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Introduction

In my work usingthe computer in mathematics education | have often takemnihge of
mankind as a tool-using specieshancing the limitations of human capabilitiesdegigning

and using tools tonake upfor those deficiencies. Thuke individualsucceeds in society not

just because of her dms individual skills but through @ombination of personal qualities
operating in tandem with the technology. In education the principles should be the same — using
the combination of learnetgacher and computer seat each maximisdss part in improving

the learning process.

The computer is a tool tharovidesalgorithmic capabilities to carry out complprocesses
which, if carried out bythe individual, might lead to extra cognitive loado difficult to bear,

or take such an inordinately lotigne that therelationships involved are more difficudtir the
individual to encompasgd.raditional learning in mathematicsually involveshe studenfirst
learning certainprocesses, such ake algorithms of arithmetic, or the manipulation of
algebraicsymbols, orsolution processes fdalifferential equations, anthen routinizingthem

so that the processes can be suppressed to a lower level of consciousness. ftassthiEnto
move on to the next stage which the routinized algorithms are chunked to give new
mathematical objects that are more easily manipulablen&Wwanathematicabbjects are given
symbols to be manipulated at a higher level of mathematization.

This is all very well in theory. However, in practice, many students do not peternpnocess

of encapsulation of processes as objects and are not able to give meaning either to the objects or
to the symbols whichare supposed taepresent themThey arethus faced eitherwith the
meaningless manipulation fymbols or burdened witlthe greater cognitive strain of
coordinating the original processes.

1The author wishes to thank Norman Blackett, Eddie Gray, Guershon Harel, Michael Thomas and Bernard
Winkelmann in the formation of ideas expressed in this article.



With a computer tool capable of carrying out some of tpeseesses, a neferm of learning
becomes feasable in whithe individual can concentrate on constructimgntalrelationships
that are important for conceptualization, whilst the computer carries out the ralgimghms.

It is the task of the educator to provide appropriate environmentdotus on selected
mathematicatoncepts or processes whitgippressingoutine algorithms carried out by the
computer, teenable the learner to make selected mathematmatructions. fterm this the
principle of selectiveconstruction The student majocus actively ondesired constructions
whilst othersare suppressed to a lowéavel of consciousness. Qother occasions inay be
appropriate tofocus ondifferent processes, foexample tolook at the specifics of the
algorithmsused withinthe computer. This in turn allows fatifferent possible sequences of
learning, on some occasions focussing on understaridengcomputer algorithms (at an
appropriate level) beforasing the software,sometimes in parallel, and at othersing the
software to establish conceptual linkages to set the computer algorithms into context later on.

The research and development carried out at the Wahdndkersity Mathematics Education
Research Centreas involvedthe observation of conceptual difficulties students,and the
design and testing of computer environmentsrtable selectegrocesses to bdemonstrated

by teachers and explored bjudents. Anumber of research investigations have been carried
out, all of which showsignificant improvements in conceptual understandinguch diverse
areas as algebra, trigonometry, straight line graphs, and the calculus.

In this article | shallfocus onthe broadeissuesinvolved in this kind of learningllustrating
them with respect to specific examples from the Warwick research and development.

The Burden of Failure

It is a well-known phenomendhat there is a divergence of performance in the learning of
mathematics — those who succeed seem to find it easievagref, whilst those whiail soon

find it almostimpossible. Studyindghe difficulties of slow-learners inarithmetic Gray (to
appearhas showrthat more able proceddom the “counting on” algorithnfor addition to
develop“known facts” then begin tause “derived facts” to developmew knowledge(e.g.
knowing 4+4=8 taderive4+5=9 or 24+4=28). Thuthey develop a feed-back loop in which
their ability to derive facts feeds back to give new known facts. Soon they that theyhdoeot
to memorize as mangpew facts because they can be deriwgden necessary. Thus the
relationalprocessesleveloped by the more able make arithmetsierfor them, enhancing
their success.

Meanwhile theslow-learnersling to the tried and testgafocess ofcountingon”. They will
calculate a sum such as 8+5 by counting on to get 13, but then, if“agledmakes 13?” are



likely to have forgotten thaitial inputs bythe timethey have completed thask. Thus the
process of addition is not encapsulated to give the concept of “known facts”, and aagtedd
that they do remembépften involving doubling such a+5=10)are not easilyused for
deriving newfacts. The relational structure afrithmetic ismissing andhe weaker student is
faced with a greater burden than his more able counterpart, leading to inevitable failure.

Analogous phenomena occur with the passage from arithmetic to algebra. Thehzhidews

the arithmeticsymbols 3+6 as processto produce an answenay find difficulty in coping

with the symbol 3+8which, when viewed as grocesscannot be carried out until thalue

of x is known. In addition, such a child will see the symbolsx3tl 3(1+R) as representing
different processes and faces an obstacle in attempting to view them as equivalent expressions.

Faced with such difficulties, traditional teaching tends to emphifEseorrect implementation
of the algebraiprocessesattempting to give the children theecessarymanipulative ability.
However, without meaning, this sodegenerates into learning the “trick of the week” — “do

”

multiplication before addition”,‘calculateexpressions in bracketisst”, “collect togetherike
terms”, “of means multiply”, “do the same thing twoth sides”,“turn upside down and
multiply” etc, etc. Thus the child is reduced to the meaningless manipulatgymtfols,with
a large number of disconnected trickaus®, which increaseghe cognitiveburden on anind

already sorely stretched.

