TO PROVE OR NOT TO PROVE

David Tall

Introduction

There is a legendarstory ofthe sage who posethe question: ‘A normal elephahias four
legs; if an elephant’s trunk isalled aleg, how many legsdoes ithave?’ He asked a
mathematicianywho continued to stare at a pile of paperwhich he was scribbling as he
muttered: ‘four and one make five’. Next to him a philosopher mes@mnaticallyand puffed
for a few moments on his pipe before observing: ‘The fact thatdtlisda leg, doesn’thange
the fact that it i;mota leg, so thenswer iour. ‘Excuse me,’ said a passing zoologigta
trunk is classified as a leg, clearly this will also applyhetail, so it hassix legs,and it's an
insect’. Alogician joined the conversation: ‘Aormal elephanthas four legsbut you did not
actually say thathis elephant is normal, so there is insufficient evidence...’

Continuing to seek enlightenment, the sage in his wisdom p#ssgdery on to astatistician
who returned thdollowing day asserting ‘thenean is0.33’. ‘Might | ask how youcame by
this information?’ queriedhe sage,concealinghis innermost thoughts behind arscrutible
smile. ‘The bestway to solve such a question isdbtain empiricainformation,’ replied the
statistician, ‘so Iwent tothe localzoo and got thenswer fromthe horse’s mouth, so to
speak. Two elephants refused to respond and the third blew his own trumpet just once.’

Still bemused thesage went along tthe localschool which wasdeeply embroiled irGCSE
investigations and once again stakesl problem. ‘That’s a verijnterestingquestion,’ said the
teacher.

The moral ofthis story is that, as Humpumpty oncesaid, ‘when | use a word, fheans

just what | want it to mean, and nothiegse’. The term‘proof’ is just such aword. In
different contexts it means very different things. To a judge and jury it means something estab-
lished by evidence ‘beyond a reasonatideibt’. To astatistician it means something occuring

with a probability calculated from assumptions about the likelihood of certain events happening
randomly. To a scientist it means somethimagt can be tested — tpeoof that waterboils at

100° C is tocarry out an experiment. lathematiciarwantsmore — simply predicting and
testing is not enough — for there may be hidden assumti@ishe water boiling islways

carried out at normal atmospheric pressure and not, say, on the top of Mount Everest).
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Problem Solving and Convincing Arguments

When a problem is encounterdde question of providing a convincing argumentexplain
the solution ofterarises.The book ‘Thinking Mathematically’ byJohn Mason].eoneBurton
and KayStaceyhas alarge number of problem-solvingjtuations.One is theproblem ‘into
how many squares can you cut a square?’.

Faced with such a question, ymight begin by thinkingas many asyou like’, or ‘infinity’.
Thenyou may begin taealize that asquare could beut into 4, 9 or 16 by dividing it into
pieces of equasize. If youplay about withpossible ways otutting asquare intasmaller
squares, youmay suddenly sedhat any squarecan be be cut intdour smaller squares,
including the smallesquares themselve&ha! A square could beut into four quarters and
one quarter cut into four again, losing the quarter as a counted square but fgaingmaller
ones — so a square can be cut sgeensquares.

figure 1: cutting a square into seven squares

Cutting any of the squares in this picture into four squares thves extresquares. Thus it is
possible to cut a square into 7 squares, 10 squares, 13 squares, 16, 19, 22, ... and so on.

figure 2: cutting a square into ten squares

It is easy to see that IF a square can be cuhistjuares THEN it can be cut ima3 squares.
It is this general result which is the key to #@ution ofthe problem. For instancef | could

cut asquare intcsix smallersquaresthen | could do6+3=9, 9+3=12and soon, to get the
sequence 6, 9, 12, 15,If.1 could cut a square infove smaller squareghen | could get the
sequence 5, 8, 11, 14, ..., and so on.d2ut ?



One attacksuggested by students is to look gicture likefigure 3, and to propose that, by
rubbing out a number of lines in a three by three subdivision it is possible to “glue four squares
into a single square”. This gives one big square andsfivallersquaresmakingsix squares

in all.

figure 3: cutting a square into six squares (one big, five small)

This can then be built on by subdividing any of these squares into four smatlet,asquare
into 6+3=9, 9+3=12, ... to get the sequence of possibilities: 6, 9, 12, 15, ...

