Success and Failure in Arithmetic and Algebra

David Tall

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL

Introduction

Arithmetic and algebra are central parts of the NatidDatriculum
throughout the British Isles. In both dhesethere is a known and
disconcerting level of failure, in algebra even more thamrithmetic.

Why does this failure occur? Or, to look at the more positive side of the
coin, why are some fortunate souls able to do these parts of mathematics
almost withouteffort. By the conservation of energy, if there is no
effort, therecan be no work done. So, by implication, there must be
some other source of energy within the more able that drkes
success. Researgerformed recently at Warwick (Thomas 19&3¥ay
1991a, Gray 1991b, Tall & Thomas 1991, Gray & Tall, 1991) reveals
that there is indeed a qualitative difference between the thinking
processes of those who succeed and those faihoa difference that
makes the mathematics eadier the moreable andharder for thdess

able, exacerbating the chasm between them. nibee able develop a
way of thinking that fires an inner engine with a feed-back loop creating
new knowledge from old, the less able seek solace in being ab&rp

out procedures that may be successful in the short term but are likely to
lead to long-term failure.

Examples of success and failure in arithmetic

Let us begin by looking at how childresucceed orfail in simple
arithmetic. The examples are taken from Gray (1991a).

Stuart (aged 10) responded to the problem 8+6 by sayihdkriow 8
and 2 is 10, but | have a lot of trouble takingr@m 6. Now 8 is 4 and
4; 6 and 4 makes 10; 10 and another 4 makés 14

Stuart is successful, but knows fewmber bonds, antas to search
through his smallrepertoire to try tosolve the problem. He is
extremely creative in the mathematics that he is doing, buhéisods

are arduous and likely to come under considerable strain wherese
more complicated tasks.

Michelle (aged 10) faced with “18-7”, said tén from eighteen
leaves eight, seven from ten leaves three, eight and three makes.eleven
Michelle, like Stuartseeks tdind familiar number bonds to solve the



problem. She sees 18 as #&hd 10, but takes the from the 1Orather
than from the 8.

Michael (aged 9)Michael chose to write 18-9 as

18 _
9

and, as is usual in the decomposition process, put a it by the
eight. “This is theeasyway of working it out. Ican't take ninefrom
eight but if | put a little one it makes it easier because now itsfnore
eighteei.

He didn’t seem to realise that this was just the sproblem allover
again. After some considerable time he resorted to his rusuval
procedure for subtraction from teens. Eighteen marks were plemed
left to right on his paper and then startiiigm the lefthand side he
crossed out nine marks, counting from one to nine as he crossed
Recountingirom the leftthose original marks not crossed out, he was
able to provide the correct solution.

All these three children were considered “less able” by their teacher, yet
were successful atarrying out the arithmetitasks intheir own way.

Two progressed by deriving fadi®m known facts, the thirdeverted

to counting. Amongstess ablechildren, use of known facts taerive

facts israther rare. A mordikely tactic is to count. But, ashildren
grow older, counting on fingersecomesle rigeur so they must invent
new methods to extend their earlier counting procedures.

Jay (aged 10)rejected standard concrete materials, “I'm too old for
counters”, but neither did he like using his fingers, “olgss don’t use
counters or fingers”. For numbers up to twentychsually splayed his

ten fingers on the edge of his desk and imagined another ten fingers to
extend his counting techniques.

Gavin (aged 9)“liked counting with his fingers — that is what they are
madefor”, but for problems up to twenty ha&ssignechumbers in the
teens to various parts of his body in a clockwise fastirom left
shoulder, to waist, to thigh, to calf and ankle, then up his right side.
“I've only got ten fingers; | count as if | had a never-ending load”.

Philip (aged 8) solved his physical counting another way, usiogs
to supplement his fingers, though this proved problematizen
attempting to move his middle toes.

It can be seen that these creative methods of counting, which extend the
physical counting processes of early childhoodatger numbers, are
fraught with difficulties and may be leading down a cul-de-sac of
failure. To find the source of these difficulties it is useful to go back and



consider the ways in which theumber concepts arise in thehild’s
development.

Procedures and concepts

Initial success inmathematics comes abothirough being able tao
things. One of the first othese iscounting The young child is given
experiences that lead to the routine of counting “one, two, three, ...” and
the more subtle idea that whémese wordsare spoken while pointing
successively at each object ircallection, then the last wordpoken is
the number of items in the collection. The concept of a nursen as
“five” is therefore associated with aminderlying procedure. Yet the
symbolism “five” or “5” takes on a life of its owbecause it can be
spoken, it can be written, it can be seen, it can be heatdkds on a
concrete existence which embodies within it both pmecedure of
counting and the concept of number.

