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Introduction

The current calculus curriculum may be very good at teaching the algorithms of

differentiation and integration, but it is less successful at giving coherent meanings to

the fundamental ideas. For instance, what do the dx and dy mean in the expression 
dy
dx 

, or even more, what do the ∂x and ∂y mean in the partial derivative 
∂y
∂x   ?

In recent years I have been developing and advocating a locally straight approach to the

calculus in which high magnification of suitably small portions of the graphs of

differentiable functions reveals them as looking straight to the naked eye. This local

straightness can easily be revealed by computer software. But with my mind full of the

bêtes noires of my sixth form studies from long ago, it has taken me many years to

follow the idea through to give a coherent meaning to the notion of differential that

works in all its various guises. I made a start in an article in Mathematics Teaching1

which looked at the meaning of the Leibniz notation and showed how the chain rule

could be interpreted in such a way that differentials could be cancelled. Here I show

how this idea may be pictured using appropriate software which also allows

visualization of parametric and implicit differentiation.

I will go on to show how the ideas extend to functions of more than one variable, by

introducing a new notation for partial derivatives so that for a function z=f(x,y) the

equation

dz = 
∂z
∂x   dx + 

∂z
∂y   dy

is rewritten in such a way that cancellation becomes possible. This will entail replacing

the symbol ∂z by a more appropriate notation which distinguishes its use in the two

partial derivative expressions where it actually fulfils two totally different roles. What is

fascinating is to see how simple the ideas become when looking at appropriate pictures.
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1. Visualizing Parametric Functions

Humans are limited in their normal existence to three dimensions. A mathematician

usually constrains his students to only two. Graphs are typically drawn only in two

dimensions even if this is inappropriate. For instance, most mathematicians call the

curve in figure 1 the graph of a parametric function, when technically it is nothing of

the sort. The graph of a function F:A→B is the set of ordered pairs {(x,F(x)) | x∈ A}.

What is drawn in the figure is the image of the function – the set of elements

{ F(t) | t∈ D} where F:D→R2 is F(t)=(x(t), y(t)).

figure 1: the image of a function from R to R2

Much more interesting is to draw the graph in three-dimensional (t,x,y) space, perhaps

even with the projections of this picture onto each of the three coordinate planes.

figure 2: the graph of a function R to R2 and its coordinate plane projections
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Figure 2 has been drawn with the Parametric Analyser2, a piece of software designed

for the new SMP 16-19 A-level. It offers up to four windows, three coordinate planes

showing the projected graphs onto the t-x, t-y, x-y planes, and a 3D picture of the

graph in t-x-y space. The 3D picture in the top left hand corner, of figure 2 shows the

t-y plane as an exact replica of the vertical t-y plane and the x-axis simply drawn at an

angle into the plane. This can be swapped for a second projection (as in figure 3) as

proper 3-dimensional view seen from any angle chosen by the user. In particular it can

be rotated to give each of the three coordinate views. The action of rotating the graph

gives a powerful illusion of depth to visualize the curve in three dimensional space

instead of just a flat picture.

2.  Visual meaning for a differential

The notation is appropriate because the projection of the curve and its tangent onto a

coordinate plane looks like figure 6. The diagonal of the box in this picture is projected

onto the tangent to the curve in the t-y plane, and the sides of the box are dt and dy. The

gradient of the tangent is then dy/dt.

dt

dy

figure 6: the projection of a tangent vector

This is exactly the definition of dt and dy given by Leibniz3 in his very first publication

on the calculus. But it is one that has been neglected and misrepresented, particularly in

Britain, over the last three hundred years.

In this interpretation, the lengths dt, dx, dy are differentials. They are simply the

components of the tangent vector.

In the t-y plane the projection graph has an equation y=y(t). The derivative at the point

(t,y) is the gradient of the tangent:

y'(t) = 
dy
dt    ,
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so that the derivative is expressed as a ratio of differentials. This has the advantage that

the gradient of a parametric curve can be expressed as:

dy
dx   = 

dy
dt    / 

dx
dt   

where the quantities involved are just the sides of a box in three dimensional space.

Note that, in this expression, dt can be chosen arbitrarily, and then dx and dy are

defined by dx=x'(t)dt, dy=y'(t)dt, so it may happen that dx=0. But in this case,

provided that dy≠0, all this means is that the tangent in the x-y plane is vertical.

