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Introduction

Mathematics is an enigmatic subject in which a few succeed with disarming ease, whilst
others seem doomed tailure. After analysing theresponses ofmany children
performing simple tasks in arithmetic, we find a phenomenon occurring \whgdests

a reason for thigatastrophic divergence in performanaiite simply we find that
thosewho fail are doing a moredifficult kind of mathematics compared tbose who
succeed

This difference arises out of the manner in which individuals copethétbrogression
from procedures of counting to the processearittimeticand the concept afumber.
Whilst the more abl@rogress to ustheir knowledge in dlexible andpowerful way,
the lessableseek security in counting procedures whiwebrk promisingly insimple
tasks but fail to generalise when greater sophistication is required (Gray 1991).

A similar phenomenomccurs in many other areas wiathematicsfrom primary to
secondary and on to universitinitial experiencewith proceduresmay later either
develop flexibility andpower, ormay become fixed in a rigid mode of learnmges.
Richard Skemg1976) described this phenomenon in his much-quiMathematics
Teaching article on “relationainderstanding and instrumentahderstanding”. He
described the notion of “faux amis”, where the samoed has verydifferent meanings
for different individuals. In thisarticle we concentrate onsabtle difference in the
meaning ofsymbols inmathematicsFor some a symbol is mathematicabbject a
thing that can be manipulated in thand. For others it signifies procedureto be
carried out. Whilst mental objects are easily manipulated, procedures otioog snd
it is extremely difficult to think otwo or more procedures simultaneously fdtlows
thatthose whaoconcentrate on procedure masry well begood atcomputations and
succeed in the short-term, but long-term they may lack the flexibility that willtiggre
ultimate success.

We begin by looking at the concept of number to show how it develops from process to
concept and repottow children in interviewshow aspectrum ofways of performing
simple arithmetic. We then review later stages of the mathematical curriculusihawvd

that the sam@henomenon re-occurs in many ottmeathematicaconcepts.There are
many symbols that evoke either process or concept:

» 3 +2is either the process of addition of 2 and 3 or the concept of sum,

Published irMathematics Teachind42 (1992), pages 6-10.



* 3/4 can mean (amongst other interpretations) the process of division of
3 by 4 or the concept of fractidn,

» +2 denotes therocess of shifting 2 units tihe right, and also the
concept of signed number +2.

A symbol which evokeeither aprocess othe product othatprocess wewill call a
procept Such a symbol standiially for both aprocess and a caept It givesgreat
flexibility in mathematics. It evehas anambiguity which aiddlexible thinking. But
mathematicians abhor ambiguity. So it has become the common practice to give precise
definitions formathematicatoncepts which focus dhe object at the expense of the
inner process.This makes matters particularly difficulor the learner. Those who
implicitly sensethe flexible power of the symbolism succeed, btite vast majority,

who do not, are likely to fail.

The notion of procept

The idea of grocess giving @roduct, or outputtepresented by the sarsgmbol is
seen to occur at all levels in mathematics. It is therefore worth giving this idea a name:

We define aproceptto be a combinednental object consisting of a process, a
concept produced by that proceasd asymbol which may beised to denote either
or both.

We do notmaintain that all mathematicabncepts arg@rocepts.But they do occur
widely throughout mathematicgarticularly in arithmetic,algebra, calculus and
analysis. Wemay consider number as a procepihe sequence of number names
becomes part of a procedure of counting in whiad numbermwords are recited in
order, and are made to correspond Wl elements of a set one dime, taken once

and only once, and the last number word uttered is the number of elements in the set.