If you could cut asquare intofive squares, it would be possible get the sequence of
possibilities 5, 8,11, 14,... Then itwould be possible to dall possible humbers 4 and
above, using the combination of the three sequences

4, 7, 10, 13, ...
5, 8, 11, 14, ...
6, 9, 12, 15, ...

But canyou cut a square into five smallegquares®nestudent, Paul, suggested to that if

you can dan squares you can de-3 by joining a block of four squares together as in figure 3.
Is Paul's suggestion correct? It is certainly truenfe®, as figure 3 shows, but istitie for all
whole numbers?

There is awell-known story ofthe experimentaphysicist whoclaimed toprove that 60 is

divisible by every othenumber. Hecame tothis conclusion by considering a sequence of
cases to establish the pattern: 1,2,3,4,5,6 and then moved on to a few others at rdeslom to

out the theory 10,12, 20, 30and concludedhat his resultwas experimentallyerified. He

was surpassed in this endeavour by an engineer who noticed that all odd numbers seemed to be
prime... One -well that's anoddity, but we’ll include it in —three, five, seven, gooave’re

getting somewhere — nine ? Oh, nine... Let’s leave that a moment — d¢kentean —fine. The
exceptional case of nine must have been an experimental error.

This story, which Iclaim bears no relationship to akyown physicist or engineeliying or
dead, doedlustrate the important difference betwegamoof by looking at a number of cases
and proper mathematicptoof. It isnot enough to consider just a numbercases, foall of
them may haveome hidden commoassumption. For instance, vmaight conclude from a
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number of experiments that water always boils at 100°C because we never have the experience
of trying to boil water on the top of Mouriverest. Scientific proof depends on the
predictability of experiments: that we conjecture thdien wecarry out an experiment it will
have a predictedbutcome. Such proof is na@ppropriate in mathematioshere we must
provide a logical argument that the conclusion follows from explicitly stated assumptions.

To help the student focus on the various stages of putting up a convincing argument, ‘“Thinking
Mathematically’ suggests three stages:

convince yourself,
convince a friend,
convince an enemy.

The idea is first to get a good idea how and why the result works, sufficieslig¢eeits truth.
Convincing oneselfs, regrettably,all too easy. Sopleased is the average mortghen the

‘Ahal’ strikes that, even if shouting ‘Eureka’ and running down the street in a bath towel is de
rigeur, it is very difficult tobelieve that thdslinding stroke of insighimight bewrong. So the

next stage is to convince a friend - anotsteildent, perhaps - which htee advantagéhat, to
explain something to someone else at least makesameutthe ideas intisome kind of
coherent argument. The final stage in preparing a convincing argument, according to ‘Thinking
Mathematically’ is to convince an enemy - a mythical arbiteyawd logic who subjectsevery

stage of an argument with a fine toothcomb to seek out weak links.

A student might very well convince himself of the truth of the argufiént can cut essquare

into n smaller squares, THEN I can cut the square rt® squares”. Henight even convince
a friend byshowingpictures such as figure 3. But anemy might put up figure 4yhere a
square is cut into eight smaller squares (selrersamesize, plusone biggerone). Herethere

is no set of foursmallersubsquares in a group whican be amalgamated intme larger
square to reduce the eight sub-squardwésub-squares.

figure 4: cutting a square into eight squares, but not into five

Does this blow, which demolishes Paul’'s theatypw thatyou cannot cut aquare intdive
smallersquares? No it does not. It suggabtt Paul's methoddoes notwork, but perhaps
some other method will...



The problem which | leave you to formulate precisely and prove has two parts:

(@) Findall numbersn suchthat asquarecan be cut intan smallersub-squares
andprovethat this is actually possible for every such nunmber

(b) For all the numbens notincluded in pari{a), provethat it isnot possible to
cut a square into such a number of smaller squares.

You should certainly have a go at this before moving to the next section.

Making Precise Statements

Proof requires aareful statement cissumptions and a precisegumentshowing how a
clearly stated result is deduced. It is surprising how often wethagsct that a statement has
implicit, unspoken assumptions. Look at the square problem. Into how many squares can | cut
a square? For what numbers is tiospossible?

