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Introduction

The current calculus curriculum may bery good atteaching the algorithms of
differentiation and integration, but it isss successful at givingpherent meanings to

d
the fundamental ideas. For instance, what doxtend ¢ mean in the expressiq&

. . )
, Or even more, what do tldg anddy mean in the partial denvaﬂ& ?

In recent years | have been developing and advocatoapby straightapproach to the
calculus in which highmagnification of suitably smalportions of the graphs of
differentiable functions reveathem aslooking straight to the nakeelye. Thislocal
straightness can easily be revealed by computer software. But with my mind full of the
bétes noireof my sixth form studies from longgo, it hastaken me manyears to
follow the ideathrough to give a coherembieaning to the notion of differenti#that
works inall its variousguises. Imade a start in aarticle in Mathematics Teaching
which looked athe meaning of the Leibniz notati@nd showed howthe chain rule
could be interpreted isuch a waythat differentials could be cancelledere | show
how this idea may be picturedising appropriate software which also allows
visualization of parametric and implicit differentiation.

| will go on toshow howthe ideas extend tiunctions of more than one variable, by
introducing a newnotationfor partial derivatives so thdor a functionz=f(x,y) the

equation
0z 0z
dz=3x o+ ay oy

is rewrittenin such a way thatancellationbecomes possihl& his will entail replacing
the symbolodz by a more appropriate notation which distinguishesises inthe two
partial derivative expressions where it actually fulfils two totally different rol\dsat is
fascinating is to see how simple the ideas become when looking at appropriate pictures.
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1. Visualizing Parametric Functions

Humansare limited in their normal existence to thrdenensions. Amathematician
usually constrains his students to otlyo. Graphsare typicallydrawn only in two
dimensions even if this is inappropriator instance, mostathematicians call the
curve in figure 1 thgraph of gparametricfunction, whentechnically it isnothing of
the sort. Thgraphof a functionF:A- B is the set of ordereplairs {(x,F(x)) | xOA}.
What is drawn inthe figure is theimage of the function — the set oflements
{F(t) |tOD} where F:D - R2 is F(t)=(x(t), y(t)).
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figure 1: the image of a function from R to R?

Much more interesting is to draw the graph in three-dimensioxay)( space, perhaps
even with the projections of this picture onto each of the three coordinate planes.

figure 2: the graph of a function R to R2 and its coordinate plane projections



Figure 2 haseendrawn withthe ParametricAnalysef, a piece ofoftware designed
for the new SMP 16-19 A-level. It offers up to foumdows, three coordinate planes
showingthe projectedgraphs ontahe t-x, t-y, x-y planes,and a 3D picture of the
graph int-x-y space. The 3icture in the togeft hand corner, ofigure 2shows the
t-y plane as an exact replica of therticalt-y plane and th&-axis simply drawn at an
angle into theplane. Thiscan beswapped for a secormojection (as in figure 3) as
proper 3-dimensional view seen from any angle chosehduyser. Inparticular it can

be rotated to give each of the three coording®'s. The action of rotating thgraph
gives a powerful illusion of depth tasualize the curve in three dimensional space
instead of just a flat picture.

2. Visual meaning for a differential

The notation is appropriate because the projection of the curve and its tantgerat
coordinate plane looks like figure 6. The diagonal of the box inpibtare is projected
onto the tangent to the curve in tagplane, and the sides of the box aramt ¢. The

gradient of the tangent is theydt.

dt

figure 6: the projection of a tangent vector

This is exactly the definition oftéind ¢ given byLeibniZ® in his very firstpublication
on the calculus. But it is one that has been neglected and misrepreparttedlarly in
Britain, over the last three hundred years.

In this interpretationthe lengths t dx, dy are differentials They are simply the
components of the tangent vector

In thet-y plane the projection graph has eguationy=y(t). The derivative at the point
(t,y) is the gradient of the tangent:

d
vt =g



so that the derivative is expressed as a ratio of differentials. Thitkéhaslvantagéhat
the gradient of a parametric curve can be expressed as:

dy _dy jdx
dx ~dt / dt
where the quantities involved are just the sides of a box in three dimensional space.