The Principle of Selective Construction

Using the computer aew possibilityarises. In order to focus on nesleas and tesuppress
the processeshat may cause the cognitibeirden, itmay bepossible toget the computer to
carry out theprocesses whichre not desired to be thiecus of attentionThe educator may
provide the learnemwith an environment in whickthe learner canfocus on selected
constructions, whilsiother constructions whiclare not to be thdocus of attention are
performed by the computer. This | term pgraciple of selective construction

For instance, to see algebraic symbolism as giving a product, instead of focustsiagaotual
process ofcalculating thafproduct,one coulduse programming in BASIC tprint out the
values of, say, 2+6*Xand 3*(1+2*X) for variousgiven values of X. Everyime theBASIC
instruction to print thesexpressions is giverthe computer carries out thocess and the
child may simply focus on the fact that the results are always the same.

On the othehand, pupilswith experience otertainkinds of calculator will find that 2+X5
gives 25 (two add three is five and then fiimes five is twenty five) and may expett3*X
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figure 1 : The Algebraic Maths Machine

to give 25when X=5. But it doesnot. Thus it is good tdave examples whiclare not
equivalent: such as 2+3*X is not the same as 5*X, but (2+81Ke same as 5*X.

Thomas (1988) introduced algebraic symbolism through programming (in BASIGhense

of software in whichthe computer carried out tipeocess to produce a product. Not only did
he use BASIC programming, he also designepiege of software (the algebraic maths
maching which allows the use of standard algebraic symbolism (suam@€it multiplication
and superscripts as powers) for algebraic expressions. The machine allows intéttiehsatio
stand as labels for input numbers and two expressions invdhésg letters can be evaluated
and compared (figure 1).

Now the child can be selectivelgcussed orthe sameness ahe results ofcalculationsusing
standardalgebraicexpressionsrather than the difference of tipgocesses ta@arry out the
calculations. In addition, cases where equivalence might be expected but whergsiti¢hilas
2+3X, 5X) may also be investigated.

In a separate activity the childrémok part in agamewhich involved playingthe part of the
computer in performing the calculations, so that, diffarent time, they couldoncentrate on
(a model of) the inner workings of the computer.

This involved acardboard maths machine/hich consists of just two large sheets of cardboard
and some smallerards marked witletters anchumbers.One piece ofcardboardacted as a
screen and programming instructions wetaced on the screen and then carried out by
members of a group of pupil¥he othempiece ofcardboard — placed shortdistance away —



had a number of rectangles marked on it which represented comspares.Each could be
labelled by a letter placed above 8tere andeach labelledtore could have a number placed.
Thus to carry out the instructions

A=1
B=A+3
PRINT B+2

involves marking a store witthe label Aand placing the number thside, then labelling
another store B, looking inside the store A to fine value 1, adding 3 to get 4 and placing it
in the store B, andinally looking in thestore B, notingthe number 4nside, adding 2 and
placing the number 6 back on the sheet of cardboard representing the screen (figure 2).

B=A+3 !

PRINT B+2

el

figure 2: The cardboard maths machine

Working with the cardboard matinsachine clearlyepresentshe processaspect of evaluating
algebraic expressions, just as the algebraic maths machine reptiespndsiuct of computing
their numerical values.

Thus, at different stages, different aspectthefprocess werselectively given an appropriate
focus in order to produceraore versatile form ofearning. The results ofempirical studies
shows significant improvement overcoming cognitive obstacles and in acquiring a more
versatile insight into the meaning of the algebraic symbolism (Thomas & Tall 1986,1988).

Blackett (1990) studied similar difficulties in the introduction of trigonométnetions.Once
again thepupils are facedwith cognitive difficulties — handlinghe ratio concept (itself the
product of a process of comparison) and daggplication in trigonometrythrough similar
triangles and proportion (an equivalence of ratios — requiring a fuetherof encapsulation of
process)Added to these are thmroblems of versatile thinking which requirtge linking of
geometrical concepts to numerical concepts.

As in the case odlgebra, draditional approach is often to give teudentspractice in the
routine procedurescalculating the trigonometricatios using aspecified rule (in Britain the
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figure 3: the screen display of the trigonometric software

mnemonic SOHCATOAfor Sine is Opposite overHypotenuse, Cosine i&djacent over
HypotenuseTangent is Opposite over Adjacemgain, although mangtudents couldearn
to cope initiallywith the rotealgorithms,they often hadittle flexibility when it came to
responding to questions a little different from those that they had practised.

Blackettwas convinced that part of the problanvolved in theuse ofinaccuratesketches to
represent thénitial concepts, thugplaying down the value of visualization. Bysing the
computer to carry out the algorithms ¢alculateand draw aight angled triangle from any
combination of sides and angles sufficient to define the triangle, he was able to design software
that responded to the user’s input by drawing an accurate picture (figure 3).

