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Introduction

It seems self-evident that the waytéach mathematics is &tart from simple concepts
familiar to the learner and to build more complex idsasugh a sequence attivities
growing steadily in sophistication. It is a salutagperience to learn that a curriculum
carefully built in this way can cause seriaiculties in learning.The problemarises
because the human mind does not operate in a logmaher. Insteadvolution seems
to have given us powerful patterning mechanism that recognir@gplicit regularities
in a given context and leads to each of us forming our own personal conagptof a
mathematicatoncept. By presentingnathematics to a learner in a simplifiedntext,
we inadvertently present simplified regularities whistome part of the individual
conceptimage. Later these deeply ingrained cognitive structuces causeserious
cognitive conflict and act as obstacles to learning.

The computer offers new possibilities. Instead of building from simple to complex, it is
possible to construct appropriate software environmentfiéolearner to explore more
complex ideas fronthe outset. This form ofearning involves a negotiation of the
meaning of the mathematicabncepts modelled by the computer which the
organization of the curriculum and the role of the teacher is crucial.

The presentation will considéneoreticalperspectives ancklate them to theesults of
empirical studies inalgebra and the calculaesigned to promote versatile learning of
higher order concepts using the computer.

Published irFor the Learning of Mathematic8,3 37—-42 (1989).



Mathematical Beliefs and Cultural Values

As we face the many changes thatrtleg technologyoffers we should be prepared to
stand back and see the way in which shared experiences in a society causaaisrto
various ways to newultural elements. In particular it is beholden rrathematicians
and mathematics educators to honestly re-evaluate their concepts in a way which will be
most valuable to society:

Mathematicians themselves seem prone to ignore or to forget the cultural

nature of their work and to become imbued with the feeling that the concepts

with which they deal possess a “reality” outside the cultural milieu - in a sort of

Platonic world of ideals. Indeed, some mathematicians seem to be completely

lacking in the insight that the modern physicist has attained - the recognition

that even his observations, as well as his concepts, are coloured by the

observer. How much more this must be the case in mathematics, where the

conceptual has gradually gained primacy over the observable?
(Wilder 1968, preface, page viii.)

Anthropologists study variougultural forces that operatewhen new ideas are
introduced. Cultural elements move from one culture to another bgracess of
diffusion There is often aultural lag, in which new elementske time to become part
of the culture and sometimes a positoudtural resistancavhere newelements fail to
replaceold, successful onedhe result is a complex mixture of old andw, as in
Britain wherethe metricsystem haseen formally adopted but thamile has been
retained for geographical distances and the pint as a measure for milk and beer.

The introduction of the computer will sesich cultural forces in play. Some new
elements, such as desk-top publishiagg already ssuccessfuthat they are quickly

becoming part of the new cultur@ther element¢such aghe provenvalue of the use

of the computeffor improving learning) will, rightly, be subject to cultural lag and
resistance, fothese essentigbrocessesstabilize thesystem and prevent us from
tripping butterfly-like from one new idea to another.

In the new technological paradigm we muatl reflect deeply on the nature of the
mathematics required, both in terms of subject matter andaket is organized in the
curriculum. This requires a careful re-evaluationoofr fundamental premises and
beliefs, for our previousxperience in a pre-computer paradigm may al@tays
provide us with appropriate intuitions tmake the right judgements in the new
technologicakera. Hence the neetbr both reflective thinking and carefullgesigned
research.



