
Published in Advanced Technologies in the Teaching of Mathematics and Science (ed. David
L. Ferguson), New York: Springer-Verlag, 385–413. 1993.

Table of contents

Interrelationships between mind and computer:
processes, images, symbols

Introduction
...
1
The burden of failure
...
2
The principle of selective construction
...
3
Generic organizers
...
7
The human-computer interface
...
10
The need to focus on the internal processes
...
13
Procedural insight
...
16
The symbolic stage
...
18
Empirical testing
...
20
Conclusion
...
22

Interrelationships between mind and computer:
processes, images, symbols

David Tall1

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL

U.K.

Introduction

In my work using the computer in mathematics education I have often taken the image of

mankind as a tool-using species, enhancing the limitations of human capabilities by designing

and using tools to make up for those deficiencies. Thus the individual succeeds in society not

just because of her or his individual skills but through a combination of personal qualities

operating in tandem with the technology. In education the principles should be the same – using

the combination of learner, teacher and computer so that each maximises its part in improving

the learning process.

The computer is a tool that provides algorithmic capabilities to carry out complex processes

which, if carried out by the individual, might lead to extra cognitive load too difficult to bear,

or take such an inordinately long time that the relationships involved are more difficult for the

individual to encompass. Traditional learning in mathematics usually involves the student first

learning certain processes, such as the algorithms of arithmetic, or the manipulation of

algebraic symbols, or solution processes for differential equations, and then routinizing them

so that the processes can be suppressed to a lower level of consciousness. It is then possible to

move on to the next stage in which the routinized algorithms are chunked to give new

mathematical objects that are more easily manipulable. The new mathematical objects are given

symbols to be manipulated at a higher level of mathematization.

This is all very well in theory. However, in practice, many students do not perform the process

of encapsulation of processes as objects and are not able to give meaning either to the objects or

to the symbols which are supposed to represent them. They are thus faced either with the

meaningless manipulation of symbols or burdened with the greater cognitive strain of

coordinating the original processes.

1The author wishes to thank Norman Blackett, Eddie Gray, Guershon Harel, Michael Thomas and Bernard
Winkelmann in the formation of ideas expressed in this article.

With a computer tool capable of carrying out some of these processes, a new form of learning

becomes feasable in which the individual can concentrate on constructing mental relationships

that are important for conceptualization, whilst the computer carries out the routine algorithms.

It is the task of the educator to provide appropriate environments to focus on selected

mathematical concepts or processes whilst suppressing routine algorithms carried out by the

computer, to enable the learner to make selected mathematical constructions. I term this the

principle of selective construction. The student may focus actively on desired constructions

whilst others are suppressed to a lower level of consciousness. On other occasions it may be

appropriate to focus on different processes, for example to look at the specifics of the

algorithms used within the computer. This in turn allows for different possible sequences of

learning, on some occasions focussing on understanding the computer algorithms (at an

appropriate level) before using the software, sometimes in parallel, and at others using the

software to establish conceptual linkages to set the computer algorithms into context later on.

The research and development carried out at the Warwick University Mathematics Education

Research Centre has involved the observation of conceptual difficulties in students, and the

design and testing of computer environments to enable selected processes to be demonstrated

by teachers and explored by students. A number of research investigations have been carried

out, all of which show significant improvements in conceptual understanding in such diverse

areas as algebra, trigonometry, straight line graphs, and the calculus.

In this article I shall focus on the broader issues involved in this kind of learning, illustrating

them with respect to specific examples from the Warwick research and development.

The Burden of Failure

It is a well-known phenomenon that there is a divergence of performance in the learning of

mathematics – those who succeed seem to find it easier and easier, whilst those who fail soon

find it almost impossible. Studying the difficulties of slow-learners in arithmetic Gray (to

appear) has shown that more able proceed from the “counting on” algorithm for addition to

develop “known facts” then begin to use “derived facts” to develop new knowledge (e.g.

knowing 4+4=8 to derive 4+5=9 or 24+4=28). Thus they develop a feed-back loop in which

their ability to derive facts feeds back to give new known facts. Soon they that they do not have

to memorize as many new facts because they can be derived when necessary. Thus the

relational processes developed by the more able make arithmetic easier for them, enhancing

their success.

Meanwhile the slow-learners cling to the tried and tested process of “counting on”. They will

calculate a sum such as 8+5 by counting on to get 13, but then, if asked “what makes 13?” are

likely to have forgotten the initial inputs by the time they have completed the task. Thus the

process of addition is not encapsulated to give the concept of “known facts”, and any odd facts

that they do remember (often involving doubling such as 5+5=10) are not easily used for

deriving new facts. The relational structure of arithmetic is missing and the weaker student is

faced with a greater burden than his more able counterpart, leading to inevitable failure.

Analogous phenomena occur with the passage from arithmetic to algebra. The child who views

the arithmetic symbols 3+6 as a process to produce an answer may find difficulty in coping

with the symbol 3+6x which, when viewed as a process, cannot be carried out until the value

of x is known. In addition, such a child will see the symbols 3+6x and 3(1+2x) as representing

different processes and faces an obstacle in attempting to view them as equivalent expressions.

Faced with such difficulties, traditional teaching tends to emphasise the correct implementation

of the algebraic processes, attempting to give the children the necessary manipulative ability.

However, without meaning, this soon degenerates into learning the “trick of the week” – “do

multiplication before addition”, “calculate expressions in brackets first”, “collect together like

terms”, “of means multiply”, “do the same thing to both sides”, “turn upside down and

multiply” etc, etc. Thus the child is reduced to the meaningless manipulation of symbols, with

a large number of disconnected tricks to use, which increases the cognitive burden on a mind

already sorely stretched.