The software is relatively unsophisticated and was programmed in less than two days. It allows
the user to specify such information as is necessary to dbéméght angled trianglésuch as
another angle and a side, or two sides, in addition to the right angle) and then display any other
desired information about the remaining lengths or angles. Various other facilities are available,
including the possibility t@dd, subtractmultiply or divide any length or angle by a given
guantity, thus allowingexploration of what happenshen sides or anglesre changed. To

avoid the common misconception that #ierter sidesre usually horizontal and vertical, the
triangle may be turned through any angle. To asgsalization of similarity, it igpossible to

turn on or off arnauto-scale facility to rescale the triangle to fit in the pictunen lengths are
changed.



Using the software, Blackett againfound significant improvements in more versatile
understanding of the concepts. A delayed post test showed the experimental students increasing
in their ability torespond to both standard problems and those miee versatilenature.

Details will be given later in the article.

Generic Organizers

In Tall (1986a) | describedgeneric organizeas

a microworld which enables the learner to manipulate examples (and preferably also non-
examples) of a specific mathematical concept or a related system of concepts. The term
“generic” means that the learner's attention is directed at certain aspects of the examples
which embody the more abstract concept.

When | first made this definition | notedthat therewere many examples ofoncrete
manipulatives, such d@ienes’blocks, Cuisenairerods, and soon, which fulfilled the stated
conditions. However, these grassivan the sense that the user must act on themnéegbret
the results of those actions. Generic organizers as programmed on a c@argayberneticin
that they carry out algorithms in response to user action. It is this cybernetic ptbpegiyes
generic organizers on a computer their spegialities, allowingthe user to experiment,
predict and test constructed conjectures.

The algebraic maths machiaad trigonometricsoftwareare both examples of (cybernetic)
genericorganizers the first allowing the student to explore examples and non-examples of
equivalence of algebraic formulae, the second allowing the user tcadcanate triangleBom
specific information and to explore the relationships between numerical and graphical
information. The cardboard mathematics machine is a passive generic organizer.

The origins of the theory of theuse of generic organizers in learning originated in the
development oGraphic CalculugTall 1986, Tallet al 1990) as an approach to tfmeindations
of calculus whichbuilt on the implicit idea that a differentiablenction is“locally straight”,
rather than the expliciimit concept, which is known te@ause studentgreat cognitive
difficulties. Thusthe Graphic Calculusonsists of a number of progrartigt act as generic
organizers, focussing the learner on various fundamental ideas of the calculus Mraghifg
program allowghe learner to explore the possibility of magnifyigiaphs oftheir choice to
develop the idea that magyaphsare “locally straight”, which meanthat, highly magnified,
small portions look straight. Thismeans that the concept of gradientsath a curved graph
now has ameaning: magnify it and look . Aecondpiece ofsoftware allowsthe user to
explore the gradient of a line through two points on the graph to see what hapiherEoass
get close together. It also allows the user to build up a picture of the changing gradiggih



two points a fixed distanaeapart. A gets small, the gradient graph stabilizes and the learner
can conjecture thpossible formuldor the gradient, linking this tdhe symbolicprocess of
differentiation and gaining versatile insight into the concept of derivative as the gradient of the
graph.

Further generic organizerdeal with anti-differentiation(knowing the gradient, to find the
graph),areacalculations, both as mumerical and visugdrocess and also as a growiaga
function, anddifferential equationsfirst order, second ordesind simultaneous firsbrder.
Simultaneous equations involving, sdy/dt anddy/dt are viewed irthree dimensionalt{,y)
space as specifying a tangent directidhdk,dy) and hence seen asganeralization of the
single first ordercase. Second ordelifferential equations involvingi2x/dt2 and dx/dt are
translated into simultaneous first order equationth@usual way byputting y=dx/dt, thus
obtaining equations idy/dt (=d2x/dt2) anddx/dt. Thus higher order (simultaneoudijferential
equations can bgeen as growing out dhe universalexample of thdirst order differential
eqguation which poses the problem of reversing the notion of local straightness.

A more recently developed generic organizer for the calculus $othéonSketcher designed

for the School Mathematics Project (TA889b) toenablestudents t@nacta physical process

of solving adifferential equation. This program draws a shiore segmentvhosegradient is

given by the differential equation (figure 4). It may be moved around using the cursor keys or a
mouse. Bytouching the spacbar, or clicking the mouse, acopy of the line segment is
deposited on theicture, and by sticking such segments endrtd, anapproximate solution

curve can badrawn which, by construction, hasgaadient which satisfieshe differential
eguation (at least at the centre of each short line segment).

Hidden within the program is the algorithm to compute the gradient dintheaegmentand to
draw it onthe screen. However, by usirthe program, it is possible to supprebe internal
construction and concentrate on the link between a point pldine,the gradient of a solution
through the point, anthe way in whichthe solution curve is built up teatisfythe equation.
Thus, by a process @gEtlective constructionsing the computer, if desiredthe student can
focus onthe essential nature of tkelution of a differential equatiobefore carrying out the
solution process.
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figure 4: The Solution Sketcher

There are options in the programtich allow an array ofine segments to be drawn show

the global tendencies of differesblutions, and automaticsolution drawing through any
selected point. The step-length of the line segment may be changed to gain an insight into how
good the numerical approximation is. By choosing larger step-lerigéhstrors incalculation

will be seen, but by choosirgmaller step-lengththe approximations will beeen tostabilize

to a unique theoretical solution.