Note that, in this expressiont dan bechosen arbitrarily, and thenxdand ¢ are
defined by a=x'(t)dt, dy=y'(t)dt, so it may happenthat &k=0. But in this case,
providedthat dy#z0, all this means ighat the tangent in thg-y plane isvertical.
(Figure 7.)
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dy#0 (but &=0)

figure 7: a vertical tangent

3. Composite Functions

When | first startedvorking with SMP onthe calculus was asked how imight be
possible togive a visual interpretation of the compositetwb functions anchow to
handle the chain rule. If we stay riveted to picturesvo dimensions this is difficult,
but there is a natural interpretation timee. Given functions A-B and gB- C,
whereA, B, C aresubsets ofhe realnumbers, wecandraw a graph of A-B as a
subset of pointsx(f(x)) in AxB and gB- C as a subset of points,{(x)) in BxC. The
graph of fgA- Cis a subset of points iAxC. A logical way to represent f, g and gf
all together is as a subsetABxC, using pointsx,f(x),gf(x)).

For instance, if R R is given by fk)=x2, and gR - R is given by g{)=sinx, then
the composite gR - R is given by gfk)=sin(x2). The composition can be represented
as a subset ®xRxR by drawing the subset of pointg 6irx, sin?)).



It came to me as surprise to sethat a geometrical representation of a composite of
two functions can be viewed as a special casepaframetricfunction. Writing f and g
asy=f(u), u=g(x), we obtain a parametric grapm=f(g(x)), u=g(x), wherey andu are
now both functions of. Figure 8 uses th@arametric Analyseto show the set-up

u=x2, y=sinu (=sin(x2))

in four different windows: th&-u plane inthe bottom rightorner, withu=x2, theu-y
plane in the bottom leftorner, withy=sinu, and thex-y plane in the togight, with
y=sin(x?). Each of these is a projection of the curvéhieedimensions in whichu=x2
andy=sin(x2).
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figure 8: a composite function seen parametrically

The only limitation is that the domain of the second function g is restricted tmage
of the first function f. Inthe picture fhasdomain[-3,3], so f&)=x2 hasimage[0,9],
and the picture restricts g to domain [0,9].

Seen as a static picture in a book this may be quite difficwist@lize, but turning the
three dimensional graph around gives a sensation of space, making it easier to visualize
as a three dimensional object.

Just as irthe parametricase,the tangent to the cunfeas componentsxd du, dy in
directionsy, u, y and the chain rule for differentiation becomes:

dy dydu

dx ~dudx

and this is also an equation between lengths.



There is a well-known difficulty in this interpretatiofhe differential ¢ can be given
any (non-zero) value, and then id defined by d=u'(x) dx. If u'(x)=0 then di=0, so
it cannot be used in the equation, let alone cancelled. In this cg¥e) ifs defined (as

d
a finite value), thenyl=y'(u)dx = 0. Combining this with x0 giveqi = 0. So the

equation (representing the numerical values of the derivatives) is still true because both
sides are zero.

It was interesting to see the reaction wérious mathematicians to the idea of
representing a composition al functions as a graph threedimensionsOne said
that he thought that this was the worst idea he hadkexm®rn me to have. Hdid not
wish his students teisualize a composite function as a special case fdrametric
function. He wanted to sethe composite given bfpollowing one function after the
other. lagree withhim. But the logic of seeing a functiofwhich is fundamentally a
procesgelating eackx in the domain to a uniquexj(in the range) as a graph (which is
fundamentally a statiobjectin the coordinate plandjas,as itslogical conclusion the
visualization of a composites an objecembedded in three space.

A second reaction, quite reasonable, is that it is often hard to vistr@izpatial depth
of graphs in three dimensions when tlaeg represented on a two-dimensiosaieen.
This | agree withabsolutely. Fothreeyears | have been trying to stee parametric
graphx=t2, y=t3 as a curve ispace, which look$ike a quadraticone way, acubic

another and a semi-cubical parabola from a third viewpoint. (Figure 9).
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figure 9: A parametrized semi-cubical parabola in three dimensions

Although | have a good idea what it should Idke | havealways found idifficult to
manipulate the imagery in my mind away from the computer.