If a square is cut into more than osguare there will be a corner of a smallequare ineach
corner of the originakquare. Thus, ithere is more than orequare,there must bet least
four. There cannot bavo or three. Perhaps yanight like totry to extend this argument to
cover other cases which you suspect cannot be done (if there are any...).

| have given this problem tbundreds of undergraduates oube years and we have all
eventuallyagreed on which values nftannot be done. It has become quite a party piece which
| have also tried out with many sixthformers.

It was ten yearsafter | first met theproblem that a perceptiviourteen year old girl in a
problem-solving session came up with an original thought. She suggesttwtpatblem had
notexplicitly stated that the paper could not be cut and then glued together again in a different
way. Her solution fon=2 is given in figure 5.

figure 5: sticking together bits to cut a square into two squares
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This illustratesthe fact that wemust be extremely careful abouhow we phrase our
assumptionsBefore figure 5 thdunspoken) assumption hagen that wenust make single
straightline cuts to form whole subsquaraad we are not allowed to cut into smalerts
(saytriangles) and to stickhem togethemagain. The original problem is better specified by
saying:

Square problem version 2 A square iscut into n smaller squares by

making single straightne cuts, without joining together cuparts intolarger
wholes. What are the possible valuesdf

The exceptionatases founaarlierwould still be exceptions to thibetterphrased problem.
Figure 5 would nowfail to be a counter example tois because it breakbe rule about not
sticking together cut parts into larger wholes.

However, figure 5 does suggest a different problem:

Square problem version 3 Into how manysubsquares is it possible to
cut a square, if it is allowed to join cut parts into large wholes?

The answer to problem version 3 is likely to be different from that to version 2. You should see
if any or all of the ‘impossible’ numbers from version 2 nogcomepossible’. For instance,

in figure 4 we can clearly take any four of the smatgnares andhove them together to glue
them intoone medium sizesquare. Thus, if weallow sticking together wean re-form the
square in figure 4 intfive squares oflifferent sizes: onéarge, one medium, anttree little

ones. With a little ingenuity perhaps you caivethe casen=3 for version 3 othe problem.
Perhaps now yowgan specify thesolutions ofboth problems.They will be different. This
shows that precision in making mathematical statements is all important.

Three men were going by train to a conference in a distant region of the Kimiggtbm. The
engineer looked out of theindow andsaid, ‘Look, all the sheep in Scotlandreblack’. The
theoreticalphysicist thought for aoment andsaid, ‘No, thereexists afield in Scotland in
which all the sheepareblack’. Therewas silence fromthe logical mathematiciawho mused
for sometime in thecorner of the compartment before declariNg, thereexists afield in

Scotland in which all the sheep are at least half black...’

Making appropriate deductions

Once we have got precise statements ofag®imptions (P) underlyingtleeorem and what it
is we are trying to prove (Q), themaathematicaproof of the theorem is in théorm “IF P is
true THEN Q is true”. In everyday languathe conventionsare sometimedifferent. “If your
father comes home befosex o’clock thenyou can havesomechocolate before dinner-time”.
Here the assumption P is “father comes home before’dixck” and the deduction Q is “you
can have chocolate before dinner-timEresumably fathebrings the chocolate and if he
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arrives sufficiently early you can have some without spoiling your appetite. Butadtoned

in the statement that IF fathdoes notcome homebefore six o’clock, THEN yowvill NOT

have chocolate before dinner-time. There is often an implication in everyday language that IF P
happens THEN Q will follow, but IF P FAILS THEN Q FAILS ALSO.

In mathematicsuch an assumption ot made. Here a proof ithe form IF P THEN Q
simply requires that if P is true, then Q must be true also. If P is false, then no implication as to
the truth or falsehood of Q is necessary.

Consider the example:
If x>6 thenx>3.

In mathematics this is considered a true statemertidfa number bigger than 6 then it must
also be bigger than 3. However, consider thisggmrate statements, where Pxs6” and Q
is “x>3". Whathappens for various values x# If x=7 then P is true and Q is alsae. In
fact, whernx is a number bigger than 6 then P is true and it will follow also that Q is true.

But if x=5 then P is false but Q is true, and=if8 then P is false and Qfialse. Thus when P
is false, Q can be true or false. We simply have no interest what happens in this case.

Common Errors in Proof

Students often make quite serious errors in proof on examination papers. As &E3ammer
in Mechanics for many years | regularly had to mark questions which said something like this:

A particle mass M rests on a rougtlane with coefficient of frictionu,
inclined to the horizontal at an angie Showthat if the particleslidesdown
the plane then tarpp.