In the earlystagesnumber is widely seen as a countp@cess. It ionly when the
child realisesthat thenumber of elements is independent of thay in which the
elements are arranged and of trder in which theyare counted thabhumber can
begins to take on its own stable existence as a mental object. During Key Stage 1 of the
National Curriculum, most children count at least somthe@fime, and somehildren
countall the time. Those whacount quickly can succeed in the number facts to 10
(level 2) almost as well, and sometimes better, than those who kncan onanipulate
numberfacts. But thosewho achieve higher levels do so because they begin to see
numbers as mental objects to be manipulated. The suoeessfumay still count, but

they do sdess andess,and wherthey do count theysethe techniquesparingly in
subtleways whichare more likely to succeed théimosethat continue to count on a
regularbasis. The latter maydevelop intricatecounting techniquesising imaginary
fingers, parts othe body, selected objects in th®om, and soon, to cope with the
number facts tawenty. But in doing so they give themselves a harder job tdhdo
those who use number facts in a flexible way.

The processes afrithmeticdepend on whether the chiéges number as procedure or
procept.The mostelementaryform of addition is a sequence of counting operations:
first count one set, then count the second, then amalgamate the two sets atiteoount



all again (starting fronone). This processcalledcount-all is a co-ordination of three
distinct counting procedures.

When a childbegins torealise that it isnot necessary to recoutite first set starting
from the beginningagain, a newtechnique isborn —count-on The sum of two
numbers is here computed by startihg countingrom the first number and counting
on. For instancethe procedure to computér3 is tocount on three humbevords
past four — “five, sixsevei. In this way the first number (4) is seen asiental object

— an utteredvord inthe number sequence — and geeond number (3) is seen as a
counting process. However, it is more sophisticated countingocess involving a
double-count; the numbers “fiveix, seven” are counted at the satimee askeeping
track of the number of words counted “one, two, three”.

Concrete materials can liged to support (or rather, avoid) this double counting. For
instance, by pointing at a ruler or number line, beginnirtgesfirst number (four) and
counting on “onefwo, three”,thefingersalight on theunspoken numbers “fivesix,
seven” on the physical line — the last of these is the required sum. In thisnuaybar

line supports counting-on byeplacing it by the easieform of single-counting
associated with counting all. It can give the semblangaragress whetlittle progress
hasactually been achieveand the subtleties of the double-counting of the count-on
algorithm have not been sufficiently well apprehended to be carried out without
physical supports.

Using anumberline mayalso have datal flaw when itcomes to subtraction. Those

who see counting as procesmgy see subtraction as theverseprocess Oftenthis is
performed in thorm of “count-back”. Thus 19-16 is performed by countioagk
sixteen numberglown from 19 (“eighteen, seventeen,, four, three”). Such a
procedure can be carried out on a nuniiber by counting out thesecond number (16)

in the usual order (“onetwo, three,...”) and pointing at thainspoken numbers
moving backwards othe numbetine. Countingback on a numbeline is therefore

once more a species of single-counting, hardly more sophisticated than count-all, and it
may not generalise into a flexible form of subtraction.

If number is seen as a flexible procept, evokimgemtalobject, or a countingrocess,
whichever is the more fruitful at thieme, then childrerare likely to build upknown

facts in a meaningfulvay. Thusthe “fact” that4+3 is 7becomes a flexiblevay of
interchanging the notation 4+3 for the number 7. If 4 is taken from 7, then this number
triple tells us that theumber 3 remains. In thiway, seeing addition as #exible
procept leads to subtraction being viewed as ano#ttar of formulating addition.
Successfukhildren learnhow to derive new facts from old in a flexiblewvay. For
instance, 19-16night be givenmmediately as 3and seeniike a known fact,yet it

may be a fact derived instantaneously from knowladge9—6 is 3, andhat thetens

digits cancel out.

In this way proceptbecomeorganic. Achild who hasmeaningfulknown facts,that

can be flexibly decomposed and recomposed at will, has generative powers of deducing
new facts almost without effort. Meanwhile the less successful @mtcenched in the
safety of familiar counting methods, is led down a cul-de-sac in which it is necessary to
cope with ever-lengthening sequences of counting to solve coonelex problems.