The Principle of Selective Construction

Using the computer a new possibility arises. In order to focus on new ideas and to suppress

the processes that may cause the cognitive burden, it may be possible to get the computer to

carry out the processes which are not desired to be the focus of attention. The educator may

provide the learner with an environment in which the learner can focus on selected

constructions, whilst other constructions which are not to be the focus of attention are

performed by the computer. This I term the principle of selective construction.

For instance, to see algebraic symbolism as giving a product, instead of focussing on the actual

process of calculating that product, one could use programming in BASIC to print out the

values of, say, 2+6*X and 3*(1+2*X) for various given values of X. Every time the BASIC

instruction to print these expressions is given, the computer carries out the process and the

child may simply focus on the fact that the results are always the same.

On the other hand, pupils with experience of certain kinds of calculator will find that 2+3x5

gives 25 (two add three is five and then five times five is twenty five) and may expect 2+3*X

to give 25 when X=5. But it does not. Thus it is good to have examples which are not

equivalent: such as 2+3*X is not the same as 5*X, but (2+3)*X is the same as 5*X.

Thomas (1988) introduced algebraic symbolism through programming (in BASIC) and the use

of software in which the computer carried out the process to produce a product. Not only did

he use BASIC programming, he also designed a piece of software (the algebraic maths

machine) which allows the use of standard algebraic symbolism (such as implicit multiplication

and superscripts as powers) for algebraic expressions. The machine allows individual letters to

stand as labels for input numbers and two expressions involving these letters can be evaluated

and compared (figure 1).

Now the child can be selectively focussed on the sameness of the results of calculations using

standard algebraic expressions, rather than the difference of the processes to carry out the

calculations. In addition, cases where equivalence might be expected but where it fails (such as

2+3x, 5x) may also be investigated.

In a separate activity the children took part in a game which involved playing the part of the

computer in performing the calculations, so that, at a different time, they could concentrate on

(a model of) the inner workings of the computer.

This involved a cardboard maths machine, which consists of just two large sheets of cardboard

and some smaller cards marked with letters and numbers. One piece of cardboard acted as a

screen and programming instructions were placed on the screen and then carried out by

members of a group of pupils. The other piece of cardboard – placed a short distance away –

figure 1 : The Algebraic Maths Machine

had a number of rectangles marked on it which represented computer stores. Each could be

labelled by a letter placed above the store and each labelled store could have a number placed.

Thus to carry out the instructions

A=1
B=A+3
PRINT B+2

involves marking a store with the label A and placing the number 1 inside, then labelling

another store B, looking inside the store A to find the value 1, adding 3 to get 4 and placing it

in the store B, and finally looking in the store B, noting the number 4 inside, adding 2 and

placing the number 6 back on the sheet of cardboard representing the screen (figure 2).

A=1

B=A+3

PRINT B+2

B

1 4

A Y X

773
56

figure 2: The cardboard maths machine

Working with the cardboard maths machine clearly represents the process aspect of evaluating

algebraic expressions, just as the algebraic maths machine represents the product of computing

their numerical values.

Thus, at different stages, different aspects of the process were selectively given an appropriate

focus in order to produce a more versatile form of learning. The results of empirical studies

shows significant improvement overcoming cognitive obstacles and in acquiring a more

versatile insight into the meaning of the algebraic symbolism (Thomas & Tall 1986,1988).

Blackett (1990) studied similar difficulties in the introduction of trigonometric functions. Once

again the pupils are faced with cognitive difficulties – handling the ratio concept (itself the

product of a process of comparison) and its application in trigonometry through similar

triangles and proportion (an equivalence of ratios – requiring a further level of encapsulation of

process). Added to these are the problems of versatile thinking which requires the linking of

geometrical concepts to numerical concepts.

As in the case of algebra, a traditional approach is often to give the students practice in the

routine procedures: calculating the trigonometric ratios using a specified rule (in Britain the

mnemonic SOHCATOA for Sine is Opposite over Hypotenuse, Cosine is Adjacent over

Hypotenuse, Tangent is Opposite over Adjacent). Again, although many students could learn

to cope initially with the rote algorithms, they often had little flexibility when it came to

responding to questions a little different from those that they had practised.

Blackett was convinced that part of the problem involved in the use of inaccurate sketches to

represent the initial concepts, thus playing down the value of visualization. By using the

computer to carry out the algorithms to calculate and draw a right angled triangle from any

combination of sides and angles sufficient to define the triangle, he was able to design software

that responded to the user’s input by drawing an accurate picture (figure 3).

The software is relatively unsophisticated and was programmed in less than two days. It allows

the user to specify such information as is necessary to define the right angled triangle (such as

another angle and a side, or two sides, in addition to the right angle) and then display any other

desired information about the remaining lengths or angles. Various other facilities are available,

including the possibility to add, subtract, multiply or divide any length or angle by a given

quantity, thus allowing exploration of what happens when sides or angles are changed. To

avoid the common misconception that the shorter sides are usually horizontal and vertical, the

triangle may be turned through any angle. To assist visualization of similarity, it is possible to

turn on or off an auto-scale facility to rescale the triangle to fit in the picture when lengths are

changed.

figure 3: the screen display of the trigonometric software

Using the software, Blackett again found significant improvements in more versatile

understanding of the concepts. A delayed post test showed the experimental students increasing

in their ability to respond to both standard problems and those of a more versatile nature.

Details will be given later in the article.