When this papewas refereedfor publication one of the referessiggestedhat it is
possible td'see” thegraph ¢, t2, t3) in 3-dimensionalt( x, y) space.The perceptive
suggestion was to shade in the surfext@ with vertical lines and to drawhe graph of
y=t3 on this surface (figurd0). Looking downthe y-axis ontothe t-x plane from
above revealx=t2, looking horizontally along th&-axis ontothe projection on the

vertical t-y plane reveals the projected cunyet3, and projecting on theertical x-y

plane looking along thieaxis shows the parametric cumxdy?.
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figure 10 : visualising the semi-cubical parabola in 3-space

This gives visual support which helps to atipth to the picture to see the curve in
space and its projections onto the axes. This wbetdme even easier givenftware
which allows the picture to be pulled around to see it moving and give a greater illusion
of threedimensions on a two-dimensioradreen But it remains difficult to visualise
more generakurves in 3-space and fairly impossible in higlénensions.What
matters in the calculus is the generic mental image capturBguires 3 and 5 of a
tangent to a curve as the diagonal dfox with the differentials as the components of
the tangent vector.

The three dimensionaiew of this curve at last gave me insight into what happens to
the tangent to the semicubical parabola abtigin. Look atfigure 11 (considered as
the image of a parametric functidd ¢3)) and see if yowansuggest whathe tangent

at the origin should be.
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figure 11: a semi-cubical parabola

Most mathematicians | know claim the tangent isth&is. | remember beingsked to
prove this in an examination. Butlarge number oftudentsclaim it is they-axis,
because this “touches the graph at the origin and does not ctoss it”

The software which drew figure 9 allowtke numerical tangent to the curve in three
space to be drawn and to step along the curve. Only when | saw #uigom did | see
what | should have seen all alongthe tangent to the curve in three spacdravn a
fixed length, its projection onto any tife three coordinate planes withry depending
on the angle it makes with the plane. The three-dimensional curve always has a tangent.
But at the origin ippoints alongthe t-axis. Projected ontdhe x-y plane the tangent in
this plane has zero length because it is pointing at right-angles ptatiee Of course it
does The tangent in thex(y) plane considered as a functiontois the derivative of
(t2, t3), and is (2 3t2), so whent=0, it is (0,0). It isonly whenthe semi-cubical
parabola is seen as the projection of a smooth curvetlumioy plane that the truth of
the tangent at the origin becomes apparent. Ixhglaneit has zero lengttand does
not point in any preferred direction.

4. “Implicit Functions”

“Implicit functions” have bothered nier years. Tobegin with, they are not usually
functions in the set-theoretic meaning of teem. Most of thebooks Ihave ever seen
slide pasthe idea invarying levels of equivocation and misrepresentation. Set theory
has pushed umito thinking of an‘implicit function” as arelation betweenx and y.
However, the ones we meet in the calculus are of a very spgmal ocally they may

be solved in a regioaither tofind x as a function of or y as a function ok. The
example of the set of points on the cindley2= 1 is a case in point. FgrO0 it has the
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formy = +\J12 , fory<0 it can bey = /12 ,forx>0 it is x = +‘\/1—y2 , and

for x<0 itis x = —\/1—y2 :

Thus it seemghat all the “implicit functions” met in thecalculus may be locally
parametrized. If they cannot then tp@ph cannot be a curve and derivative can be
calculated. | would go further to conjecture that every “implicit functioet in A-level
can beglobally represented as a parametric functisr(t), y=y(t), wherethe variablet
has been eliminated from the relationship. In most cases found in sixtheikarbooks
this can be done using the length of the curve as the paraf@tenstancethe circle
given by x2+y2=1 can be parametrised ascod, y=sint for 0<t<2m. Thus, the
equation

X(t)2+y(t)2=1

really represents a curve in three dimensiohaly() space with tangent vecttrat can
be found by differentiating with respectttm give
dx dy
2Xge tyq =0.

