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The human brain ipowerfully equipped to process visual information. By using
computer graphics it ipossible totap this power tohelp studentsgain a greater
understanding of manyathematicaconcepts. Furthermorelynamicrepresentations

of mathematicaprocesses furnish degree of psychological reality that enables the
mind to manipulate them in a far more fruitful way than could ever be achieved starting
from a static text and pictures irbaok or roughly drawn pictures onchalk board or
overhead projectoAdd to this the possibility of student exploratiarsing prepared
software and the sum total is a potent new for¢ee mathematics curriculum.

In this paper we report othe development of interactiieigh resolution graphics
approaches to various areas in mathemafiosfirst author hasconcentrated initially
on the calculus in the UK (Tall 1986, Tatl al 1990) andhe second is working in the
USA on differential equations with John H. Hubbard (Hubbard & West 1990).

An interactivevisual approach is proving successful in othegas, for example, in
geometry The GeometricSupposer Cabri Géometrg in data manipulatione.g.
Macspin Mouse Plotte), in probability and statistics (e.g. Robinson & Bowman 1987)
and, more generally, in a wideariety of topics(such asthe publications in the
Computerlllustrated Text series, which useomputerprograms to providelynamic
illustrations of mathematical concepts).

New approaches to mathematics

The existence of interactiwgsual software leads tthe possibility of an exploratory
approach to mathematics which enablesuber togain intuitive insight intaconcepts,
providing a cognitive foundation on which meaningfithematicatheories can be
built. For example, the notion of a limit has traditionally caused students profdegns
Cornu 1981,Tall & Vinner 1981). The computebrings new possibilities tthe fore;
we may begin byconsideringthe gradient not of théangent, or of a chord as it
approaches a tangential position, but sintpé/gradient of thegraphitself. Although a
graphmay becurved, under highmagnification a small part may wdtbok almost
straight. In such a case we may speak of the gradig¢hé graph as beinghe gradient
of this magnified (approximately straight) portion. For instance, a tiny padinegfraph

y=x2 nearx=1 magnifies to a line segment of gradient 2 (figure 1).

To represent the changing gradient ofjiraph, it is asimple matter to calculate the
expression (¥+c)—f(x))/c for asmall fixed value ot asx varies. Asthe chordclicks
along the graph for increasing valuexpfthe numerical value of the gradidat each
successive chordan be plotted as a point and theints outline thegraph of the
gradient function (figure 2). In this case the chord gradient function »ff@irsmall c
approximates to caswhich may be checked bguperimposinghe graph ofthe latter
for comparison. Thushe gradient of thgraph may be investigated experimentally
before any of the traditional formalities of limiting processes are introduced.

1The authors are grateful to Professor John H. Hubbard for his assistance in the preparation of an
earlier version of this article.

Published irrhe influence of computers and informatics on mathematics and its
teaching (ed. Cornu, B., & Ralston, A.) UNESCO, Paris, 117-123, (1992).
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figure 1 : magnifying a small part of a graph to show its local
straightness

Such moving graphics alsmable the student to get a dynarndea of the changing
gradient. Students following this approach can see the gradient as afglatien not
simply something calculated at each individual point.

The symbols &, dy canalso be given a meaning #ise increments irx,y to the
tangent. Better still, ddy) may be viewed as thiangent vectgra valuable ideavhen
we come to the meaning of differential equations.
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figure 2 : building up the gradient function of a graph

Conceptualizing non-differentiable functions

In a traditional calculusourse,non-differentiable functionsvould not be considered
until a very latestage, if at all. However, hne views alifferentiable function as one
which is “locally straight”, then a non-differentiable function is simply one whiatots
locally straight. For instance, the graphxet| atx=1, or|sin| atx=1, has d'corner”
at the point concerned with different gradients to the leftragid. More generally, it is
possible to draw a functiahat is sowrinkled that it neverlooks straightanywhere
under high magnification.

An example is thblancmange functiobl(x), first constructed by Takagi i©03. First
a saw-tooth & is constructed for a real numbeby taking its decimal pad=x—INTXx
and defining

s(x)=d if d<z , otherwise s(=1-d.
The sequence of functions
b1(X)=s(x),



b2(x)=sX)+s(2)/2,

bn(x)=sX)+...+s(2-1x)/2n-1 .
tends to the blancmange function (figure 3).

the blancmange

figure 3 : Building up the blancmange function adding successive half-size sawtooth graphs

The process may be shown dynamically on a visual display unit; we regret that it cannot
be pictured satisfactorily in #ook. But higher magnification of the blancmange
function using prepared softwasbows itcannowhere banagnified to lookstraight,

so it is nowhere differentiable. Thistuitive approach can easily b&ansformed into a
formal proof of disarming simplicity (Tall 1982).