Generic Organizers

In Tall (1986a) I described a generic organizer as

a microworld which enables the learner to manipulate examples (and preferably also non-
examples) of a specific mathematical concept or a related system of concepts. The term
“generic” means that the learner’s attention is directed at certain aspects of the examples
which embody the more abstract concept.

When I first made this definition I noted that there were many examples of concrete

manipulatives, such as Dienes’ blocks, Cuisenaire rods, and so on, which fulfilled the stated

conditions. However, these are passive in the sense that the user must act on them and interpret

the results of those actions. Generic organizers as programmed on a computer are cybernetic in

that they carry out algorithms in response to user action. It is this cybernetic property that gives

generic organizers on a computer their special qualities, allowing the user to experiment,

predict and test constructed conjectures.

The algebraic maths machine and trigonometric software are both examples of (cybernetic)

generic organizers, the first allowing the student to explore examples and non-examples of

equivalence of algebraic formulae, the second allowing the user to draw accurate triangles from

specific information and to explore the relationships between numerical and graphical

information. The cardboard mathematics machine is a passive generic organizer.

The origins of the theory of the use of generic organizers in learning originated in the

development of Graphic Calculus (Tall 1986, Tall et al 1990) as an approach to the foundations

of calculus which built on the implicit idea that a differentiable function is “locally straight”,

rather than the explicit limit concept, which is known to cause students great cognitive

difficulties. Thus the Graphic Calculus consists of a number of programs that act as generic

organizers, focussing the learner on various fundamental ideas of the calculus. First, a Magnify

program allows the learner to explore the possibility of magnifying graphs of their choice to

develop the idea that many graphs are “locally straight”, which means that, highly magnified,

small portions look straight. This means that the concept of gradient of such a curved graph

now has a meaning: magnify it and look . A second piece of software allows the user to

explore the gradient of a line through two points on the graph to see what happens as the points

get close together. It also allows the user to build up a picture of the changing gradient through

two points a fixed distance c apart. As c gets small, the gradient graph stabilizes and the learner

can conjecture the possible formula for the gradient, linking this to the symbolic process of

differentiation and gaining versatile insight into the concept of derivative as the gradient of the

graph.

Further generic organizers deal with anti-differentiation (knowing the gradient, to find the

graph), area calculations, both as a numerical and visual process and also as a growing area

function, and differential equations: first order, second order and simultaneous first order.

Simultaneous equations involving, say, dx/dt and dy/dt are viewed in three dimensional (t,x,y)

space as specifying a tangent direction (dt,dx,dy) and hence seen as a generalization of the

single first order case. Second order differential equations involving d2x/dt2 and dx/dt are

translated into simultaneous first order equations in the usual way by putting y=dx/dt, thus

obtaining equations in dy/dt (=d2x/dt2) and dx/dt. Thus higher order (simultaneous) differential

equations can be seen as growing out of the universal example of the first order differential

equation which poses the problem of reversing the notion of local straightness.

A more recently developed generic organizer for the calculus is the Solution Sketcher, designed

for the School Mathematics Project (Tall 1989b) to enable students to enact a physical process

of solving a differential equation. This program draws a short line segment whose gradient is

given by the differential equation (figure 4). It may be moved around using the cursor keys or a

mouse. By touching the space bar, or clicking the mouse, a copy of the line segment is

deposited on the picture, and by sticking such segments end to end, an approximate solution

curve can be drawn which, by construction, has a gradient which satisfies the differential

equation (at least at the centre of each short line segment).

Hidden within the program is the algorithm to compute the gradient of the line segment and to

draw it on the screen. However, by using the program, it is possible to suppress the internal

construction and concentrate on the link between a point in the plane, the gradient of a solution

through the point, and the way in which the solution curve is built up to satisfy the equation.

Thus, by a process of selective construction using the computer, if desired, the student can

focus on the essential nature of the solution of a differential equation before carrying out the

solution process.

There are options in the program which allow an array of line segments to be drawn to show

the global tendencies of different solutions, and automatic solution drawing through any

selected point. The step-length of the line segment may be changed to gain an insight into how

good the numerical approximation is. By choosing larger step-lengths, the errors in calculation

will be seen, but by choosing smaller step-lengths the approximations will be seen to stabilize

to a unique theoretical solution.

Using these facilities the student is able to gain a rich mental image of the notion of the solution

of a differential equation: that a first order differential equation has many solutions, but that

through any starting point there is a unique solution which everywhere has the gradient

specified by the differential equation. This mental image can now be used to give advanced

organisation for investigating the numerical process underlying the solution or seeking a

symbolic solution to the equation. It can inform the student that, when attempting to reverse the

symbolic process of differentiation to find a symbolic function which satisfies the equation,

then solutions of a certain kind – and no others – should be expected. Thus, by using the

principle of selective construction to change the order of attack on the concept of solving a

differential equation a greater network of mental imagery can be built to enhance meaning.

It may be seen that this principle of selective instruction is implicit in the use of software in

virtually all of the other papers in this collection, be it the Newton software to explore motion,

Stella to focus on model-building, software to explore feedback systems, or the intellectual

mirror software of Judah Schwartz.

line segment
with gradient given by
differential equation

figure 4: The Solution Sketcher

The human-computer interface

The interface between the human operator and the computer, whilst of lesser importance than

the overall theory of selective construction using generic organizers, is of great importance in

its implementation. The software used operates in a mode which requires the user to take a

mental decision, to transform this into a physical act to make an input to the computer, which is

then algorithmically processed and output as a visual image on the screen.