(Figure 7.)

x

y

dy≠0 (but dx=0)

figure 7: a vertical tangent

3. Composite Functions

When I first started working with SMP on the calculus I was asked how it might be

possible to give a visual interpretation of the composite of two functions and how to

handle the chain rule. If we stay riveted to pictures in two dimensions this is difficult,

but there is a natural interpretation in three. Given functions f:A→B and g:B→C,

where A, B, C are subsets of the real numbers, we can draw a graph of f:A→B as a

subset of points (x,f(x)) in AxB and  g:B→C as a subset of points (x,f(x)) in BxC. The

graph of fg:A→C is a subset of points in AxC. A logical way to represent f, g and gf

all together is as a subset of AxBxC, using points (x,f(x),gf(x)).

For instance, if f:R→R is given by f(x)=x2, and g:R→R is given by g(x)=sinx, then

the composite gf:R→R is given by gf(x)=sin(x2). The composition can be represented

as a subset of RxRxR by drawing the subset of points (x, sinx, sin(x2)).
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It came to me as a surprise to see that a geometrical representation of a composite of

two functions can be viewed as a special case of a parametric function. Writing f and g

as y=f(u), u=g(x), we obtain a parametric graph: y=f(g(x)), u=g(x), where y and u are

now both functions of x. Figure 8 uses the Parametric Analyser to show the set-up

u=x2, y=sin u (=sin(x2))

in four different windows: the x-u plane in the bottom right corner, with u=x2, the u-y

plane in the bottom left corner, with y=sin u, and the x-y plane in the top right, with

y=sin(x2). Each of these is a projection of the curve in three dimensions in which u=x2

and y=sin(x2).

u=x
(-3 ≤ x ≤3)

2

y = sinu
(0 ≤ u ≤9)

y=sin(x  )
(-3 ≤ x ≤3)

2

figure 8: a composite function seen parametrically

The only limitation is that the domain of the second function g is restricted to the image

of the first function f. In the picture f has domain [-3,3], so f(x)=x2 has image [0,9],

and the picture restricts g to domain [0,9].

Seen as a static picture in a book this may be quite difficult to visualize, but turning the

three dimensional graph around gives a sensation of space, making it easier to visualize

as a three dimensional object.

Just as in the parametric case, the tangent to the curve has components dx, du, dy in

directions x, u, y and the chain rule for differentiation becomes:

dy
dx   = 

dy
du 

du
dx  

and this is also an equation between lengths.
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There is a well-known difficulty in this interpretation. The differential dx can be given

any (non-zero) value, and then du is defined by du=u'(x) dx. If u'(x)=0 then du=0, so

it cannot be used in the equation, let alone cancelled. In this case, if y'(u) is defined (as

a finite value), then dy = y'(u)dx = 0. Combining this with dx≠0 gives 
dy
dx   = 0. So the

equation (representing the numerical values of the derivatives) is still true because both

sides are zero.

It was interesting to see the reaction of various mathematicians to the idea of

representing a composition of real functions as a graph in three dimensions. One said

that he thought that this was the worst idea he had ever known me to have. He did not

wish his students to visualize a composite function as a special case of a parametric

function. He wanted to see the composite given by following one function after the

other. I agree with him. But the logic of seeing a function (which is fundamentally a

process relating each x in the domain to a unique f(x) in the range) as a graph (which is

fundamentally a static object in the coordinate plane) has, as its logical conclusion, the

visualization of a composite as an object embedded in three space.

A second reaction, quite reasonable, is that it is often hard to visualize the spatial depth

of graphs in three dimensions when they are represented on a two-dimensional screen.

This I agree with absolutely. For three years I have been trying to see the parametric

graph x=t2, y=t3 as a curve in space, which looks like a quadratic one way, a cubic

another and a semi-cubical parabola from a third viewpoint. (Figure 9).

figure 9: A parametrized semi-cubical parabola in three dimensions

Although I have a good idea what it should look like I have always found it difficult to

manipulate the imagery in my mind away from the computer.
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When this paper was refereed for publication one of the referees suggested that it is

possible to “see” the graph (t, t2, t3) in 3-dimensional (t, x, y) space. The perceptive

suggestion was to shade in the surface x=t2 with vertical lines and to draw the graph of

y=t3 on this surface (figure 10). Looking down the y-axis onto the t-x plane from

above reveals x=t2, looking horizontally along the x-axis onto the projection on the

vertical t-y plane reveals the projected curve y=t3, and projecting on the vertical x-y

plane looking along the t-axis shows the parametric curve x3=y2.

t

x

y

parabola 
projected on 

t-x plane

(t,t2,t3) curve in 
t-x-y space

figure 10 : visualising the semi-cubical parabola in 3-space

This gives visual support which helps to add depth to the picture to see the curve in

space and its projections onto the axes. This would become even easier given software

which allows the picture to be pulled around to see it moving and give a greater illusion

of three dimensions on a two-dimensional screen. But it remains difficult to visualise

more general curves in 3-space and fairly impossible in higher dimensions. What

matters in the calculus is the generic mental image captured in figures 3 and 5 of a

tangent to a curve as the diagonal of a box with the differentials as the components of

the tangent vector.