Using these facilities the student is able to gain a rich mental image of the notion of the solution
of a differential equation: thatfast order differential equatiorhas many solutions,but that
through any starting poirnthere is auniquesolution whicheverywhere haghe gradient
specified by the differentiaquation. Thismental image camow be used tgive advanced
organisation forinvestigating the numericgbrocess underlyinghe solution or seeking a
symbolic solution to the equation. It can inform the student that, when attempting to reverse the
symbolic process differentiation to find a symbolic function which satisfige equation,
thensolutions of acertainkind — and no others — should be expeci®uls, by using the
principle of selective construction to change tinder ofattack on the concept @blving a
differential equation a greater network of mental imagery can be built to enhance meaning.

It may beseenthatthis principle ofselective instruction igmplicit in the use of software in
virtually all of the other papers in this collection, be it Newtonsoftware to explorenotion,
Stellato focus on model-building, software éxplore feedbacksystemsor theintellectual
mirror software of Judah Schwartz.



The human-computer interface

The interface between the human operator anddhguter, whilst of lessemportance than

the overall theory of selective constructiasing genericorganizers, is ofreat importance in

its implementation. Theoftware used operates inngode which requirethe user totake a
mental decision, to transform this into a physical act to make an input to the computer, which is
then algorithmically processed and output as a visual image on the screen.

[Internal (dynamic)
Mental . .
o _p| Physical act -»{ computer [ visual
decision .
process] imagery

The most important parts of this scheara the mentgbrocesses antthe interpretation of the
visual imagery.The internal computegprocess is, ahis point,being mentallysuppressed to
concentrate on the relationship between mental decision and visual image:

Mental (dynamic)
o | Physical act —P» visual
decision _
imagery

The interposition of a physical act to carry out thentaldecision is one whickhould, as far
as possible, support the educational objectives and, at the very least, not be pbsitimély.
If this physicalact becomes routinized, sthat it involves little conscious effortthen the
system reduces to a mental decision followed by the production of visual imagery.

dynamic
Mental ( z//isual )
decision —»> )

imagery

This can then become a part of a feed-back system:

) (dynamic)
Mental conjecture, test ]
. visual
decision )
imagery
feedback
1

In order that the student may concentrate on the important features of the computer
representation of the mathematics, the interfacst be as unobtrusive as possible. In one



sense,familiarity with the interface will help routinize itsse andsuppressits conscious
intrusion — be it WERTY keyboard with itsinitially difficult learning curve or the more
intuitive use of a mouse to point and select. Some familiar with a keyboard oftentipeefise
of key-strokes tdhe use of a mousehecause these have become autonzatdt require no
conscious thought. However, here they will be aideddreral conventions tmake thdinks
betweenmental actand physicalact automatic,for instance byensuringthat the samdey-
strokes work uniformly across many pieces of software.

If a keyboard isused,then it helps ifthe keys touched in somevay representhe required
decision. In mosearly forms of software this involved touching a key represerttieginitial
letter of therequired commandor a prominentletter later in theword). But this has some
draw-backs in the choice of names of menu items to have different letters.

In other cases inight bepossible toselectkeys whichhave some other relationship with the
mentalact. For examplethe Function Analyser written for the School Mathematics16-19
Project, is designe@mong othethings, to studythe translation ofjraphs of functions. The
interface problem(using acomputer that maynly have standard keyboard inpwtps to
design a way oEommunicating witlthe computer that allowed theser to instruchow the
graph should be shifted or stretched.

The solution was to have a “transform” optidwat allowed theuser to specify a string of one
or more moves (using the cursor key to spettifydirection), sothat t 2 means “move up 2"
(as in figure5), —3 would mean "move right3”, and soon. A slightly more abstruse
combination of cursor an&HIFT] key produces stretches, that produces the
icon -, which means multiply the-coordinate by the givefactor, sothat — 2 means stretch
by a factor 2, and- -1 means stretch by a factor -1 (which is a reflectidime inverse
operation, todivide thex-coordinate bythe given factor is obtained by . The
combinations and! correspondinglymultiply and divide they-coordinate
by the given factor. It is even possible to chain these commands in assicingist 23 -
1, which means shift the graph up 2, then right 3, then reflect the resulting gthply-axis.
The conventions usindhe cursors,whilst not universallyapplicable in othersoftware, are
reinforced in the Function Analyser in another context by besggl to shift Zoomwindow
around the screen:cursors left, right, up, down tonove the zoomwindow and the
corresponding -cursor combination to stretch or squeeze tharsor window
horizontally or vertically.

The graph-transforming routines enable the user to investigate effects of shifts and stretches on
a graphy=f(x), for instance to see thgtf(x) shifted one unit right (witliconic representation
y=f(x) - 1) is not the same as=f(x+1), but is y=f(x-1)... Such exploration, in which the
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figure 5: The Function Analyser used to translate the graph of a
function
computer carries out the instructions by using graph-drawing algorithms, enables the student to
gain some sense of what might or might not be true, but focus mptideel on the algebraic
theory and the reasons why this is so. However, it shoukhiphasized that theeakness of
the software as generic organizer is thatgives no assistance asudy y=f(x) -1 is the
same ag=f(x-1). (Perhaps a facility to move the axes whilst fixing the graph might help?...)