Mental

decision
Physical act

[Internal

computer

process]

(dynamic)

visual

imagery

The most important parts of this schema are the mental processes and the interpretation of the

visual imagery. The internal computer process is, at this point, being mentally suppressed to

concentrate on the relationship between mental decision and visual image:

Mental

decision
Physical act

(dynamic)

visual

imagery

The interposition of a physical act to carry out the mental decision is one which should, as far

as possible, support the educational objectives and, at the very least, not be positively harmful.

If this physical act becomes routinized, so that it involves little conscious effort, then the

system reduces to a mental decision followed by the production of visual imagery.

Mental

decision

(dynamic)

visual

imagery

This can then become a part of a feed-back system:

Mental

decision

(dynamic)

visual

imagery

conjecture, test

feedback

In order that the student may concentrate on the important features of the computer

representation of the mathematics, the interface must be as unobtrusive as possible. In one

sense, familiarity with the interface will help routinize its use and suppress its conscious

intrusion – be it a QWERTY keyboard with its initially difficult learning curve or the more

intuitive use of a mouse to point and select. Some familiar with a keyboard often prefer the use

of key-strokes to the use of a mouse, because these have become automatic and require no

conscious thought. However, here they will be aided by general conventions to make the links

between mental act and physical act automatic, for instance by ensuring that the same key-

strokes work uniformly across many pieces of software.

If a keyboard is used, then it helps if the keys touched in some way represent the required

decision. In most early forms of software this involved touching a key representing the initial

letter of the required command (or a prominent letter later in the word). But this has some

draw-backs in the choice of names of menu items to have different letters.

In other cases it might be possible to select keys which have some other relationship with the

mental act. For example, the Function Analyser, written for the School Mathematics 16-19

Project, is designed, among other things, to study the translation of graphs of functions. The

interface problem (using a computer that may only have standard keyboard input) was to

design a way of communicating with the computer that allowed the user to instruct how the

graph should be shifted or stretched.

The solution was to have a “transform” option that allowed the user to specify a string of one

or more moves (using the cursor key to specify the direction), so that ↑2 means “move up 2”

(as in figure 5), →3 would mean ”move right 3”, and so on. A slightly more abstruse

combination of cursor and SHIFT key produces stretches, so that → SHIFT produces the

icon ↔, which means multiply the x-coordinate by the given factor, so that ↔2 means stretch

by a factor 2, and ↔ -1 means stretch by a factor -1 (which is a reflection). The inverse

operation, to divide the x-coordinate by the given factor is obtained by ← SHIFT . The

combinations ↑ SHIFT and ↓ SHIFT correspondingly multiply and divide the y-coordinate

by the given factor. It is even possible to chain these commands in a string such as ↑2→3↔ -
1, which means shift the graph up 2, then right 3, then reflect the resulting graph in the y-axis.

The conventions using the cursors, whilst not universally applicable in other software, are

reinforced in the Function Analyser in another context by being used to shift a zoom window

around the screen: cursors left, right, up, down to move the zoom window and the

corresponding SHIFT -cursor combination to stretch or squeeze the cursor window

horizontally or vertically.

The graph-transforming routines enable the user to investigate effects of shifts and stretches on

a graph y=f(x), for instance to see that y=f(x) shifted one unit right (with iconic representation

y=f(x) →1) is not the same as y=f(x+1), but is y=f(x-1)... Such exploration, in which the

computer carries out the instructions by using graph-drawing algorithms, enables the student to

gain some sense of what might or might not be true, but focus must be placed on the algebraic

theory and the reasons why this is so. However, it should be emphasized that the weakness of

the software as a generic organizer is that it gives no assistance as to why y=f(x) →1 is the

same as y=f(x-1). (Perhaps a facility to move the axes whilst fixing the graph might help?...)

Such an iconic method of interface is minimally more helpful than standard key-presses.

However, a more intuitive interface can sometimes provide an enaction of facets of the desired

process in a way which is more supportive to the learning. For instance, one could envisage a

mouse interface that enabled the user to drag the graph around and to update a representation of

the shifts being caused, or even to specify an axis, then use the mouse to select and stretch the

graph away or towards the axis. Alternatively one might wish to fix the graph and drag the

axes.

The Solution Sketcher (figure 4, above) has an enactive computer interface designed to aid the

learning. The student may sense the illusion of moving a line segment around the screen,

constrained by the differential equation. By placing such line segments end to end, the further

illusion is created that the user is building the solution by her or his own action.

With a graphic user interface involving a mouse or tracker ball to give the illusion of pointing

and dragging on the screen there are many more enactive possibilities. A new graph plotter

being developed in association the Warwick Mathematics Research Centre allows a straight line

to be specified in many flexible ways and dragged around the screen. For example, one point

may be specified by clicking the mouse and dragged out to give a line whose equation is

displayed and updated as the mouse is moved. Or the gradient may be specified and then as the

y=f(x)
(where f(x)=sinx)

y=f(x)
shifted up

by 2

figure 5: The Function Analyser used to translate the graph of a
function

mouse is clicked and dragged around, the line is drawn through the point with given gradient

and its equation updated.

Bivariate data may be plotted, then a possible line of best fit may be drawn and dragged around

to see how various measures of fit change as the line is changed. Data points may be added or

deleted to see the effects of outlying points on the goodness of fit. Thus the user has the

illusion of interfacing directly with the data and seeing the effects of enacting various changes.

Such an enactive interface revealing links between objects being dragged onscreen and their

continuously updated position coordinates already exists in graphic packages such as MacDraw

on the Macintosh.

The need to focus on the internal processes

At some stage in the process, it is often important for the individual to change focus and to

think about the internal processes within the computer. There are very many different ways in

which this may be done, including:

(i) enactive

(ii) procedural

(iii) symbolic.