Addition is initially an extension of counting. The sum “3+2"fiist
attacked by counting three objects, then two more, then putting the two
collections into a single collection and counting them all to get “1, 2, 3,
4, 5. This first manifestation of counting is callemunt-all It is a
succession of three counting procedures.

With experience the child comes to realise that a sum such asdadeg”

not require the first three objects to be counted a second time. Indeed, it
iIs only necessary tacount-ontwo more from 3 as “45". This,
however, involves a double-counting process. As the next two numbers
in the continuing number sequence “4,5” are spoken, it is also necessary
to maintain a count of how many of these are counted. Often this is done
using physical objects fingers, unifix cubes, numbers onraler — so

that one of these counting processes is done mentally, whilst the
concrete objects are used to keep track of the other. Calculating 3+2 on
a number line is done by pointing at 3, then counting on 2 mdrieh

ends up pointing at the result, 5.

Notice here that “count-on” treats the first number 3 as a mental or
physical entity, thenusesthe secondnumber to evoke a counting
procedure. Numbers are used once more on the one hand as concept and
the other as procedure.

Experience usually leads on to the encapsulation of the addition 3+2 as a
“known fact”: “three plus two is five”Suchknown facts can be learned

in two distinct ways: byrote, or in a meaningful way. Ouearlier
examples show thdess ablechildren may be hampered by knowing
fewer facts, so learning number facts wosékem to be ofjreat value.
However, it is also clear (as in tlwase of Michellekhat, evenwhen



they have the facts available to them, they may lack the flexibility to use
them in the most economical and productive way. Thus, althootg:
learning of facts may increase the foundation on which to build, the
meaningful learning of facts is essential for flexible thinking.

Flexibility of mathematical notation

The more able work in a much more flexible way. The fact “3+2 is 5”
Is seen to be the same as a whole cluster of related facts “2+3 is 5", “5-3
Is 2", “5-2 is 3".Such facts can lead easily to né&ets, forinstance “I

know 4 and 4 is 8, so 4 and 5 is 9”. This flexibility is well-know¥hat

Is less known is that it depends on a dual use of the symbolism which is
ambiguous The symbol 3+2 stands bdfthr a procedure the procedure

of addition through counting, and alsw theresult of thatprocedure.

The symbolism evokes both process gmdduct. This duausage of
symbolism for both procedure andconcept is foundthroughout
mathematics. Yetbecause of the mathematiciamlesire for precision

and rejection of ambiguity, we have failed to fully understamd
duality and ambiguity of symbolism, which gives it such flexibility.

Here are a few instances:

» 3+2 represents both the procedure of addition and the
concept of sum,

 3x2 represents both the procedure of multiplication
(through repeated addition) and the concept of product,

* +2 represents both the procedure of “add ta” shift
two units to the right on the number line) and also the
concept of a positive signed number,

» -2 represents both the procedure of “subtract two” (or
shift two units to the left) and also the concept of negative
number,

« 3 represents both the procedure of division and the
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concept of fraction,

: opposite
e sin A = —OPPOSTIE. represents both the procedure of

~ hypotenuse
calculating the trigonometric ratio and also the concept of
sine,
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o T11=3.14159... represents the procedure of calculating
as a succession ohore accuratelecimals and also the
value of i, indeed, the left-hand side of this equation
seems to be concephd the right hand side @ocedure
of approximation,

. . x2—1
* In the calculus the notatloxnﬁlllr*Q_— , represents both the

procedure of tending to a limit and the value of that limit,

) . 1—xn
e so does the notatlonrl (!!)rﬁ

(00]
. andz an

n=1

b
andé)l(l% z f(x) X .
x=a

Given this widespread phenomenon of the duality and ambiguity of
mathematical notation as procedure and concept, it is quite amazing that
it has not been named. | suspect thidésause wdirst observe the
specific and evident and much later focus on the subtle and generative
deeper concepts. But once these deeper con@ptsnamed, it is
amazing how much power they give us in terms of explanation and
prediction.

Procept

The amalgam oforocedure and carept which is represented by the
same notation is defined to be paocept Once the termhas been
verbalized itassists inexplaining what is going on in the learning of
mathematics, orrather the learning of mathematical procepts. For
instance humberis a procept, evoking both the procedure of counting
and the concept of numbeAdditionis a procept, which operates on
the procept of number. The variolessels of the encapsulation of the
procedure of counting to the concept of sum cansben to be
successively sophisticated growth of the procept of sum.

