etc), then developing more formal
definitions and deductions in Euclidean geometry (Van Hiele, 1959, 1986).
These follow a sequence of stages where the meaning changes, first with objects
as perceived physical examples, becoming cognitively more abstract through
the use of language and imagination, so that a physical “straight line”, which
can never be drawn precisely, becomes a perfect mental object having no width,
being perfectly straight, and extensible at will in either direction. Thus visual
representations initially represent physical objects but through cognitive
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development they become platonic mental objects, the “perfect” abstract
counterparts of physical experience.

On the other hand, in arithmetic and algebra the symbols are designed for
calculation and manipulation and derive their great power from the fact that
they not only evoke a process, such as addition, 2+3, but also a concept, the sum
2+3 is 5. This use of a symbol to evoke either process or concept is called a
procept (Gray & Tall, 1991, 1994). Procepts have power because they evoke
processes to do mathematics and concepts to think about mathematics. In the
diagram I have used the terms “numeric” and “symbolic” to stand for the
increasing sophistication from the numeric procepts in arithmetic to the
symbolic procepts of algebra and the even greater generality of symbolic
functions.

Straddling the visual/platonic and the numeric/symbolic are graphic
representations, used here in the technical sense of linking together visualisation
and symbolisation, for instance, through visual representations of numerical
relationships or the use of the real line and the coordinate plane to visualise
symbolic relationships.

Separate from these representations are the formal representations of
mathematics through definitions and deductions using formal proof. The move
from visual and symbolic representations to formal representations requires a
huge cognitive reconstruction. In elementary mathematics, concepts are
developed and then described verbally and represented visually. The concept
precedes the description. If there is a mismatch, it is the description which is
(usually) changed, not the concept. In the formalisation of advanced
mathematics, it is the definition which comes to have primacy. The formal
concept is constructed from the formal definition, and the properties of the
formal object are only those which can be deduced from the definition. The
significant reconstruction required to establish the definition as the basis of
formal concept construction is signified in the diagram by a dotted line which
separates elementary mathematics from the advanced form of thinking required
in formal mathematics.

From the viewpoint of the expert, formal proof is meaningful and essential,
but this depends on the cognitive growth of the expert. It cannot be understood
by those who lack the necessary sophistication. It cannot even be an objective
for the learner to reach because it, as yet, has no meaning for the learner. Proof
is context dependent, and its cognitive development must take account the
cognitive structure and representations available to the growing individual.
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Enactive proof

At the most primitive level, enactive proof involves carrying out a physical
action to demonstrate the truth of something. This invariably involves visual
and verbal support, but the essential factor is the need for physical movement to
show the required relationships. For instance, to show that a triangle with equal
sides has equal angles, one might cut out a typical triangle made of paper and
fold it down its axis of symmetry to show that when the two equal sides match,
so do the base angles.

A

B C

A

C
B

Fold over
A

C

B

An enactive (visual) proof that equal sides imply equal angles

Such a proof invariably involves  either specific examples, or specific examples
seen as representative prototypes of a class of examples.

Visual Proof

Visual proof often involves enactive elements (and usually has verbal support).
For instance, the famous classical Indian proof of Pythagoras takes four copies
of a right angled triangle sides a,b and hypotenuse c, and places them in two
different ways in a square side a+b. The remaining area can be expressed as two
squares area a2 and b2 or a single square area c2, giving a2 + b2 = c2.

a

b

b

a a2

b2

a

b

b

a
c2

c

c

An (enactive) visual proof of Pythagoras (after Bhaskara)
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To “see” this proof, it is essential to be able to imagine how the triangles can be
moved around from one configuration to another.

Note that any actual drawing will have specific values for a and b, but such a
diagram can be seen as a prototype, typical of any right-angled triangle. This
gives a kind of proof which is often termed “generic”; it involves “seeing the
general in the specific”.