Often it is possible to enact a version of the algorithm, possibly using equipment which acts as

a passive generic organizer, as in the case of the cardboard maths machine mentioned earlier

(figure 2, above).

In the trigonometric work, the enaction involved constructing right-angled triangles using ruler

and protractor. The advantage of the trigonometric software lies in the ability to manipulate it –

changing side-lengths or angles, or changing the scale or orientation – and getting an immediate

and accurate visual feedback.

In the SMP 16-19 syllabus a piece of equipment called the Gradient Measurer was designed to

introduce the calculus (figure 6). This consists of a plastic transparent circle marked with a

diameter and fixed within another piece of transparent plastic on which is marked a vertical

ruler in units, one unit horizontally away from the centre. A student can place the gradient

measurer over a point on the graph, rotate the disc until the marked diameter is visually in the

direction of the graph at that point, then read off the gradient. Thus she or he can move the

measurer along the graph and enact the changing gradient, as well as obtaining approximate

numerical results.

The gradient measurer is a passive generic organizer which the student may use to focus on the

concept of the gradient of a graph. This must be carried out through the individual’s own

actions – turning the dial to move the diameter to approximate a tangent, reading off the

gradient, recording its approximate value, then plotting a sketch of the gradient of the graph.

Once the principles are understood, the student may then use cybernetic organizers to give

greater power in focussing on the gradient concept. First a graph plotter is employed to

magnify small portions of the graph to establish the idea of local straightness of differentiable

functions. Then a gradient plotter (e.g. Tall 1986b) is used to give a reasonably accurate graph

of the gradient function of a given function, for the student to investigate its properties,

including the initial guessing of a possible formula (for instance the gradient of sinx (in radian

measure) is cosx, but the gradient of cosx is minus sinx). This is linked to the calculation of the

symbolic gradient in simply cases by calculating
f(x+h)-f(x)

h in simple cases such as f(x)=x2

to relate the various aspects of the gradient concept.

Thus it can be seen that the framework in which the generic organizer is used may be fairly

flexible, allowing students to build up the concepts gently in ways which relate to their

growing experience, rather than being given a “simplified” version of a “formal” approach

starting from the limit concept. The limit concept is implicit within the generic organizers (using

the selective construction principle) and need not be a conscious focus of attention at the outset.

The magnification program implicitly involves the beginnings of a limit process by focussing

on a small portion of the curve which, for a differentiable function, looks locally straight. This

means that, provided h is small, the value of
f(x+h)-f(x)

h stabilizes. No one in their right mind

rotating
disc

gradient
measurer

 figure 6 : a physical tool for measuring gradients

would put h=0 to calculate the gradient in such a circumstance, so one of the serious obstacles

facing the naïve student in a traditional mathematics course is less likely to arise.

In the SMP 16-19 curriculum the algorithm used in the gradient drawing program is studied in

an enactive way before the software is being used. Elsewhere in the syllabus, generic

organizers are also used to study the broad implications of an algorithm before the algorithm is

studied in detail. For instance a Newton Raphson Program (Tall 1989b) is used to obtain visual

insight into the idea of using a tangential approximation to solve an equation before the Newton

Raphson iteration is considered symbolically (figure 7). The tangential approximation is

determined numerically (which is a familiar concept to the students concerned). The program

has an auto-zoom feature which allows the user to zoom in to see how quickly the graph

approximates to a straight line, thus giving visual support to the power of the method.

Investigations are encouraged using different starting points to gain insight into how it is that if

the starting point is not near a fairly straight part of the graph then the iteration process may end

up at a different root. Only when the students have some idea of the strengths and weaknesses

of the process do they study the symbolism of the iteration, and carry it out in a programming

environment or a spreadsheet.

In the SMP 16-19 syllabus the same holds true for the use of the Solution Sketcher. Because

the students already have a visual concept of local straightness, solving a differential equation

may be seen as reversing the visual gradient process: given the gradient, find the graph. It is

therefore natural for the students to enact this process using the Solution Sketcher before

studying the details of numerical or symbolic solution processes.

figure 7: exploring the Newton Raphson algorithm

In practice it is not considered important whether the investigations preceded or followed the

introduction of the algorithm. What matters is that, with the software either method is possible.

Procedural insight into the computer algorithms

When I first wrote Graphic Calculus I (Tall 1986b), I naïvely thought that the software could

be used as a precursor of symbolic calculus, without the need to understand precisely what was

going on within the software. I was encouraged by empirical research which showed

impressive improvements in versatile thinking about the visual aspects. However, there are

features2 in any graph-plotting program and vagaries of floating point arithmetic, which mean

that what happens onscreen is not what is expected, and it became evident that some

knowledge of the internal algorithm is essential.

There are certainly times when one just uses a computer tool without asking what is going on

inside. Using a hi-fi system, or an electric washing machine or a microwave hardly require an

understanding of the algorithms that control the management software. If such domestic

appliances go wrong, they are often repaired simply by replacing the complete electronic unit.

Thus, provided one has the external knowledge to carry out what one wishes to do and a

method of gaining help when something goes wrong, there are many times in society when one

does not need to know of the internal workings of the machine. Even with a computer most

people only understand certain layers of sophistication (external use of software packages, but

not programming, or programming in a high level language, but not in machine language, or in

machine language, but not at the electronic level, and so on.)

When one is using the computer to carry out an implicit algorithm as part of an educational

process, there are at least two occasions in which some kind of knowledge of the internal

workings is essential. One is when part of the educational process is to understand the internal

algorithm, and the other is when the internal algorithm has features which might mislead the

user.