Visualizing solutions of first order differential equations

In graphicalterms, a first ordedifferential equation @Wdx=f(x,y) simply states the
gradient of a solution curve at any poirty) and a solution is simply a curve which
hasthe required gradiergverywhere.The Solution SketchefTall 1991) allows the
user topoint at any position irthe plane anddraws asmall line segment of the
appropriate direction. This line-segmenay be markedn-screen and successiiee
segments fitted together to build up an approximate solatiove. More broadly, it is
possible to draw direction diagram with an array eluch segments and trace a
solution by following the given directions (figure 4).
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figure 4 : drawing a numerical solution of a first order differential equation
The differential equation



dy
ydx = X

has implicit solutions of the forx?t+y2=k, rather than an explicit global solution of the
form y=f(x). At points wherehe flow-lines meet thex-axis, the tangents areertical

and the interpretation ofyftx as a functiorfails, but the vector direction {ddy) is

valid with dx=0 and ¢#0. Thus a first-ordedifferential equation is sometimes better
viewed in terms of the direction of the tangent to a solution curve rather than specifying
the derivative.

Existence of solutions

There comes @ime in every university course odifferential equationsvhen honesty
should compel the teacher to admit thedokbook methods for solvindifferential
eqguations are inadequate. Such innocent looking equations as

dy/dx=y?—x, dy/dx=sin(xy), dy/dx=exy

do not havesolutionsthat can be written in terms of elementéumctions. Students
often mistakenly confuse this withe idea that thequations have nsolutions at all.

However, if they are able to interact with a computer program that plots a dirsition
and thendraws solutionswumerically following the directionlines, the notion of a

solution takes on a genuine meanif@f coursethe equations haveolutions: we can

seethem!” From this cognitive base it igossible to useéhe computer to analyse
solutions in an entirely new way.

Qualitative analysis of differential equations

New forms of analysis emerge now that we can see as many solutions as vaé atish

the same time. In figure 5, notice how the solutions tend to “funnel” together moving to
the lower right-hand side; irthe upper right theyspray apart (an “antifunnel”).
Qualitatively descriptive termssuch as“funnel” and “antifunnel” can be defined
precisely to give powerful theorems with accurate quantitative results (Hubbard & West
1990). Forexamplethe equation ydt=y2-t in figure 5 has twaverall behaviours:
solutionseither approaclvertical asymptotes fofinite t or fall into the funnel and
approachy=-vt ast-+c. In the antifunnel there is a uniqeelution approaching
y=+V/t which separategshe two usual behaviours. Furthermoréhe qualitative
technigues enable us to estimate the vertical asymptote for a solution through any given
point with good precision.
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figure 5 : a family of solutions of a differential equation, showing funnel and antifunnel behaviour



Newton’'s Laws

The classical threbody problem defies elementagnalysis,yet a computer program
can copewith relative ease.The programPlanets(Hubbard & West 1990) takes a
configuration of up tden bodies with specifieanass,initial position and velocity and
displaysthe movementinder Newton’s laws (figuré). The data can be inpeither
graphically with thecursor, ornumerically in aable. The programallows exploration
of possibleplanetary configurations and #toon becomes plain that stability is the
exception rather than theile. One maywonder under whatircumstances stability
occurs.Otherquestions arise, such #w reason forthe braidedrings of Saturnthat
were a greasurprise when first observed ltlye Voyager spac#light. Nobody had
imaginedsuch a behaviour beforehant braided behaviowshowed up inthe very
first experiments with the Planets program.

Figure 7 shows a model of a possible orbit of a satgllitearound twolargerbodies,
alternately oscillating betweearvolving round onghen moving into a position of
superiorgravitational pull of the other anghoving, for a time, taevolve round the
other (Kogak 1986). Once again, computer exploration shows vividlythk@ebodies
move in a complex pattern.

The theory of dynamical systems and chaos is a paradigexaticple of anew branch

of mathematics in which the complementary roles of computer-generated experiments to
suggest theorems anfdrmal mathematicalproofs to establishthem with logical
precision go hand in hand.

Chaos has become not just a theory but also a method, not just a canon of
beliefs but also a way of doing science. ... To chaos researchers, mathematics
has become an experimental science, with the computer replacing
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figure 6 : a numerical approximation to the many-body problem



laboratories full of test tubes and microscopes. Graphic images are the key.
“It's masochism for a mathematician to do without pictures,” one chaos
specialist would say. “How can they see the relationship between that motion
and this, how can they develop intuition?”. (Gleick 1987, pp. 38-39)
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figure 7 : a numerical plot representing a tiny satellite orbiting two larger bodies
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Systems of differential equations

The software MacMath of Hubbard &West (1990) draws solutions of systems of
differential equations xdt=f(x,y), dy/dt=g(x,y) in the x,y plane and alsdocates
singular points using Newton’s method, drawseparatricesor saddle points (figure

8).
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figure 8 : locating singular points and separatrices for saddle points

In this waythe computer may based to draw solutions of systems differential
equations that are far t@mmplicated tadraw by hand. As &urther exampleArtigue
and Gautheron (1983) draw the solutions of the polar differential equations

dr/dt=sirr, do/dt=cos
which exhibit limit cycles for=kr (figure 9).



figure 9 : limit cycles of simultaneous polar differential equations

Generalizing the concept of visual solutions
A second order differential equation such as
d2x/dt2=-t

no longer has aimple direction field int(x) spacebecause througkach point {(x)
there is a different solutiorfor each starting directiorv=dx/dt. However, this
differential equation is equivalent to the simultaneous linear equations:

dx/dt=v
dv/dt=—,

and in threedimensions, witlcoordinatest(x,v), these equations determine a unique
tangent vector (idx,dv) in the direction (3,—t). Hence the idea of a direction field
doesgeneralize, but it must be visualized in three-dimensidnal/ space. Figure 10
shows two solutions of the simultaneous differential equation spiralling thropgh (
space and their projections oritee t—x andt—v planes, withthe t-x projection giving
solutions to the original second order differential equation.