Concept Images

The culturalforces operatingare essentially the global product of the interactions
between individuals and theay that we come t@ee theworld. At any stage we can
only make sense of our observations usitige cognitive structurdhat we have.
Physically this is produced throughe connections formed iour brains due to
external impulses and internplocessing; wemake sense of newinformation by
making new connections anceorganizingour cognitive structure. It is no wonder
therefore that this structure may not be totally coherent:

We shall use the term concept image to describe the total cognitive structure
that is associated with the concept, which includes all the mental pictures and
associated properties and processes. ... As the concept image develops it
need not be coherent at all times. ... We shall call the portion of the concept
image which is activated at a particular time the evoked concept image. At
different times, seemingly conflicting images may be evoked. Only when
conflicting aspects are evoked simultaneously need there be any actua
sense of conflict or confusion. (Tall & Vinner 1981, p.152)

We now knowthat many natural learningrocessesntroduce conflictsFor instance
the experiences in theestern world ofreading left to rightproduce difficulties in
algebra when pupils try to make sense of an algebraic expression such as

2+3a.

Processed from left to righthe childfirst compute2+3 as 5 tayive the result as 5a.
When this left-right processing is further violated by the introductidora¢kets,more
difficulties occur. Children are told to "calculate the expression in brackets first, so

2(a+b)

must be calculated first by adding a to b before multiplying by 2. peeess this is
quite different from 2a+2Db, althoughe resultsare thesame.Until the child is able to
conceive of an algebraiexpression as anbject rather than gprocess, algebraic
manipulation can therefore cause cognitive conflict.

More generally, when ideas are presented in a restricted context, the coaggEpmay
include characteristics that are trugthrs context but not igeneral. For example, the
tangent to a circléouches thecircle atone point only andloes notcrossthe circle.
Vinner (1983) observedhat manystudentsbelieve that a tangent to a more general
curve touches it, but may not cross it.When students were asked t¢hdréamgent to
the curve y=% at theorigin, manydrew aline a little toone side which did ngpass
through the curve.



In Tall (1986) a computer graph plotter was used to providehar context taliscuss

the tangentoncept.The software drew graphs anglas capable ofdrawing aline
through two veryclose points orthe graph to give gractical approximation to the
tangent. This allowed investigations of graphs with corners and the tangent to graphs at
an inflectionpoint. Three experimentajroups who usedhe graph plotter andfour

control groupstaking a standard calculus course were askattda atangent to the
following graph at the origin:
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Only 22 out of 65 control students (34%) drew the correct tangent Thirty students
(46%) drew the tangent moved rountlkite so that itlooked as if it touched the curve
at only one point. The remainder were not able to cope with the task at all, agkatting
the tangent could not exist because:

The graph is two separate functions, and there is not a tangent at x=0

or

... because the tangent should touch the line at one specific point but this
tangent would touch it constantly.

In the experimentafjroups 31lout of 41 (76%) responded withe correctlydrawn
tangent whilst only 8 (20%) moved it a little to touch at only one point (significant at the
0.01 % level).



Using the Computer to provide a Predictable Environment for Learning

Skemp (1979page163) makes a valuable distinction between differemtdes of
building and testing conceptual structures in the following table:

REALITY CONSTRUCTION

REALITY BUILDING REALITY TESTING
Mode 1 Mode 1
from our own encounters with actuality against expectation of events in actuality
experience experiment
Mode 2 Mode 2
from the realities of others comparison with the realities of others
communication discussion
Mode 3 Mode 3
from within, comparison with one’s own
by formation of higher-order concepts existing knowledge and beliefs:
by extrapolation, imagination, intuition:
creativity internal consistency

When | wrote my firstprograms forexploration of the ideas of the calcul(Eall
1986b), it was myintention to provide a mode 1 environmdot older students to
exploremathematicatoncepts as a foundation fire moreusualtheoreticalmodes 2

and 3. However, Heine Bauersfaldnvinced me that thiactile and enactive activities

of mode 1 are absent from computer interaction, (although the Macintosh interface now
re-introduces the enactive element to some extent).

Changes ircognitive structure are due t@w connections ithe brain as a result of
either external stimuli or internglrocessing. From a&onstructivist perspective the
individual may be seen as acting on stimuli either from the outside, onittmm. The
action within the brain igeflectivethinking (Skemp’s mode 3). | now findhelpful to
distinguish at least three different sources of external stimuli:

inanimate cyberneticandinterpersonal

Inanimatestimuli comefrom objects inactuality which the individual may
also be able to manipulate.