For instance, if the software is designed to illustrate a known numerical algorithm – such as the

Newton Raphson method or the method of solution of an equation x=f(x) by iteration – then it

is evident that the focus of the work is to understand and use the algorithm, with the generic

organizer being used to test its behaviour in a variety of situations. On the other hand, software

relying on numerical methods invariably contains features that might go seriously wrong in

exceptional circumstances, and here a little insight is absolutely necessary.

2 A “feature” is a polite name for a known bug!

In the initial stages of the calculus my aim had been to give the student some visual insight into

the processes of calculating gradients, areas and solutions of differential equations, as a

precursor to studying the symbolic algorithms of differentiation and integration. The numerical

algorithm for calculating a gradient, by calculating the function given by
f(x+h)-f(x)

h for fixed

h and variable x has some features in common with calculating the symbolic limit of
f(x+h)-f(x)

h as h→0. Both involve calculating a value of an expression, the first numerically,

the second algebraically, but there the similarity ends. The symbolic limit considers a few

standard cases, such as f(x)=xn, and, in each case, simplifies the expression to obtain a very

specific formula for the derivative (or gradient function). The algorithms of formal

differentiation for combining such functions as sums, products, composites etc, though

distantly related to the numerical gradient, bear little family resemblance. Hence, insight into

the algorithm for the numerical derivative may give little insight into the procedures of formal

differentiation.

However, the numerical algorithms allow a fairly good picture to be drawn in many cases and

give the student a visual insight into why the formulae might be true (the derivative of cosx is

the graph of sinx upside down, so it must be minus sinx). And in these days in Britain where

there seems to be less fluency in the population in the use of algebra, such informal feedback is

proving most helpful. But the features of the software, for instance the catastrophic

inaccuracies of computer arithmetic in calculating ratios of small numbers, make some kind of

understanding of the numerical algorithms essential. This is why, in both Graphic Calculus II

(Area) and III (Differential Equations), numerical programming algorithms were specified.

Subsequently these are becoming part of new syllabuses to be studied as important processes

in their own right.

In Tall & Winkelmann (1988) we described three different kinds of insight:

External, analogue, specific

External insight occurs when the user has no idea what is going on inside the computer, but

has knowledge which allows him or her to check that the results are sensible. For instance, the

software may be a symbolic manipulator which computes an integral by an unknown internal

method but the student may use knowledge of differentiation to check that it is correct.

 Analogue insight occurs when the user has an idea of type of algorithm in use, for instance,

knowing that a root of an equation is being computed by the Newton Raphson rule, but is

unaware of precisely how this implemented.

Specific insight is when the user is fully aware of how the software is programmed (though

this, in practice, remains only partial for, even if the user knows how a high-level language

works, the implementation within the hardware is likely to include features that are not

understood).

Specific insight into computer software is rarely possible or even desirable for the majority of

computer users, but it is helpful for the student to have at least external insight or, preferably,

analogue insight.

Analogue insight can be implemented by investigating the algorithm by programming either in a

high level language or a pseudo-code that mimics such a language. In the UK the Mathematical

Association has for several years had a committee deliberating the impact of computers on the

mathematical curriculum. Initially the committee published a book of short (BASIC) programs

to encourage teachers to get students to explore simple algorithms (MA 1985). Initial drafts of

their report contained many programs in BASIC and Logo, but as the redrafts proceed and

available software becomes more sophisticated, the notion of programming is being broadened

to include the programming of spreadsheets and other high-level software.

The Symbolic Stage

So far we have mentioned the processes of mathematics that the student may carry out and

eventually routinize, which may sometimes be given to the computer to carry out more

efficiently as the student concentrates on other aspects. We have also mentioned the images

produced by the computer that are intended to help the student form appropriate mental images

of their own. But we have yet to concentrate on the symbols which were mentioned in the title

of the article.Symbols are of many kinds, including enactive (body language), visual, verbal,

literal, and so on. But here we are concerned more with the mathematical literal symbols which

the student must write down and which may be manipulated at a higher level of

mathematization for, in the end, it is the use of symbols which makes mathematics easier for

mathematicians.

After many years of working with generic organizers, it is clear that there are some which relate

more directly to symbolization than others. For instance, the algebraic maths machine is

directed at building up meaning for algebraic expressions. There is empirical evidence that it

leads to a higher level of conceptual insight into the manipulation of expressions, inequalities

and the solution of linear equations (Thomas 1988).

However, many of the other organizers mentioned in this article, although using algebraic

notation, do not themselves manipulate the symbols. It is therefore asking too much to expect

them to lead, without further activity, to a higher level of symbolic manipulative ability. Tall

(1986a) shows that the use of generic organizers in the calculus led to a higher level of ability

to handle graphical concepts but that there was no significant change in the ability to cope with

formal differentiation. The positive view is that the graphical treatment did not lower the

manipulative ability. Indeed, the evidence from Thomas’s work is that if the conceptual

foundation is laid, then less work is needed to reach a given level of routine manipulation.

This is consistent with Heid’s research in calculus where it was shown that students who use

the computer for conceptual work and only carry out routine manipulation for a short time at

the end of the course were better at higher level conceptual problems than control students

following a traditional course, and not significantly different in ability with routine

manipulation (Heid 1988).

In Harel & Tall (to appear), we came to the conclusion that the formal level of mathematics,

involving formal definitions and deductions requires a new level of construction of the abstract

concept from the definition. This involves a very difficult transition in which formal objects

must be constructed whose attributes must follow solely from the definition. Thus a concept

such as a limit, or a continuous function, or the derivative as a formal limit, all involve a

difficult reconstruction which we believe can be built on the experience of generic organizers,

but requires a new phase of constructive activity.