The successfulhild becomes morsuccessful becausthe mathematics of flexible
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procepts is easier thathe mathematics of inflexibl@rocedures.The gap between
success andailure is widened because tHess successfubre actuallydoing a
gualitatively harder form of mathematics.

The growing divergence between success and failure

The divergence betwedhose who useénterpret processes only as procedures and
therefore make mathematibarder for themselves, and thdbat seethem as flexible
procepts we call thproceptual dividg(Gray & Tall, 1991). We hypothesisieat the
difference betweersuccess andailure lies in the difference between procept and
procedure Proceptual thinking includes these of procedures wheeppropriate and
symbols asnanipulable objecterhere appropriateThe flexibility provided by using
the ambiguity of notation as process or product gives great mathematical power.

This divide betweensuccess andailure is found throughoutthe mathematics
curriculum. At any stage, the cognitive demands on the individggbw too great, it
may be that someone, previously successful, founders anttekkse how to do it”,
anxiously seekinghe security of a procedure rather than the flexibilitypobcept.
From this point on failure is almost inevitable. Itfeg this reasorthat mathematics is
known chiefly as a subject in which people fail, fail badly, and fail often.

Examples of procepts in arithmetic

We have already sedhat number is a procepihat embodies bottthe process of
counting and the concept of number. Once number is encapsulated as a flexible procept
it can be manipulated at a higher level in simple arithm@bant-allis but an extension

of the counting process. It happens to be a fairly lengthy process, which occurs in time,
so that thewo numberdnput to be added may be forgotten before the atdldnts
successfully to produce the output. Thus the input and output are less likely to be linked
and incidental learning of addition facts is inhibit€dunt-onsees the first number as a
mental objectand thesecond as a (double) countipgocess. Againthe process
element occurs in time, so input and output mayahstys be linked, buhe fact that

there is a proceptual number concept developing is more likelgupport the
development of meaningflinown facts. Asthe latter aredevelopedthe processof
addition becomes encapsulated as ¢baceptof sum andmay become a flexible
procept.

Level 2 of the NationalCurriculum specifies “knowing andising addition and
subtraction facts to ten” and level 3 states “learning wsidg multiplication facts up to
5x5", showing the perceived difference in difficulty between addition and
multiplication. Multiplication is the process mpeated additionlf addition is seen only
as a counting procedurghen repeating this procedure several timesgéb the
procedure formultiplication is excessivelgomplex. It needsaddition to take on a
flexible proceptualquality, sothat the addition facts can beassembled flexibly to
obtain the multiplication facts.

Children who remember tables only as lists of multiples (“three, six, nine, twekR)e,
have a process of working out successive multiples without necessarily lihkmgo
the preciseproduct. Tocomputesix threes using such table requires an extended
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double-counting process — sayitlge table at the samt@me keeping count of the
number of multiples. Again the procedural child will fisdch a processiore difficult
than the proceptual thinker.

There is alsahe question of whethethe symbol %4 means “3 lots of 4” or “3
multiplied by 4”, where the first is 3 fours and the second is 4 threes. The processes are
different, but the result of the two processes are the dawagiably thefirst step is to

give meaning to eagprocess in it®wn way;but the childwho goes on toealise the
proceptual idea that the mathematics is essentially the lsastiee advantagever the

child who focuses only on the fact that the procedures are totally different.

The notion of fraction is a procept, and an important one at that. Chddz&nown to
have great difficulty, particularly with tharithmetic offractions. This involveshe use
of whole number arithmetic. We have sdhat if addition ofwhole numbers is not
proceptual, themmultiplication becomesard. At ahigher level, if whole number
arithmetic isnot proceptual then fractionatithmetic becomes even madéficult. In
other words, we hypothesisethat childrenwho see whole numbearithmetic as
counting procedure will find far greater difficulty with fractioralthmetic thanthose
who see whole number arithmetic as flexible procept. Indeed, we would go further and
suggest that, whilst children may appreciate the concept of fractiopracticalsense,
those who are procedural will halle hope of giving flexible meaning tequivalent
fractions and arithmetic of fractions.