From procedure to procept in arithmetic

Count-all consists ofthree procedures : count one set, countdtieer,

then count the combination. However, it is something that happens
time. The numbers to be added are input several seconds before the sum
Is output, so the chilgperforming the proceduresuccessfully may not



develop the linkage between input and output that is crystallised as a
“known fact”.

Count-on views the first number as concept and thgecond as
procedure, using a double-count procedure to give the output. The
count-on procedure is more complex, butlaes reduce theumber of
steps in theprocedure to give a greater possibility of linking the two
input numbers with the output as a known fact.

If input and output become linked and remembered, then the resulting
known fact has a proceptual quality. It is both procedure and concept.

The divergence between procedure and procept

The difference betweeprocedure and procep¢ads to the qualitative
difference between the less successful and the more successful:

The moresuccessful see addition asflexible procept,
otherssee it as grocedure that occurs itime, either as
count-on or count-all.

The more able develop a proceptagstem ofderiving new factgrom

old and have an inbuilt feed-back loop that creates new number facts.
The less ableare locked into a proceduralystem in which they are
faced with harder and harder procedures of counting.

Figures 1 and 2 give empirical support tbrs hypothesis. Seventy two
children wereselected bytheir teachers in two “typical’schools to
represent the chronologicages 7+ tdl2+, with each schogiroviding
three pairs of children in each year to represent the belmvage,
average, and above average attainers (Gray 1991a). These civédeen
interviewed individually for half an hour on deast two separate
occasions a week apart, and in eaebsionvere asked to solve between
eighteen and twenty arithmetic problems at various level#ifGtulty.
Figure 1 (Gray 1991b) illustrates the different strategised by
children of differing abilities in solving single-digit addition and
subtraction problems.

Note the almost complete absence ddrived facts in thdess able
(particularly in addition), whereas the average and above avetage
with a high proportion of known facts and use derived facts to generate
other facts. As theages of thechildren increase, the proportion of
known facts increase, but to a lesser extent in the less able.

Figure 2 (taken from Gray & Tall, 199X9hows the totalrange of
strategies used by more able and less able children in the ages 8+ to 12+
for specific subtraction problems whose answer is not a known fact.
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Figure 1 : Strategies for solving addition and subtraction involving numbers up to ten

The left hand side of figure 8hows the abovaverage childremnusing
almost all derived facts and a few examples of counting, whilsti

hand side shows the below average children using few derived facts and

take away, @mdrs. This graphically

illustrates the qualitative divergence in thinking processes.

a large percentage of counting,
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Figure 2: Strategies for solving problems whose answer is not immediately known

Problems in the initial encounter with algebra

Children meeting algebra for the first time often have great problems in
understanding the meaning of the notation. They may watedy next

to each other as y and think of it as X andy”. But they are told that

Xy is “x times Y. They may be confused by the meaning of a symbol
such as 2+8 If it means thgrocedure “add 2 to 3 times then there

Is a problem that it cannot be calculated uxtis known. On theother
hand, ifx is known, why use algebra anyway? The algebraic expression
Is difficult to interpret.Readfrom left to right in theusual way itsays

“two plus three times<”. Because2+3 is 5, children may think that
2+3xis 5. But it isn’t. It is all mumbo-jumbo. Algebra sod@comes a
meaningless manipulation of meaningless symbols, each week of study
bringing a new procedure to carry out “collect together like terms”, “do
operations inside brackets first”, “do multiplication before addition”,
“do the same thing to both sides”, “change sides, change signs”, ...

There are many problems here. But a major difficulty is the underlying
meaning of the notation. The expression 2+feans twodifferent
things, it is theprocessof adding together 2 and 3 times and the
productof that process. In other words, it ispeocept Children who
see 2+ only as process find it difficult to understabdcause it is a
process that they cannoarry out untilthey know the value ok. They

try desperately to swallow their difficulties and to copeclhyrying out

the procedures they practice each week in manipulating algebra.

Having seen thdlifficulties in arithmetic with coordinatinglifferent
procedures, evegreater difficulties occur in algebra. If 2¢3s a
procedure, how does a child cope with factorising an expression like

3(2+3X)+2x(2+3X).



A child who canseethe expression 2+3as an entity carcollect
together terms to g€B+2x)(2+3x). A child who cannot do this may
seek security by following the rules: multiply out brackets, collect
together like terms, look for a factorisation of the resultant quadratic
6+11x+6x2. Once more weseethe divergence between procept and
procedure. Themathematics involving procept, using the notation to
represent either procedure or concept, is flexible and powerful. The
mathematics involving only proceduresnwre complicated anthcks
insight.