What are the concept images available in the mind of the student after using a generic

organizer? They are the product of the experience with the organizer: an awareness of the

behaviour of examples and non-examples of the concept(s) on which the focus is placed. Thus

a student who has used a magnifier program to see that certain graphs are locally straight and

others may have corners, or be so wrinkled that they are nowhere locally straight, has a rich

collection of examples and non-examples of a differentiable function. But a new level of

constructivity is necessary – first to isolate the essential characteristics that form the basis of a

definition, and then to reconstruct other characteristics of the formal object that can be deduced

from this definition. Thus a generic organiser moves on the generic (general example) level

rather than the abstract (formal definition) level. I believe this to be a feature (known bug?) of

many current computer based activities. It would be interesting for others who work with the

computer in education to analyse the cognitive outcome of their work to see if it promotes

generic or abstract thought.

This observation is not to be seen as a weakness of the approach, only a specification of the

limits of this stage in development. Certainly the rich collection of examples and non-examples

is likely to form a better cognitive foundation for the formal theory than conceptual imagery

based only on routine processes. It also suggests new possibilities in constructive growth

using the computer, from physical action to mathematical process via generic concept to formal

concept, each building on the previous phase, but each requiring an explicit cognitive

reconstruction.

Empirical Testing

The ideas in this article have been subjected to various levels of empirical testing. The

developments for the SMP 16-19 have been implementations of a new curriculum in the time-

honoured British way: try it out, if it works, leave it, and if it doesn’t, fix it. Here the desire is

to implement a new mathematics course for 16-19 year olds to address the problem that too few

students in Britain study mathematics beyond the age of 16 and that a new approach needs to

be designed that is more accessible to a wider range of abilities. To achieve this the pupil is

required to be an active participant in the learning process and the use of computer software

(and graphic calculators) is an important element. The course has met with approval from the

participants and the results of the first examinations (taken in recent weeks) show a level of

achievement higher than expected. More detailed study is needed.

Other generic organisers, particularly those for calculus, algebra and trigonometry, have been

subjected to a closer in-depth study.

The initial work on the calculus was subjected to a controlled experiment in which the

experimenter worked with one group of students using computers, two other groups followed

a similar computer course and four groups followed a traditional course. In the experimental

groups there was a marked increase in student participation in the mathematics generated by the

introduction of the computer and the ability of students to improve on visual skills (such as

sketching derivatives of functions given in graphical form) was significantly improved. There

was no significant difference in carrying out routine algorithms of the calculus (Tall 1986a).

The work on algebra and trigonometry was carried out in controlled experiments in two

adjoining halls of a comprehensive school where pupils had been set in ability so that the

corresponding groups in the two schools had comparable results on previously applied tests.

One school was given the computer treatment using the software, the other used the “tried and

tested” methods evolved and agreed by the teachers over the years.

Thomas (1988) found that initially the pupils practising routine skills in algebra were

marginally better than the experimental pupils at these skills, whilst the experimental pupils

were better at problems requiring more versatile thinking. However, some sixth months later,

following a brief recapitulation of routine skills, the experimental pupils now performed at a

statistically significant higher level on both routine and more versatile questions.

Blackett (1990) has shown remarkable differences on the versatile understanding of

trigonometry using his software. He studied four experimental and four control classes in two

parallel halls which began their studies with almost exactly the same level of performance in

each of the corresponding groups. Figure 7 shows the mean marks attained by each group on a

school exam (given at the end of the previous year), a pre-test on trigonometric questions, and

two post-tests, one immediately following the treatment, the other after a delay of eight weeks.

Each of the latter are divided into the two parts denoted by S (for standard questions, which

involved straightforward use of the trigonometric formulae) and V (for more versatile

questions). It will be seen that the experimental students perform as well or better on standard

questions and outscore the control students on versatile questions. There continues to be an

improvement in the performances of the experimental students over the control students from

the first post test to the second. Those cases where the mean of the experimental score is

greater than that of the control score at a level p<0.05 are denoted by sig.

An observation of great interest is that the girls in this experiment performed differently from

the boys. The girls started off marginally lower on scores than the boys in most groups, and in

the control groups their performance did not increase as much as the boys, but in the

experimental groups it overtook the boys, stretching away by the second post-test to a

significant difference. Details of this development will be given elsewhere (Blackett & Tall, in

preparation).

Conclusion

After several years of development and testing of the ideas proposed in this article, we have

Exam Pre-test Post-test 1 Post-test 2
S V Total S V Total

E1 61 37 81 78 79 89 83 86
C1 70 38 80 47 63 86 50 68

– sig. sig. – sig. sig.

E2 47 18 45 56 51 57 66 62
C2 48 20 46 38 42 39 41 40

– sig. sig. sig. sig. sig.

E3 47 20 47 52 50 57 66 62
C3 49 21 31 28 29 24 23 23

sig. sig. sig. sig. sig. sig.

E4 39 not given 22 48 35 22 37 29
C4 39 not given 17 5 11 not given

Table 6: significance of results of post-tests by group and type of question

consistent evidence in the improvement of student’s performances in more versatile tasks and

performances in more routine tasks have either not changed or have been improved as a result

of the more versatile insight gained. This improvement in skills occurs particularly at the

generic level in handling applications of the concepts to specific examples.