Such aniconic method of interface is minimally more helpful thstandardkey-presses.
However, a more intuitive interface can sometimes provide an enaction of facets of the desired
process in a way which is more supportivéielearning. For instancene could envisage a

mouse interface that enabled the user to drag the graph around and to update a representation of
the shifts being caused, or even to specify an axis, thetheis@use toselect and stretch the

graph away or towarde axis. Alternatively one mightwish to fix the graph and drag the

axes.

The Solution Sketchefigure 4, above) has anactive computer interfackesigned taid the
learning. The student magensethe illusion of moving dine segmentaround the screen,
constrained by the differential equation. By placsughline segments end tend, the further
illusion is created that the user is building the solution by her or his own action.

With a graphic user interface involvingnaouse or trackeall to give thellusion of pointing

and dragging orthe screen there are many mereactivepossibilities. A new graplplotter

being developed in association the Warwick Mathematics Research Centre allows alistaight

to be specified in many flexibrays and dragged arourttie screen. For examplene point

may be specified by clicking thmouse and dragged out to givdi@e whose equation is
displayed and updated as the mouse is moved. Or the gradient may be specified and then as the



mouse is clicked and draggadound,the line isdrawn throughthe pointwith given gradient
and its equation updated.

Bivariate data may be plotted, then a possible line of best fit may be drawn and dragged around
to see how various measures of fit change alirtbas changedDatapointsmay be added or
deleted tosee the effects of outlyingoints onthe goodness of fit. Thushe user has the
illusion of interfacing directly with the data and seeing the effects of enacting various changes.

Such arenactive interface revealinghks between objects being dragged onscreentlagid
continuously updated position coordinates already exists in graphic packages BladDesv
on the Macintosh.

The need to focus on the internal processes

At some stage ithe process, it ioften importantfor the individual to changéocus and to
think about the internal processes within toenputer.There arevery many differentvays in
which this may be done, including:

() enactive
(i) procedural
(i) symbolic.

Often it is possible tenacta version of the algorithm, possibly usiaquipment which acts as
a passivegenericorganizer, as ithe case of the cardboard mathachine mentioned earlier
(figure 2, above).

In the trigonometric work, the enaction involved constructing right-angled triangjlegruler
and protractor. The advantage of the trigopnometric software lies mbtlity to manipulate it —
changing side-lengths or angles, or changing the scale or orientation — and gettingediate
and accurate visual feedback.

In the SMP 16-19 syllabus a piece of equipment calle@thdientMeasurerwas designed to
introduce the calculus (figur@). This consists of glastic transparertircle markedwith a
diameterand fixed within anothepiece oftransparent plastic owhich is marked avertical
ruler in units, one unit horizontally away frorthe centre. A studentan place the gradient
measurer over a point on thgeaph,rotate thedisc untilthe marked diameter igsually in the
direction of thegraph atthat point, then readff the gradient. Thus she or lmn move the
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figure 6 :a physical tool for measuring gradients

measurer along thgraph andenact thechanging gradient, asell as obtaining approximate
numerical results.

The gradient measurer is a passive generic organizer which the student may use to focus on the
concept of the gradient of graph. This must be carried odhroughthe individual’'s own
actions — turning thelial to move the diameter to approximatdaagent, readingff the
gradient, recording itapproximatevalue,then plotting a sketch of the gradient of ty@ph.
Once theprinciples areunderstoodthe student may theuse cybernetic organizers to give
greaterpower in focussing orthe gradientconcept. First a grapblotter is employed to
magnify small portions of thgraph to establisthe idea of locastraightness odlifferentiable
functions. Then a gradient plotter (e.g. Tall 1986b) is used to give a reasanalngtegraph
of the gradient function of a givefunction, for the student to investigate ifoperties,
including the initial guessing of a possible form(flar instance the gradient of sir{in radian
measure) is cas but the gradient of cgss minussinx). This is linked to the calculation of the

fx+h)-f(x) h) f)

symbolic gradient in simply cases bglculating = —— in simple casesuch ad(x)=x2

to relate the various aspects of the gradient concept.

Thus itcan beseenthat theframework in whichthe generic organizer igsedmay be fairly
flexible, allowing students to build uthe concepts gently imvays whichrelate to their
growing experiencerather than being given a “simplifiedfersion of a“formal” approach
starting from the limit concept. The limit concepiniplicit within the generic organizefssing
the selective construction principle) and need not be a conscious focus of attenticyuédehe
The magnification progranmplicitly involvesthe beginnings of dimit process by focussing
on a small portion of the curve which, fod#ferentiablefunction, lookslocally straight. This

means that, providedis small, the value ofw stabilizes. No one itheir right mind



would puth=0 to calculate the gradient in such a circumstance, so one séribas obstacles
facing the naive student in a traditional mathematics course is less likely to arise.