Of course, thex] dy, dt have meanings as related lengths (wh&t8)dand we get

2x dx + 2y dy = 0,
or

dy

ax = xly.

The differential equation dx = -y dy hasmeaningfor all values ofx, y, evenwhen
y=0, for here, if & # 0, then the tangent vector is simprtical (as shownrearlier in
figure 7).

The derivativ% has groblemwheny=0 because it isndefined. Thusttempting

to think of an “implicit function” only as a relation in whighs given in terms ok can

lead to awkward questions being askedeatainpoints. Thinking of it as gparametric
equation wherg¢he t hasbeen eliminated nicellgrings itinto line with parametric and
composite functions.



5. Partial Derivatives

The reader mawish tothink how these visual idea®late tofunctions of morethan
one variable, say= f(x,y). In Supergraph® these graphs are drawn usiiges in the
directionx=constantandy=constantto give a rectangular grid die surface (figure
11). The two dimensional equivalent to local straightnelse# flathess which means
that any small part of thesurface approximates to plane. It can therefore be
approximated by a rectangular tiling where each flat tile is suitably small to gweda
approximation to theurface. Inpractice a fairlygood representation can be obtained
with a comparatively small number of tiles (figure bas a 10 by 2Qarray of
rectangles).

figure 12: A (locally flat) surface in three dimensions

One way of imagining the notion ofpartial derivatives is tdook alongthe lines
x=constantandy=constant Wheny is constant, say=Yyq, thenz is a function ofx,
z=f(x,yo). Traditionally the gradient of this graph is denotedtygx. But thisnotation
is misleading in that theorresponding notatiofor the gradientvhenx is constant is
0z/dy and, both cannot be thought of as quotients for incremgrasddy because the
value ofdz is not the same in each case.

Therefore we need a new notation. For figeatonsider the limit als— 0 of

f(x+h,y)-f(x,y)
h

which is normally denoted 3z/dx.

This is obtained by taking a cross-section of the surfacg=tamstant soz=f(x,y) is a
graph in two dimensions with as a function ok. In this case wean give thausual
interpretation of differentials. We will denote any change xinby dx and the
corresponding change ato the tangent line in the plane lx.d
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z=f(x,y for
y=constanfs
a function ofx
dzx
.............. e
-
X X

figure 13 : cross-section of the surface z=f(x,y) through a plane y=constant.

Likewise, taking a cross-sectioior fixed x givesz=f(x,y) as a function oy and we
denote by @ any increment ity and by @, the correspondingancrement to the tangent

line. Viewed in three dimensions this gives figure 14.

figure 14 : the tangent plane to z=f(x,y) at the point (x,y,z)
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It shows the plang=constant at the front with increment & and incrementz up to

the tangenplane. Meanwhilethe planex=constant hay increment g andincrement
dz, up to the tangentlane.The vertical distancérom the point in the tangent plane

vertically aboveX,y) to the point in the tangent plane vertically abouealX, y+dy) is
dz+dzy.
This is usually called theotal differentialdz
and
dz = dz+dz,.
If one so desires this can be rewritten as
dz,
dy
wherethe expressions%% , %Zyx
guotients of lengths.

are both partial derivatives, now expressed as

This is a whole lot more meaningful than the usual equation:

0z 0z
dz=3x% dx+W dy

where the partial derivatives areot quotients because thaz represent different
concepts in the two expressions.

6. Conclusion

What is the import of theuggestionsnade inthis article? Is it that wanust always
visualize everything in thre@r more) dimensions? Categoricaltpt. Becoming fixed

on visual imagery may evemake it difficult to generalize tdour and higher
dimensions which no longer have a physical counterpart. First and foré@ase of
visualization is to emphasize that the notation differentials has aperfectly good
concrete meaning anthat the manipulationsperformed can be considered as
meaningful arithmetioperations on lengths. Symbolismiisented to makehings
easier for us. We do not need to think of the pictures all of the time. Having established
a visual meaning we can then concentrate on manipulayingbols. But now the
symbol manipulation isbased on sensible foundations instead of being a “useful
fiction” that gives correctanswers for reasorthat are currently a totahystery for
virtually all students of the calculus.
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