In the same way many arithmetical statements can be “seen” to be true by
using visual configurations in a generic way as prototypes for a class of
statements. For instance, a picture of a 2×3 array can be seen as 2 rows with 3 in
each row or 3 columns with 2 in each column:    

}

}
2 lots of 3

3 lots of 2

a graphic proof that 3×2 is the same as 2×3

The “proof” occurs by seeing the same diagram in two different ways (as rows
or as columns). This is less dependent on an enactive rearrangement and more
dependent on re-focusing attention to see the array as rows or columns. It may
be seen as being typical of a class of similar pictures, such as 4×5 or 27×13,
each a typical prototype for the general statement

 m×n=n×m

for whole numbers m, n.
Likewise, the algebraic identity a2–b2 = (a +b)(a –b) can be visualised (at

least for positive a and b) in the following generic diagram:

a
b

b

a

a b

a–b

+

Taking a square side b from a square side a  and rearranging what is left as (a–b)×(a+b)

This graphic proof again has elements of enaction to see the dynamic
rearrangement of the parts.
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Manipulative proof

The previous algebraic identity can also be proved by manipulation. To show
that

(a +b)(a –b) = a2–b2

all that is necessary is to multiply out the brackets on the left hand side and
cancel the terms ba and –ab.

Arithmetic, as a computational activity, usually has little proof involved,
other than the checking of calculations perhaps saying something like 24532
times 34513 cannot equal 846672915 because the units digit is not even.

However, generic proof is possible, where a specific statement is seen to be
typical of a class of statements. For instance, to show that the square of any
number cannot be 2, one might note that any fraction in lowest terms can be
factorised into primes, e.g.

9
40

= 32

23 × 5

and the squaring of this number doubles the number of each prime factor to give

9
40







2

= 32

23 × 5
× 32

23 × 5
= 34

26 × 52

so the primes occurring in the factorisation of numerator and denominator of a
square number all occur an even number of times. Hence the square of any
fraction cannot equal 2 which factorises as 2/1 and has an odd number of 2’s in
the numerator.

In Tall (1979) I showed that students in the first year of university expressed
a strong preference for the generic proof over the standard proof by
contradiction, but note that this does not mean that the generic proof is
preferable in the long term. Proof by contradiction is an essential element in
formal mathematics and needs to be addressed, even though it involves
significant cognitive difficulties.

Algebra has the ability to express arithmetic ideas in a general notation and
so has more scope for proof than generic arithmetic. For instance, the fact that
the sum of two consecutive odd numbers is a multiple of 4 may be expressed
algebraically by noting that 2n+1 plus 2n+3 is 4n+4. Such a proof is carried out
by using a suitable algebraic representation and performing an algebraic
manipulation (in this case the addition of two expressions).
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This is the most commonly occurring method of “proof” in the English
National Curriculum, and occurs widely in numerical investigations. However,
it involves meaningful manipulative facility in algebra rather than logical
deduction. In general logic has a lower (almost non-existent) priority in the
National Curriculum compared with the curriculum of other countries (eg Italy).

Euclidean Proof as a verbal translation of generic visual proof

The ideas of Euclidean geometry are inspired by visual representations but they
are formulated verbally to give the proofs greater generality. A theorem in
Euclidean geometry specifies a certain geometric configuration. A figure drawn
to accompany the theorem is a generic picture which represents any
configuration satisfying the statement. The verbal proof then applies not just to
the specific picture drawn, but generically to the whole class of figures
represented by the theorem. For instance, the proof that if ∆ABC has AB=AC
then ∠ B=∠ C applies not just to this triangle ABC:

but to all these triangles too:

In this way Euclidean proof is verbal generic proof applying to the whole class
of geometric figures having the given properties.
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Weaknesses in Visual Proof

In the nineteenth century it was realised that the verbal language of Euclidean
geometry contained implicit beliefs which were not part of the formal
definitions. For instance, the idea that the diagonals of a rhombus meet “inside”
the figure, where “inside” had not been defined in the list of axioms and
common notions. This proved a shock to the system which was made worse
when the functions of mathematical analysis proved to have seemingly
unbelievable properties (such as the existence of functions continuous
everywhere but differentiable nowhere). Visual ideas became suspect and
untrustworthy, despite the manner in which they often seem so convincing.