Ratio is a further proceptuaixtension. Inthe secondary curriculum it is one of the
hardest of all — involving the comparison of comparisons between quantities in the form
“aisto b as cisto d”. It becomes manageable when @@encapsulated as fractions

to be compared through simple arithmetic. In other words it becoraeageablevhen

the process of comparing ratios is seen flexibly as the concept of equal fractions.

Signed numberare procepts.The number “+2” meanboth “shift two units on the
number line” and the signed number +2 represented as a point on the finembEne
proceptual thinkewho conveniently moves betwedine process of “shifting by 2” or
“adding two” and the number concept “+2” is the avieo will succeed in thduture.
Of course, inhe earlystageghere may be a need distinguish betweeprocess and
concept. Buthe fetishfor permanentdistinction between “add two” as@ocess and
“+2” as a concept is an artefact of the development of the comteghh we contend is
counterproductive to long-term success.

Likewise, the “definition” of negativenumbers as “shiftteft” on the number line. or
“equivalenceclasses of ordered pairs of whole numbetated by differenceWwhich
wasone of theworst excesses of sixties newathematics, really overcomplicates a
simple issue. Negative numberan beseen as a simple extensiontieé numbetine,
either horizontally to thdeft, or vertically down below zerolike temperature on a
thermometer.

Procepts in algebra

An algebraicexpression such as &84b” is a procept whichstandsdually for the
process “addhree timesa to fourtimesb” and the algebraiexpression whicttan be
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manipulated mentally as abject.Clearly children with a procedural view of notation
will be confused by an expression involving letters, for it canngirbeessedintil the
values of the letters are known and, if theylarewn, then they are redundant and the
whole thing could have been done athmeticusing the numberwalues. Thus the
procedural child is likely to see algebra as an unnecessary complication. Andhildhe
does not have a flexible view afithmeticallowing decomposing and recomposing of
arithmetic expressions, it will be highly improbable flee child touse such notions at
the level of generalised arithmetithis suggests¢hat it is fatuous toteachpaper and
pencil algebra manipulation to a childho hasnot got a proceptual view of arithmetic.
ElsewhergTall & Thomas 1991}he suggestion habeen made to give meaning to
algebraic symbolism using simple programming. Thus, in BASIC, i€tinemand a=3
is typed followed byPRINT a+2,then theresponse 5 offers a reswithose patterns
can soon be predicted. In this way meaning can be given to expressionketisiag@s
variablenumbers.The fact thatexpressions such as a&4*b alwaysevaluate to the
same value as 44fb) focuses orthe interpretation that therocesses o€alculation
may bedifferent, butthe output values aralwaysthe same.The symbols represent
different processes, but the same flexible procept.

Procepts in higher mathematics

The analysis of procepts does not stop with simmpgtemeticand algebra, but goes on
to higher levels. For instance, a limit concept, such as

. XP-4
lim
x=2 X—2

uses the notation to represent bothgireecessof tending to dimit and thevalue of the
limit. Again thesymbolism dually represenfgocess and product and yset another
instance ofprocept. Buthere there is a subtlgifference.The procepts inarithmetic
(addition, multiplication,etc.) have clearly defineghrocedures t@ompute the result
(counting, repeated addition, etc.), and the procepts in algebra can poteasally be
computed if the values of the variablgsre known. But limit procepts often dmot
have a guaranteed procedure of computafi@mn. instance, what ithe value of the
following sum?:

The value isnow known to ber/6. But this was first computedusing methods of
complex analysis rather than aolgviousarithmeticalmethod. In this way procepts in
highermathematics may operate ways that arenot expected bytudents based on
previous experience and may lead to further cognitive conflict.