Visual exploration in geometry
Euclidean geometry traditionally served to introduce studentsléalactivesystem. In

dxsdt=w
dvsdt=—x

figure 10 : two nearby solution curves for a pair of simultaneous
differential equations



many countriegsuch asthe United Kingdom) it hasall but disappeared from the
mathematics curriculum. Computers nowgive the opportunity to manipulate
geometricalfigures to build up intuitionsfor possible theoremgthe Geometric
SupposerSchwartz & Yerushalmy, 198&8abri Géometre1987). The initial phase of

study of geometry can now be an experimental science, in which the student can use the
computer to construct a figure and experiment with it.
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figure 11 : Cabri Géomeétre software for manipulating geometric figures
Visual Data Processing

It is now possible to explore data visually, for example, to dew @f bestfit for data

in two orthreedimensionsMacSpinallows up toten categories odlata, from which

any three can be selected aidplayed. Though only represented apr@jection of

three dimensions onto the two-dimensional scréendata may be rotateshd viewed
dynamically from any angle to give a sense of depth that is not visible in a static picture
(figure 12). Individual pointsmay be selected and inspected to edere the data
originates to identify interesting information, such as outlyialyes.Rotating thedata

in the figuresuggestghat it clusters together in way which intimates that the three
components are correlated.

Modern spreadsheetsstatistical packages andhta handling packagesow include
visual representation afatawhich encouragethe user toexplore andcommunicate
complex information in visual ways.

The ability to present and manipulate information visually is becoming wadeiable

in many different areas in mathemati€ar example, Robinson & Bowman (1986)
introduce probability and statistics using computer graphics with the intention of giving
a ‘feel’ for probability distributions rather than elaboratimgthematicadetail. More
generally, th&€Computerillustrated Texts(starting with Harding 1985redesigned to

use simple computer programs to provigieractive illustrations omathematicaldeas
which can be explored by the student in place of static pictures in a book.
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figure 12 : manipulating data with three components to look for a visual correlation
Is programming essential?

We have not explicitly mentioned programmifog the purpose ofgaining insightinto
mathematical processes. A body of expertise is growing in which studenégpected
to use write short programs (usually in structured Basic, Pascal, or Logaryoout
mathematical algorithm$:rom here it is often intended that they move on to prepared
softwarethat usesthe underlying algorithms in a moneteractivemanner.The early
computer-illustrated texts assumiddt theprogramming would beufficiently simple
that it would allow the student to modify tpeogramsbut thisbecame ammpossible
ideal in latertexts as more sophisticatpdograms were writtethat were toocomplex
for the user to modify. Programming requires a seriousstment intime and effort.
However, it can pay vast dividends in gaining insight th® underlyingnathematical
processes if the investment is sufficiently generous.

Dubinsky hasevidence thahaving studentsnake certairprogramming constructions

(in the computer language ISETL) c#erad to their making paralleinathematical
constructions in their minds and therebgme tounderstand variousnathematical
concepts (see, for example, Dubinsky & Schwingenti®€0). Clearly a spectrum of
approaches may be possible with varying amounts of programming, depending on the
time and commitment available.

New Styles of Learning

Software isbecoming widelyavailable to give graphicakpresentations in calculus,
differential equations, geometryatahandling, numericalanalysis,and many other
areas of mathematics. This is usually predicated wemakind oflearning experience
— one in whichthe student may explore amdanipulateideas,investigatepatterns,
conjecturetheorems antesttheories experimentally before going orpf@vethem in a
more formal context.

For instancepeginning calculustudentsmay investigate the gradients tfnctions
such as sine, cosine, tangestponential and logarithm, amdnjecture their formulas
before they are derived formal(yall 1986, 1987). Irdifferential equations they may
explore problems at the boundaries of research (suttieasgs of Saturn) andhake
the mental linkbetween the friendlyvorld of (mostlylinear) equationghat can be
solved by formulas anthe strangeworld of those (usually non-lineatipat can not
(Hubbard & West 1990).

This form of learning is not eeplacementor formal deduction, but grecursorand a
complemento it. It enables thdess able student to grasgssential ideas thatould



previously be too difficult when framed in a purely formal theory andhfermoreable
student to build a cognitive base for the formal theory to follow. It enables a wide range
of students to integrate their knowledge structure through their powers of visualization.
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