We have some knowledge of the way in which children learn mathematics and the cognitive

conflict that can occur when confronted with new knowledge. Now we have new technology

which can be configured to shed new light onto the knowledge so that the individual, using the

technology is faced with a different conceptual task. The mind of the individual, coupled with

the complementary powers of the computer offers a completely new conceptual framework for

education.

References

Blackett N. 1990: Developing understanding of trigonometry in boys and girls using a
computer to link numerical and visual representations, Ph. D. thesis, University of
Warwick.

Blackett N. & Tall D.O. (in preparation): “Improving understanding of trigonometry in girls
using computer software linking numerical and visual representations”.

Gray E. 1990: “An analysis of diverging approaches to simple arithmetic: preferences and its
consequences” (submitted for publication).

Harel G. & Tall D. O. 1990: “The generic, the abstract and the general in advanced
mathematical thinking”, (in preparation).

Heid M.K. 1988: “Resequencing Skills and Concepts in Applied Calculus using the Computer
as a Tool”, Journal for Research in Mathematics Education, 19 1, 3-25.

Mathematical Association 1985: 132 Short Programs for the Mathematics Classroom, [book &
disc of computer programs] Stanley Thornes.

Tall D. O. 1986a: Building and Testing a Cognitive Approach to the Calculus Using Interactive
Computer Graphics, Ph.D. thesis, University of Warwick.

Tall D. O. 1986b: Graphic Calculus I, II, III, (for BBC compatible computers), Glentop Press,
London.

Tall D. O. 1989a: “Concept Images, Generic Organisers, Computers and Curriculum Change”,
For the Learning of Mathematics, 9, 3.

Tall D. O. 1989b: Real Functions & Graphs: SMP 16-19 (for BBC compatible computers),
Rivendell Software, prior to publication by Cambridge University Press.

Tall D.O., Blokland P. & Kok D. 1990: A Graphic Approach to the Calculus, Sunburst,
Pleasantville, NY. (for IBM compatible computers). (Also published as Graphix in
German by CoMet Verlag, Duisburg).

Tall D. O. & Winkelmann B.,1988: “Hidden algorithms in the drawing of discontinuous
functions”, Bulletin of the I.M.A. 24 111-115.

Thomas M.O.J. 1988: A Conceptual Approach to the Early Learning of Algebra Using a
Computer, unpublished Ph.D. thesis, University of Warwick

Thomas M.O.J. and Tall D.O. 1986: “The Value of the Computer in Learning Algebra
Concepts.”, Proceedings of the 10th Conference of PME, London.

Thomas M.O.J. and Tall D.O. 1988: “Longer-Term Conceptual Benefits From Using A
Computer in Algebra Teaching”, Proceedings of the 12th Conference of PME,
Veszprem, Hungary.

AUTHOR’S DATABASE ENTRY SHEET

TITLE OF THE NATO MEETING/ NATO ASI SERIES VOLUME:

ADVANCED TECHNOLOGIES IN THE TEACHING OF MATHEMATICS

AND SCIENCE

NAME OF THE DIRECTOR:

DAVID L. FERGUSON YEAR: 1990

NAME OF THE EDITOR:

DAVID L. FERGUSON

TITLE OF THE PAPER: INTERRELATIONSHIPS BETWEEN MIND AND

COMPUTER: PROCESSES, IMAGES, SYMBOLS

AUTHOR OF THE PAPER: DAVID TALL

AUTHOR’S AFFILIATION: SCIENCE EDUCATION DEPARTMENT,

UNIVERSITY OF WARWICK, U.K.

KEYWORDS:

Mathematics education, cognitive psychology, learning theory, computers, calculus,

trigonometry, algebra, gender.

ABSTRACT:

Empirical research in the learning of mathematics using software developed at Warwick

University is consistent with a theory of selective construction of mathematical concepts during

learning. Traditionally, students must first routinize certain algorithms before being able to

consider them as entities for mental manipulation. Software may be designed to carry out

algorithmic processes, allowing the learner to focus on selected concepts and the relationships

between them, permitting a new flexibility in the learning sequence. The article considers the

relationship between processes carried out by the computer, images generated by the computer

and in the mind of the individual, and the resultant relationship with mathematical symbols and

their mental manipulation.

Biographical Notes

David Tall received his M.A. and D.Phil in Mathematics from the University of Oxford in 1967

and his Ph.D. in Education from the University of Warwick in 1986. He has published several

text books on mathematics, six packs of computer software, including Graphic Calculus, over

a hundred articles on mathematics and mathematics education, and is editor of the British

student journal Mathematics Review. His main research interests are in cognitive development

in the learning of advanced mathematical concepts and the use of the computer to aid learning.

He has held visiting appointments in Germany, Australia, USA and Canada, and is Reader in

Mathematics at the University of Warwick, U.K.

Subject Index

algebraic maths machine 4, 18
algebraic symbolism

as representing a process 3, 5
as giving a product 3, 5
through programming 4

cardboard maths machine 5, 13
differential equation 7, 8, 12
Function Analyser 11
generic organizer 7, 10, 12, 13, 14, 15, 16, 19

cybernetic 7
passive 7

Gradient Measurer 13
Graphic Calculus 7, 17
graphic user interface 12
human-computer interface 10
insight 17

external 17
analogue 17
specific 17

Maths Machine
algebraic 4, 18
cardboard 5,13

Newton Raphson Program 16
Procedural insight 16
processes 13

enactive 13
procedural 13
symbolic 13

School Mathematics 16-19 Project 11, 13, 15, 20
selective construction 2, 3
slow-learners 2
SOHCATOA 6
Solution Sketcher 8, 12,15
trigonometric functions 5
versatile thinking 6