The three dimensional view of this curve at last gave me insight into what happens to

the tangent to the semicubical parabola at the origin. Look at figure 11 (considered as

the image of a parametric function (t2, t3)) and see if you can suggest what the tangent

at the origin should be.



– 8 –

x

y

y  =x2 3

figure 11: a semi-cubical parabola

Most mathematicians I know claim the tangent is the x-axis. I remember being asked to

prove this in an examination. But a large number of students claim it is the y-axis,

because this “touches the graph at the origin and does not cross it”4.

The software which drew figure 9 allows the numerical tangent to the curve in three

space to be drawn and to step along the curve. Only when I saw this in action did I see

what I should have seen all along. If the tangent to the curve in three space is drawn a

fixed length, its projection onto any of the three coordinate planes will vary depending

on the angle it makes with the plane. The three-dimensional curve always has a tangent.

But at the origin it points along the t-axis. Projected onto the x-y plane the tangent in

this plane has zero length because it is pointing at right-angles to the plane. Of course it

does. The tangent in the (x,y) plane considered as a function of t is the derivative of

(t2, t3), and is (2t, 3t2), so when t=0, it is (0,0). It is only when the semi-cubical

parabola is seen as the projection of a smooth curve onto the x-y plane that the truth of

the tangent at the origin becomes apparent. In the x-y plane it has zero length and does

not point in any preferred direction.

4. “Implicit Functions”

“Implicit functions” have bothered me for years. To begin with, they are not usually

functions in the set-theoretic meaning of the term. Most of the books I have ever seen

slide past the idea in varying levels of equivocation and misrepresentation. Set theory

has pushed us into thinking of an “implicit function” as a relation between x and y.

However, the ones we meet in the calculus are of a very special type. Locally they may

be solved in a region either to find x as a function of y or y as a function of x. The

example of the set of points on the circle x2+y2 = 1 is a case in point. For y>0 it has the
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form y = + 1–x2  , for y<0 it can be  y = – 1–x2  , for x>0 it  is  x = + 1–y2  , and

for x<0 it is  x = – 1–y2  .

Thus it seems that all the “implicit functions” met in the calculus may be locally

parametrized. If they cannot then the graph cannot be a curve and no derivative can be

calculated. I would go further to conjecture that every “implicit function” met in A-level

can be globally represented as a parametric function x=x(t), y=y(t), where the variable t

has been eliminated from the relationship. In most cases found in sixth form text books

this can be done using the length of the curve as the parameter. For instance, the circle

given by x2+y2=1 can be parametrised as x=cost, y=sint for 0≤t≤2π. Thus, the

equation

x(t)2+y(t)2=1

really represents a curve in three dimensional (t,x,y) space with tangent vector that can

be found by differentiating with respect to t to give

2x 
dx
dt    + 2y 

dy
dt    = 0.

Of course, the dx, dy, dt have meanings as related lengths (where dt≠0) and we get

2x dx + 2y dy = 0,

or

dy
dx   = –x/y.

The differential equation x dx = –y dy has meaning for all values of x, y, even when

y=0, for here, if dx ≠ 0, then the tangent vector is simply vertical (as shown earlier in

figure 7).