What students often do is to assumetgnand deduce that the particle slides. They lzaen
asked to prove IF P THEN Q where P'ise particleslides” and Q iStana>u”. They often

prove IF Q THEN P. In thisase it happerthat thetwo thingsareequivalent. P happens if
and only if QhappensBut the question only asks fathe implicationfrom P to Q and the
students only prove the implication from Q to P.

You might feel that this is a trivial matter. But logically it is totadroneous. Irmathematics it
often happens that IF P THEN Q is true but IF Q THEN P is false. For instanceué tisat
IF x>6 THEN x>3, but the otheway round: IFx>3 THEN x>6 is clearlyfalse. Thus it is
important to distinguish between the two. The statement IF Q THEN P is callsahtreseof
the statement IF P THEN Q. It is important to distinguish between the prodtateanent and
the proof of its converse.One may bdrue and the other may Healse. Another example
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occurred with the case of “into how many squaras | cut a squargiversion 2). It istrue to
saythat if asquarecan be cut inta pieces then it can be cut inte3 pieces.The converse,
that if it can be cut into+3 pieces it can be cut intopieces idalse, ascan beseen from the
casen=3,5.

There is one case in A-level that (almost) everyonewing. It is to dowith the constant of
integration: that ifj f(x) dx =F(x), then any other integral is of the fof(x)+c wherec is a

constant. This is usually deduced from the fact that the derivative of a canistarero.Hence
the derivative of(x)+c is the same as the derivative (k). However,the deduction idalse.

Let P be the statement tiafx)=F(x)+c and Q be the stateme@t(x)=F'(x). Then, because
the derivative of a constant is zero we can deduce that IF P iSHifEN Q is true.What we

cannot do is to deduce the converse: IF Q is true THEN P is true.

It is actually possible to have Q true and P false. As an example, let
G(X)=1/x

and let

1/x+1 (x<0
F(x)= ﬁl/ﬁz %<<>o))

then bothG(x) andF(x) have derivative —%#. Thefact that there is a differesbnstant added
to F(x) for x<O0 andx>0 does notffect the derivative because thés® parts ofthe domain
are totallyseparate. (In forminghe limit of (F(x+h)-F(x))/h, ash tends to zero, wheh is
sufficiently small, both~(x) andF(x+h) will have the same added constant.)

Oh, you may say, that's cheating, we don’'t normatigetfunctionslike that in thecalculus...
No we don’t. Nor do we normally have the persosgberience of boiling water on the top of
Mount Everest, which would prove that water doesn’t always boil at 100° C.

To be surethat the mathematics withlways work it is necessary tstate precisely the
assumptions and to take great care over the deductions. This proves to bearatHadeed it
tends to be the province of university pure mathematics rather than A-level.

You mayfind the accent opreciseproof in mathematics rathezsoteric.Other scientists are
known to make such jibes at mathematicians. Indeed they sagapaellwhether someone is

an engineer, physicist onathematician betting fire tohis wastepaper baskéthe engineer

will make a cursory calculation and swamp the basket with enough water to put out the fire and
more. The physicist will sitdown, calculate exactiyhow much water is needed amaur the

exact quantity on th@re. The mathematician? The mathematician grlldown and calculate
exactly how much water is needed.



Thus the mathematiciarstandsaccused of developing a precise thedimat is devoid of
application. This could not be further from the truth. In our universitb@sputer scientists are
growing increasingly worriedhat students no longeseem to understanttie finer points of
proof. This is especially true sincthe demise of Euclidean geometmhich was largely
concerned withthe ritual of deducing one statement abowgeametricalfigure from given
assumptions. Inay haveserious consequences. As we usgeasingly more sophisticated
software to run outives we need computer scientists and programmeére can write
provably correct software that does not contain horrendags —unlike thekind of software
that caused the stockmarketash because was designed tsell undercertain conditions
which occurredate one Friday and causede computers tattempted tautdoeach other as
the selling fed back into the system causing even more selling and then eventual collapse of the
market.

It is therefore even more important taday’s technologicalclimate to pay attention to the
niceties of well-formulated statements dadical deduction.“To prove or not to prove” is a
guestionthat can havenly oneanswer, for proof is amssential component of technological
order in the future.