I suggest that the fundamental problem lies in the nature of the visual
representation used in the proof. As it is a prototype for the proof, its
applicability only extends to the class of examples for which it is prototypical.
Thus the generic proof of m×n = n×m given earlier applies in the given pictorial
form only to positive whole numbers and the visual proof of the algebraic
identity for the difference of two squares applies initially only to positive real
numbers.

As concepts change in meaning — from enactive, through visual or
symbolic — and on to formal, different kinds of proof may convince the
individual. But what is satisfactory to an individual at one stage of development
may prove to be unsatisfactory later on.

An archetypal example of this is the proof of the intermediate value theorem,
that a function which is negative at a and positive at b and continuous from a to
b must be zero somewhere between a and b.

negative here

positive here

zero somewhere 
in between

The intermediate value theorem
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Enactively the notion of “continuous function” is something that is drawn
“continuously” without take the pencil from the paper. Physically, if one
attempts to draw such a graph then it must cross the axis at least once in
between. Visually, once the graph is drawn as a static object, the notion of
continuity becomes the idea of being “all in one piece”, which corresponds to
the notion of “connected”. Again even when viewed as a static picture, (as
above), one cannot but imagine a point moving along the graph and see
evidently that the theorem “must” be true.

The need for formal proof

When formal definitions and deductions are introduced, the intermediate value
theorem proves to be true when the graph is defined on an interval of the real
numbers, but false when applied to a function defined only on the rational
numbers. (The function f(x)=x2–2 is negative for x=1, positive for x=2, but not
zero for any rational number in between.) Since visually we cannot distinguish
between the real and the rational number line, it becomes clear (to an expert)
that something more is required for a formal proof, namely, a logical sequence
of deductions described verbally starting from verbal definitions.

The change to the formal level requires a huge cognitive struggle. First is the
difficult reversal of primacy of definition and concept, so that the concept
definition is used to define the concept, not just to describe some of its salient
features. Then there is the substantial problem of identifying the concepts in
one’s cognitive structure that depend only on logical deductions from
definitions and only to use these links as stepping stones in mathematical proof.

Difficulties occur when the enactive or visual form of the proof does not
suggest an obvious sequence of deductions to use for a formal proof, so that the
individual seems to “know” that the theorem is true and yet has no method of
proving it. There are numerous examples in topology where an “obvious” visual
property fails to have a correspondingly simple proof (such as the Jordan curve
theorem that every closed path in the plane that does not cross itself divides the
plane into two regions, the inside and the outside).

Exacerbating the situation is the often great complexity of quantifiers which
occur in definitions and deduction in formal mathematics (such as those
concerning limits and continuity in analysis). In such cases the individual often
has to struggle to “follow” a proof in the first place before being convinced that
such a proof is acceptable. The overburdening detail of a strict formal proof is
explicitly or implicitly suppressed to give socially acceptable forms of proof in
the mathematical community.
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For the learner there are other stages of difficulty in formal proof, for
instance, the use of proof by contradiction to prove an existence theorem which
fails to construct the mathematical object which hypothetically exists. Or the
potential infinity of steps in an elementary induction proof, compared with the
finite use of the induction axiom in the Peano postulates.

Summary

Although the experts in mathematics may claim to share a more or less coherent
complex of ideas about the nature of proof, the cognitive development of proof
is dependent on the cognitive structure and representations available to the
learner at a given time. The formal concept of proof in terms of definition and
logical deduction requires a cognitive reversal from “concepts described
verbally” to “verbal definitions which prescribe concepts” which is unlikely to
be fully available to less experienced individuals. The formal concept of proof
is therefore likely to be highly confusing to non-experts (and, I would suggest,
has a far less clear corporate meaning than the mathematical community might
care to claim).

The loss of Euclidean geometry in the UK National curriculum has removed
any suggestion of a global mathematical theory built from explicit deductive
foundations. This has largely been replaced by a manipulative form of algebraic
proof which lacks the logic of true deduction.

Educators and mathematicians need to rethink the nature of mathematical
proof and give appropriate consideration to the different types of proof related
to the cognitive development of the individual.
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