The derivative 
dy
dx    has a problem when y=0 because it is undefined. Thus attempting

to think of an “implicit function” only as a relation in which y is given in terms of x can

lead to awkward questions being asked at certain points. Thinking of it as a parametric

equation where the t has been eliminated nicely brings it into line with parametric and

composite functions.
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5. Partial Derivatives

The reader may wish to think how these visual ideas relate to functions of more than

one variable, say z = f(x,y). In Supergraph5,6 these graphs are drawn using lines in the

direction x=constant and y=constant to give a rectangular grid on the surface (figure

11). The two dimensional equivalent to local straightness is local flatness, which means

that any small part of the surface approximates to a plane. It can therefore be

approximated by a rectangular tiling where each flat tile is suitably small to give a good

approximation to the surface. In practice a fairly good representation can be obtained

with a comparatively small number of tiles (figure 12 has a 10 by 20 array of

rectangles).

figure 12: A (locally flat) surface in three dimensions

One way of imagining the notion of partial derivatives is to look along the lines

x=constant and y=constant. When y is constant, say y=y0, then z is a function of x,

z=f(x,y0). Traditionally the gradient of this graph is denoted by ∂z/∂x. But this notation

is misleading in that the corresponding notation for the gradient when x is constant is

∂z/∂y and, both cannot be thought of as quotients for increments ∂x and ∂y because the

value of ∂z is not the same in each case.

Therefore we need a new notation. For fixed y,  consider the limit as h→0 of

f(x+h,y)-f(x,y)
h   

which is normally denoted by ∂z/∂x.

This is obtained by taking a cross-section of the surface for y=constant, so z=f(x,y) is a

graph in two dimensions with z as a function of x. In this case we can give the usual

interpretation of differentials. We will denote any change in x by dx and the

corresponding change in z to the tangent line in the plane by dzx.
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dx

dzx

x

z

x

z=f(x,y) for 
y=constant as 
a function of x

figure 13 : cross-section of the surface z=f(x,y) through a plane y=constant.

Likewise, taking a cross-section for fixed x gives z=f(x,y) as a function of y and we

denote by dy any increment in y and by dzy the corresponding increment to the tangent

line. Viewed in three dimensions this gives figure 14.

dx

dzx

dzy

dzx dzy+

(x,y)

z

(x+dx, y+dy)

dx
dy

(x,y,z)

x

y

tangent plane

at (x,y,z)

surface

dz =
dzx

dy

x

y

z

figure 14 : the tangent plane to z=f(x,y) at the point (x,y,z)
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It shows the plane y=constant at the front with x increment dx and increment dzx up to

the tangent plane. Meanwhile, the plane x=constant has y increment dy and increment

dzy up to the tangent plane. The vertical distance from the point in the tangent plane

vertically above (x,y) to the point in the tangent plane vertically above (x+dx, y+dy) is

dzx+dzy.

This is usually called the total differential dz

and

dz = dzx+dzy.

If one so desires this can be rewritten as

dz = 
dzx
dx    dx + 

dzy
dy    dy

where the expressions 
dzx
dx   , 

dzy
dy    are both partial derivatives, now expressed as

quotients of lengths.

This is a whole lot more meaningful than the usual equation:

dz = 
∂z
∂x   dx + 

∂z
∂y   dy

where the partial derivatives are not quotients because the ∂z represent different

concepts in the two expressions.

6. Conclusion

What is the import of the suggestions made in this article? Is it that we must always

visualize everything in three (or more) dimensions? Categorically not. Becoming fixed

on visual imagery may even make it difficult to generalize to four and higher

dimensions which no longer have a physical counterpart. First and foremost the use of

visualization is to emphasize that the notation for differentials has a perfectly good

concrete meaning and that the manipulations performed can be considered as

meaningful arithmetic operations on lengths. Symbolism is invented to make things

easier for us. We do not need to think of the pictures all of the time. Having established

a visual meaning we can then concentrate on manipulating symbols. But now the

symbol manipulation is based on sensible foundations instead of being a “useful

fiction” that gives correct answers for reasons that are currently a total mystery for

virtually all students of the calculus.



– 13 –

References

1. Tall D. O. ,1985 :  “Tangents and the Leibniz notation”, Mathematics Teaching, 112

48-52.

2.  Tall D. O., 1991: Real Functions & Graphs, (software for the BBC, Nimbus &

Archimedes), C.U.P., Cambridge.

3. Leibniz G.W., 1684 : “Nova methodus pro maximis et minimis, itemque tangentibus,

qua nec fractas, nec irrationales quantitates moratur, & sinulare pro illis calculi

genus ”, Acta Eruditorum,  467-473.

4. Vinner S., 1982: “Conflicts between definitions and intuitions – the case of the

tangent”, Proceedings of the 6th International Conference of P.M.E., Antwerp,

24-28.

5. Tall D. O., 1986: Supergraph, (software for the BBC computer, Nimbus &

Archimedes), Glentop Press, London.

6. Tall D. O., Blokland P. & Kok D. 1990: A Graphic Approach to Calculus, Sunburst,

Pleasantville, NY.