In the SMP 16-19 curriculum the algorithm used in the gradiewing program is studied in

an enactiveway before the software is beingused. Elsewhere in thesyllabus, generic
organizers are also used to study the broad implications of an algorithm before the algorithm is
studied in detail. For instancéNeewton Raphson Progra(iall 1989b) is used to obtain visual
insight into the idea of using a tangential approximation to solve an egobetoyethe Newton
Raphsoniteration is considered symbolically (figuré). The tangential approximation is
determined numericallgwhich is afamiliar concept to thetudents concernedyhe program

has anauto-zoom feature whichllows the user tozoom in to seénow quickly the graph
approximates to a straighine, thus giving visual support tthe power of the method.
Investigations are encouraged using different starting points to gain insight into hdhatt ifs

the starting point is not near a fairly straight part of the graph then the iteration process may end
up at a different root. Only when the students have sdezeof thestrengths and weaknesses

of the process do they study the symbolisnthefiteration, and carry it out in a programming
environment or a spreadsheet.

In the SMP 16-19 syllabuke saméholdstrue for the use ofthe Solution SketcherBecause
the students already have a visual concepoaa straightness, solving differential equation
may beseen as reversintye visual gradienprocess: giveithe gradient, findthe graph. It is
therefore naturafor the students toenactthis process usinghe Solution Sketcher before
studying the details of numerical or symbolic solution processes.

x
Fi{x)=sinx+t+e

Flxd
3.5598

Hewfon—Raphson, numerica gradlen
Touch: EHI¥M3 to iterate UPABLE~sEtep

Hlescale Llew start position [Muit

figure 7: exploring the Newton Raphson algorithm



In practice it isnot considered important whether the investigations precedémll@red the
introduction of the algorithm. What matters is that, with the software either method is possible.

Procedural insight into the computer algorithms

When | first wroteGraphic Calculus I(Tall 1986b), Inaively thoughthat thesoftwarecould

be used as a precursor of symbolic calculus, without the need to understand precisely what was
going on within the software. | wasencouraged by empiricalesearch whichshowed
impressive improvements in versatile thinking about the viaspects. Howevethere are
features in any graph-plotting program and vagaries of floating point arithmetic, wézm

that what happens onscreen is not what is expected, amécame evident thatome
knowledge of the internal algorithm is essential.

There are certainly times when one juses acomputer tool without asking what is going on
inside. Using a hi-fi system, or atectricwashingmachine or a microwaveardly require an
understanding othe algorithms that control the managemenftware. If suchdomestic
appliances go wrong, theyre often repaired simply by replacing t@mplete electronianit.

Thus, provided one hathe externaknowledge to carry out what onveishes to doand a
method of gaining help when something goes wrong, there are many times in society when one
does noteed toknow of the internaworkings ofthe machine. Even with a computer most
people only understand certain layers of sophistication (exteseabf software packages, but

not programming, or programming in a high level language, but not in machine language, or in
machine language, but not at the electronic level, and so on.)

When one isusingthe computer to carry out amplicit algorithm as part of an educational
process.there are at leastvo occasions in which some kind of knowledgettué internal
workings is essential. One is when part of ékdecationaprocess is to understatige internal
algorithm, andhe other isvhenthe internal algorithnihas features whicmight mislead the
user.

For instance, if the software is designed to illustrate a known numerical algorithm — such as the
Newton Raphson method or the method of solution of an equatigr) by iteration — then it

is evident that théocus ofthe work is to understandnd usehe algorithm, withthe generic
organizer being used to test its behaviour in a variety of situations. On théxaidersoftware

relying on numerical methods invariably contains feattias might goseriously wrong in
exceptional circumstances, and here a little insight is absolutely necessary.

2 A “feature” is a polite name for a known bug!



In the initial stages of the calculus my aim had been to give the student some visualntsight
the processes otalculating gradients,areas and solutions dfifferential equations, as a
precursor to studying the symbolic algorithms of differentiation and integrdi@numerical

f(x+h)-f(x
algorithm for calculating a gradient, by calculating the function give h) ) for fixed

h and variablex has some features ibommon with calculating the symbolidimit of
f(x+h)-f(x
% ash - 0. Both involvecalculating a value of aexpressionthe first numerically,

the second algebraically, bdlhere the similarityends. The symboliclimit considers a few
standardcases, such d6x)=x", and, ineachcase,simplifies theexpression tmbtain a very
specific formula for the derivative (or gradient function). The algorithms of formal
differentiation for combining such functions asums, productscomposites etc, though
distantly related to the numeriagdadient, bealittle family resemblance. Hence, insiginto
the algorithmfor the numerical derivative may giwle insight into theprocedures oformal
differentiation.

However, the numerical algorithms allow a fairly ggocture to bedrawn inmany cases and

give the student a visual insight intdhy the formulae might be true (the derivative ofxcas

the graph of sinupside down, so it must minussinx). And in thesedays inBritain where

there seems to be less fluency in the population in the use of algebra, such informal feedback is
proving most helpful. Butthe features of thesoftware, forinstance the catastrophic
inaccuracies of computer arithmetic in calculatiapos of smallhumbers,makesome kind of
understanding of the numerical algorithms essential. Thaghis in both Graphic Calculus 11

(Area) andlll (Differential Equations),numerical programming algorithmsere specified.
Subsequently thessre becoming part afew syllabuses to be studiediagortantprocesses

in their own right.