The procedural conspiracy

As educators we want to help our studdatmathematics. Yeherein

lies a dangerous implicit conspiracy between pupils and teadhiien

a child cannot cope with mathematics the cry is “show me haio i0'.

When the chips are down, in a large class with pressures all around, it is
natural to do just that. And, for a time, everyone is happy. The child has
instant gratification, the teacher igleased that the child can do
something, parents and politicians are satisfied that progress is being
made. Yet, if we simply show children tipeoceduresof mathematics,

we may end up by confining them to a cul-de-sac of mathematicat-
sightedness which ends up in terminal failure.

Are there solutions?

We should notassumethat all problems have solutions. If a child is
more capable of holding several things in the mind at onceraacke

able to compress this knowledge to treat it as a single piece of
information to be mentally manipulated, then we shouldassume that

all other children either have, or can be educated to have, this capacity.
The difficulties of Stuart and Michelle mentionearlier showed that
they had the idea of deriving new facts from old, but they didn’t do it in
the most economical way, so they made rfmdstheir ownbacks. By
helping them become more aware of this problem, and showing them
new strategies, we may be giving them too much detailiedmation
which only serves to obscure the conceptual simplicity seen bydine

able.

However, thereare possible ways ahead using the new technology. If a
procedure can be formulated mechanically then it cacabged out on

a computer.All the proceptdiscussed in thisrticle are of this type.
Therefore itbecomes an educational possibility to get ¢cbenputer to
carry outthe procedures to allow the individual to concentrate on the
higher level relationships involving the objects produced by the
procedures.



Arithmetic and the calculator

With arithmetic, thismeans allowing the child to use a calculator, and
helping the child focus on meaningful relationships. For instamiag
the facility on modern graphic calculators, seversliccessive
calculations remain onscreen at a time. Thus it is possibleséoa
display such asigure 3 to allow the child to be able to focus on the
nature of the relationship rathéran becoming embroiled in tlketails

of the creative procedures some of thase tocarry outthe given
calculations.

8-5
3
18-5
13
28-5
23

Figure 3 : representing numerical relationships on a suitable calculator

It is a pity that the calculators usually employed in the classroom only
allow a single number to be input at a time, forcing the chilsetthe
arithmetic as a process between distinct numbers in tatreer than
seeing the relationships represented together in a single display. Even
given the inadequacies afurrent calculators, th€ AN project has
shown that children whaise calculators get better appreciation of
number concepts andare as well, or better, in knowing standard
number facts.

Introducing algebra with a computer

The difficulty of seeing 2+8 as a single expressiomther than as a
process to be carried out can be greatly assisted using a computer.

It is a simple task tg@rogramthe computer in BASIC, to type in the
command X=3, and then ask a child what happens when we type in the
command PRINT X+1. When the computer prints 4, and the
phenomenon is repeated with other expression®edomes easy to
predict what will happen with PRINT X+3 or PRINT 2*X.

We may now investigate what happens with 2+3*X. Heere may be
different opinions, for instance, when X is 3 then “2+3 is 5, so the result
Is 5*X, which is 15”. Testing this on the computgnows adifferent
result, 11.How can this be obtained? A discussiom#&urally initiated

on how the computer carries out the computation, and it occurs in a
sensible contextwhere the computer is using rules that can be
articulated, predicted and tested. Algebra in this context msdmese
because it is part of the language of communication with a computer.
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The Mathematical Association (1989) publishes notes for an approach to
algebra using this method. The approad®es asingle computer for

initial discussion between teacher and class. It needs access to one or two
more computers to give thelass a chance t@xplore theideas
themselves. But it alsoses‘cardboard computers” which amesigned

to enable the child to play the game of internally storing the numbers in
boxes labelled with the names of variables.

The cardboard computeonsists of two pieces @ard. One represents
the screen, on which sequence oinstructions is placed; thether
represents the internal storage of the computer with boxes which can be
labelled with a letter and a number placed inside (figure 4). For
instance, the assignment A=1carried out by labelling a box with the
letter A and placing 1 inside. B=A+3 requires the operators to find the
value of A (which is 1), label a box B and place the value of the sum
A+3 (which is 4) inside. PRINT B+2 then requires the operators to find
the value of B (which is 4) and print the value of 4+2 (which is 6).
Experienceshows that thehildren enjoy the fun of playing with the
cardboard computer every bit as much as the real ones!