Reflections

At all levels we can sethat thenotion of symbolism dually evokingitherprocess or
concept has powerful applications for the flexible thinker yet creates great difficulty for
the inflexible person whoaccumulategprocedures to solveachnew problem. The
proceptual divide between those who succeed easily andwhastil catastrophically

is perpetuated and grows ever wider.

Such a divide is embodied in Ausubel’'s (1968)erentiation betweemeaningfuland
rote learning, or Skemp’s distinction betweehational andinstrumentalunderstanding
(1976). Howeverthe theory we give herbas anextraingredient. It is not just the
relating of one idea to another, or the giving ahaaningto a process or concept. It is
the ability to give meaning to therocessin a flexible waythat allows process and
concept to be interchangedatll, often without any distinction beingnade between
the two.

This suggests eethink of theway in which weteach mathematics at aévels. For
instance, in whole number arithmethildren are often encouraged to develop their
own methods of computation. Suctpalicy is fine if the methods are flexible and
generalisable. But if the child obtaieaccess througtiiosyncratic countingnethods,
then thiscan lead to the development of a procedapproachthat gives short-term
success but possible long-term failure. In the day-to-day running of a classroom short-
term success may be more immediate and instestharding,but if it is at thecost of
eventualfailure, it is a devastatingly bastrategy. It also bode#l for payment by
results in the National Curriculum, for ifteachemses short-termprocedural methods
to get quick and easy solutions to pass this years’ teagyistore up future problems
for the child and for those who teach that child later.

The analysis also suggests that the current method of allowing childnesrkaattheir
own pace from work cards can actually disguisesymptoms ofeventualfailure. The
child may succeed at addition sums more slowly through couptoweduresyet may
be developing the very strategies that ldadn a cul-de-sa®nly through discussion
and listening to a child talkingthrough the processeseing used can onehope to
diagnose the possible development of inappropriate strategies.

This burden imposed othe less successful, whare constrained to perform harder
(procedural) mathematics rather than the mop®werful and easierproceptual
mathematics, provides ehallenge thatseems to havdittle hope of resolution by
traditionalmeans.Simply giving children morgractice at theorocedures thegannot
do only serves to reinforce inflexible procedural methods.

Clearly the attempt tonpose flexible methods on childrevho are alreadystruggling
with the procedures of mathematics may only serve to increaseittien. Perhaps the
attempt to teach them to be proceptual maly serve toteach themrmew procedures
that have a semblance of flexibility.

A hopeful strategy wouldnvolve giving children access to mopewerful methods
without increasing the cognitiv&rain. Thismay involveusingthe righttools for the
job. For instance, it was assumed by m#mat the calculatowould interfere with the
child’s ability to perform mental arithmetic. Yet experienceshows this to befalse.
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Using acalculator enables children to demith arithmeticinvolving larger numbers
where patterndbecome morebvious. They need not be constrained in thearlier
years to pass fromumberbonds toten into numberbonds to twenty, where the
irregularity of language oftewbscuresthe pattern. Instead of handlingums like
“thirteen plus four” wherethe link to “threeplus four is sevenimay not beapparent,
they may be dealing with moeuphonious instances such“agenty-threeplus four”
whose solution is “twenty - seven”. Another factor which is often overlooked is that the
use ofthe calculatosuppressethe need t@wount. Thus ireplaces the procedural use
of counting by the procedure of typing theminto the calculator. But at least in the
latter case the sum may be recorded in its entirety and used in thefeegattternthat
may lead to flexible use of mathematical notation.

Likewise the computer can hesed togive meaning to algebrainotation, to draw
graphs and visualise concepts in the calculus, and to carry out procedural computations
so that the learner may concentrate on the meaning of the results of those computations.
The use of the computer challenges our traditional perceptions of mathefioratiasan
performall the traditionalprocedureghat are at theoot of a procedural approach to
mathematics. By looking more at the proceptual natumaathematicameaning,rather

than focusing solely on the procedural method of mathematical computation, we may be
entering a new era of mathematical understanding.
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