In Tall & Winkelmann (1988) we described three different kinds of insight:
External, analogue, specific

Externalinsight occurs whethe user has nadeawhat is going on insidéhe computer, but
has knowledge which allows him or her to check that the rem@tensible. For instance, the
softwaremay be a symbolic manipulatarhich computes amtegral by arunknowninternal
method but the student may use knowledge of differentiation to check that it is correct.

Analogueinsight occurs whethe user has amea of type of algorithm imse, for instance,
knowing that aroot of an equation is being computed thg Newton Raphson ruldyut is
unaware of precisely how this implemented.



Specificinsight is wherthe user isfully aware ofhow the software is programmed (though
this, inpractice, remains onlgartial for, even if theuser knows how #igh-level language

works, the implementatiorwithin the hardware islikely to include featureghat are not

understood).

Specific insight into computer software is rarely possiblevan desirabléor the majority of
computer users, but it is helpful fore student to have at least external insaghtpreferably,
analogue insight.

Analogue insight can be implemented by investigating the algorithm by programming either in a
high level language or a pseudo-code that mimics such a language. In the Mithbmatical
Association has for several years hacbmmittee deliberating the impact admputers on the
mathematical curriculum. Initially the committpeblished a book of short (BASIC) programs

to encourage teachers to get students to explore simple algofithn$985). Initial drafts of

their report contained margrograms in BASIC andl.ogo, but as theredrafts proceed and
available software becomes more sophisticated, the notion of programming is being broadened
to include the programming of spreadsheets and other high-level software.

The Symbolic Stage

So far we have mentioned tipeocessesof mathematics that thetudent may carry out and
eventually routinize, whichmay sometimes be given to the computer to carry out more
efficiently as the student concentrates on otsgects. Wénave also mentionethe images
produced by the computer that are intended to help the stietlenaippropriatanental images

of their own. But we have yet to concentratetlmmsymbolswhich were mentioned ithe title

of the article.Symbolsare of manykinds, including enactivdbody language), visual, verbal,
literal, and so on. But here we are concerned more witinétlieematical literabymbols which

the studentmust write down and which may be manipulated at a highdevel of
mathematizatiorfior, in the end, it isthe use of symbols whicmakes mathematics easier for
mathematicians.

After many years of working with generic organizers, it is clear that there are someeldtiech
more directly to symbolization thaothers. For instancehe algebraic maths machineis
directed at building up meanirigr algebraicexpressionsThere is empirical evidence that it
leads to a highdevel of conceptuahsight into the manipulation @xpressionsjnequalities
and the solution of linear equations (Thomas 1988).

However, many of the other organizers mentionedthis article, althoughusing algebraic
notation do not themselvesmanipulatethe symbols. It istherefore asking too much &xpect



them tolead, without further activity, to a highetdevel of symbolic manipulativeability. Tall
(1986a) shows that the useg#neric organizers in the calculus led to a hidéezl of ability

to handle graphical concepts but that there was no significant change in the ability vaticope
formal differentiation. The positiveriew is that the graphical treatmenid not lower the
manipulative ability. Indeed,the evidencefrom Thomas’s work isthat if the conceptual
foundation is laid, then less work is needed to reach a given level of routine manipulation.

This is consistent with Heid’s researchcalculus where itvas showrthat students who use
the computefor conceptualvork and only carry out routine manipulatiéor a shorttime at
the end of thecourse werebetter at highetevel conceptuaproblems than control students
following a traditional course, and not significantly different inability with routine
manipulation (Heid 1988).

In Harel & Tall (to appear), we&ame to theonclusionthat the formal level of mathematics,
involving formal definitions and deductions requires a new level of construction of the abstract
concept fromthe definition. This involves a very difficult transition in which formal objects
must be constructedhoseattributes must follow solely frorthe definition. Thus aconcept

such as a limit, or a continuous function,tbe derivative as a formal limigll involve a
difficult reconstruction which we believe can be built on the experience of genganizers,

but requires a new phase of constructive activity.

What are the concept images available in the mind ofstbdent afterusing ageneric
organizer? They are the product of the experiemte the organizer: arawareness of the
behaviour of examples and non-examples of the concept(s) on thiidtus is placed. Thus
a student who has usedregnifier program to sethat certaingraphsare locally straight and
othersmay havecorners, or be so wrinkletthat they aranowherelocally straight, has aich
collection of examples and non-examples of a differentifiobetion. But a newlevel of
constructivity is necessary — first to isoléte essential characteristics thatm the basis of a
definition, and then to reconstruct other characteristics of the formal tigéatan be deduced
from this definition. Thus @eneric organisemoves onthe generic (general examplelpvel
rather than thabstract(formal definition)level. | believethis to be a featuréknown bug?) of
many current computer based activitieswvttuld beinterestingfor others who work with the
computer in education to analyse the cognitive outcome of Wk to see if it promotes
generic or abstract thought.