B=A+3 !

PRINT B+2

=l 8

Figure 4 : Using the Cardboard Computer

Notice that the cardboard computer requires the pupitaty out the
specified procedures and actually calculate the value of A+3. On the
other hand, th&ASIC program carries outhe internal procedures of
numerical computation and allows the user to consider the outputs of
these procedures.

For instance, the program:

10 INPUT X
30 PRINT 2+3*X
40 PRINT 5*X

requires a number to be input, but then performs tbquired
calculations and prints two numbers. Here the childsemthat the two
outputs need not be the same and that the value given to 2+3*X is
consistent with adding 2 to 3*X , not adding 2 and 3 and then
multiplying by X.
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But
10 INPUT X
20 INPUT Y
30 PRINT 2*(X+Y)
40 PRINT 2*X+2*Y

alwaysprints thesame value. The expressions 2*(X+Y) and 2*X+2*Y
are seen to have the saméfect, even though they involve dafferent
seqguence of calculations.

Of course it would be useful to print tlsymbols in normal algebraic
notation. The Algebraic Calculator published in the Mathematical
Association Pack, allows just this. So it is possible to input a Valug
and to print 2+8 and X to seethat they are different. The version
published by the M.A. igurrently for BBC computer only. Amore
powerful program, the Function Calculator is available from
Cambridge University Press f&BC, Master, Nimbus and Archimedes
computers as part of tiieeal Functions and Graphsackage. Figure 5
shows a display of thd~unction Calculator which encourages a
discussion of the meaning of the expression 2+3a and the fact that it is
not calculated in the same way as 5a.

5.H.P. Function Calculator

var value formula
a |1
11 2433
15 Ja
11 2t3%a

Figure 5 : What does 2+3a mean?

Thus we see programming as an interactive exercise to give meaning to
the conventions of algebraic symbolism using computer notation, with
the Function Calculatorfocusing on standard algebraic notation. Whilst
both of thesesystemscarry outthe procedure of calculation amdlow

the user to focus on the meaning of the expressionscadhdgboard
calculator focuses on thanternal procedures themselves. So the
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different activities can focus on differeaspects atlifferent times and
considerably reduce the cognitive strain.

Evidence from Tall & Thomas (19913hows the benefits of this
approach. Pupils using this approdoh three weeks mayinitially not

be as good at conventional manipulation as those who have had an equal
amount of time devoted to standard practice of algebraic techniques. But
long-term they make up the deficiency in technique and show a far
higher understanding of the flexible nature of algebraic symbolism.

From the manypieces of evidence quoted in tlpaper, let maeport

just one. Pupils in interviews wessked to solve the equatiop-3=5.

Both experimental pupils (who had used the computer) ardrol
pupils (who had concentrated on techniques) were able to solve this. But
the control pupilsusedprocedures “add one to both sides, divide both
sides by 2" to get the answer. The experimental pupils were more likely
to say “if 3~1=5, then P has got to be 6, and gomust be 2.”Faced
subsequently with the equatiors-3=5, the control pupils maphave
realised that the equation wasmilar, but they still needed to go
through the procedure to get the ress#. The experimental pupils
were more likely to say “it's the same equation”.

A little later in the interview the children were asked to solve
3(p+1)-1=5.

Several experimental students said something liks the same
equation;p+1is 2, s is 1”. But none of the contra@tudents said this.
Instead, those who tried to solve the equation “multiplied out brackets,
collected together like terms, subtracted 2 from both sides, divided both
sides by 3 and found thptis 1”.

The difference between the flexible, proceptual approach of the
experimental students who saw the equation as being essentiabntkee
each time, and therocedural approach of the contrsiudents who
attempted to solve the equation is clear.

A way ahead

The experiences using a calculator in arithmetic andomputer
environment in algebrauggest ayeneral principle. The computer (and

its more primitive relative, the calculator) casarry out routine
procedures, allowing the student to focus attention on dhgects
produced. In this way students, who might otherwise become focused on
the proceduralbspects, can be refocused on the concepts without the
strain of carrying out the procedures (irpassibly idiosycratic way).
Sometimes one can concentrate onghecedures, and on otherssing

the computer, one may concentrate on tbacepts produced by the
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procedures, without needing tarry outthe procedure at theame
time.

In this way one might be able tessen the gathat occurs between the
procedural thinking that gives short term results and the proceptual
thinking that gives the flexible thought processes characteristic of the
successful mathematician.
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