This observation is not to be seen as a weaknetb® approach, only apecification of the

limits of this stage in development. Certainly the rich collection of examples and non-examples
is likely to form abetter cognitive foundatiofor the formal theory than conceptual imagery
based only on routinprocesses. lalso suggests new possibilities éonstructivegrowth



using the computer, frohysical actiorto mathematical processa generic concepto formal
concept each building on therevious phasebput each requiring an explicit cognitive
reconstruction.

Empirical Testing

The ideas inthis article have beersubjected to various levels ampirical testing. The
developments for the SMP 16-19 have bieplementations of aew curriculum in thetime-
honoured British way: try it out, if it works, leave it, and if it doesfit,it. Herethe desire is

to implement a new mathematics course for 16-19 year olds to address the problem that too few
students in Britain studgnathematicveyondthe age of 16 anthat anew approach needs to

be designedhat is more accessible tonader range of abilities. Tachievethis the pupil is
required to be aactive participant in the learnimgocess andhe use ofcomputer software

(and graphic calculators) is an important elem€&he course hasnetwith approval from the
participants and theesults ofthe first examinations (taken irecentweeks) show devel of
achievement higher than expected. More detailed study is needed.

Other generiorganisersparticularlythose for calculusalgebra andrigonometry, havédeen
subjected to a closer in-depth study.

The initial work on the calculuswas subjected to a controlled experiment which the
experimenter worked with one group of students using computersytheogroups followed

a similar computecourse and fougroups followed draditional course. Inthe experimental

groups there was a marked increase in student participation in the mathematics generated by the
introduction of the computer and thbility of students to improve on visual skilsuch as
sketching derivatives of functions given in graphical foma significantly improved. There

was no significant difference in carrying out routine algorithms of the calculus (Tall 1986a).

The work on algebra and trigonometrwas carried out in controlled experiments in two
adjoining halls of a comprehensive school where pupils had been akiitn so that the
corresponding groups ihe two schools hadomparableesults on previoushappliedtests.
One school was given the computer treatment usingdfterare,the otherusedthe “tried and
tested” methods evolved and agreed by the teachers over the years.

Thomas (1988) foundhat initially the pupils practising routine skills iralgebra were
marginally better than the experimengaipils at theseskills, whilst the experimentapupils
were better at problems requiring more versdhileking. However,some sixth months later,
following a briefrecapitulation of routinakills, the experimentapupils now performed at a
statistically significant higher level on both routine and more versatile questions.



Blackett (1990) has shownremarkable differences on the versatimderstanding of
trigonometry using his software. He studied fexperimental andfour control classes in two
parallel hallswhich begartheir studies with almoseéxactly the same level of performance in
each of the corresponding groups. Figure 7 shows the mean marks attained by each group on a
school exam (given at the end of the previous yegrjedest on trigonometriguestions, and
two post-tests, one immediately following the treatment, the other after a delay ofveajts.
Each of the latter ardivided into thetwo partsdenoted by Sfor standard questions, which
involved straightforward use dahe trigonometric formulae) and Vfor more versatile
guestions). It will be seen thtite experimentastudents perform asell or better on standard
guestions and outscotiee controlstudents orversatilequestions.There continues to be an
improvement in the performances of the experimesttadents ovethe controlstudents from
the first posttest to thesecond. Those cases whéihe mean of the experimentatore is
greater than that of the control score at a Ip¥6l05 are denoted syg.

An observation of great interesttlsat thegirls in thisexperiment performed differently from
the boys. The girls started off marginally lower on scores than the boys imgraops,and in
the controlgroups their performance did not increase as much asbibs, but in the
experimentalgroups it overtookthe boys, stretching away bythe second post-test to a
significant difference. Details of this development will be given elsewhere (BlackEedl&in
preparation).

Conclusion

After severalyears of development and testingtioé ideagproposed in this article, wieave

Exam Pre-test Post-test 1 Post-test 2
S V Total S V Total
E1l 61 37 81 78 79 89 83 86
C1l 70 38 80 47 63 86 50 68
- sig. | sig. - sig. | sig.
E2 |[ 47 |[ 18 |[ 45 56 51 || 57 66 62 ||
c2 || 48 | 20 | 46 38 42 |[ 39 41 40 |f

||$i9_iL|| sig. | sig. | sig. |

E3 |[ 47 |[ 20 |[ 47 52 50 || 57 66 62 ||
c3 || 49 | 21 | 31 28 29 || 24 23 23 ||

| sig. sig. sig. || sig. sig. sig. |
E4 |[ 39 | notgiven|[ 22 48 35 || 22 | 37 | 29 |

c4 |39 | notgiven| 17 5 11 || not given I

Table 6: significance of results of post-tests by group and type of question




consistent evidence in the improvemenstfdent’s performances more versatildasks and
performances in more routine tasks have either not changed or have been improved as a result
of the more versatile insiglgained. Thisimprovement in skillsoccurs particularly at the

generic level in handling applications of the concepts to specific examples.

We have some knowledge thfe way in whichchildren learn mathematiand the cognitive
conflict that can occuwhen confronted with new knowledgdow we havenew technology
which can be configured to shed new light onto the knowledge sth&iatdividual, using the
technology is faced with a different conceptizak. The mind of thendividual, coupledwith
the complementary powers of the compaftars acompletelynew conceptual framework for
education.
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