Cyberneticstimuli comefrom systems whiclare set up t@actaccording to
pre-ordained rules.

Interpersonalktimuli come from other people.

The last of thesecorresponds to Skemp’mode 2, whilstthe first two are a
modification of his mode 1.



The inanimatesourcesare passive- they require the individual to manipulateem
actively for building andtesting ofconceptsTypical examples are Dieneblocks or
Cuisenaire rods. Cybernetic sourcesraeetive- again the individual may act on them,
but the environment now provides feedback according to the inbuilt rules.

Generic Organizers

Ausubel et al (1968) defined advance organizeas

“Introductory material presented in advance of, and at a higher level of
generality, inclusiveness, and abstraction than the learning task itself, and
explicitly related both to existing ideas in cognitive structure and to the
learning task itself ... i.e. bridging the gap between what the learner already
knows and what he need to know to learn the material more expeditiously.”

Such aprinciple requiresthat the learnerlready has the appropriate higher level
cognitive structurevailable to him oher. Insituations where thimmay bemissing, in
particular when moving on to more abstract ideas in a topic for the first time, a different
kind of organizing principle will benecessary. Tacomplement the notion of an
advancedorganizer, inTall 1986a | defined ageneric organizer to be an
environment (or microworld) which enables the learner to manipeia@mples and (if
possible) non-examplesof a specificmathematical concept or a relatsgistem of
concepts.The intention is to help the learner gain experievekeh will provide a
cognitive structure on which the learner may reflect to build the more alsirespts.

| believe the availability ohon-examples to be of great importance, particularly with
higher order concepts such as convergeoestinuity or differentiability, where the
concept definition is so intricate that students often have difficulty dealingwiigm it
fails to hold.

Many of the pieces of concretgpparatus used imathematicsteaching, such as
Cuisenairerods orDienesblocks, function asinanimate generiorganisers on which
children may operate to build anchoring concefus mathematicalabstractions.
However,these ofterfocus on what @onceptis, rather than what it ismot. (Dienes

blocks embodythe notion of humbebase andhe process of handlinglace value

when performing arithmetic operations. Non-examples of these concepts seem to be of
little relevance.)

A simple instance of a generic organizer embodying both examples and non-examples
is the “Magnify” program from Graphic Calcul@$986) designed tallow theuser to
magnify any part of the graph of any input function.
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Tiny parts ofcertaingraphs under higimagnification eventually look virtually straight
and this provides an anchoringpnceptfor the notion of differentiability.Non-

examples in the program afernished by graphs whichave corners, orare very

wrinkled that they neverlook straight, providing anchoring concepts for non-
differentiability.
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Generic difficulties

Given the human capacitfor patterning, andhe fact that the computer model of a
mathematical concept ound to differ fromthe concept irsome respects, we should
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be on the lookout for abstraction of inappropriate parts of the mdidakl illusions in
interpreting graphs have been documented by Goldenbd@88 and byLinn &
Nachmias, 1987. In the latter case, one third of the pupils observing a cooling curve of
a liquid on a computevYDU interpreted the pixellated image of teaph as truly
representing what happened to the liquid - constant for a tir@esuddenly dropping

a little (to the next pixel level down).

Even when there appears to be a large measure of understanding of what is happening
on the computer screen this involves some mental construction as tthevlsamputer

is actuallydoing. InTall & Winkelmann(1988) we describethree differenkinds of

insight:

External, analogue, specific

Externalinsight occurs when the user has no idea what is going on inside the computer,
but has knowledge which allowsm or her to checkhat theresultsare sensible.For
instance the usermay have no idea of the algorithm beinged bythe computer, but

may have other knowledge that allows him or her to checkethdt, orthe usermight
explore the software extensively to note any regularities and proposéded ofhow it

is working.

Analogueinsight occurs whethe user has andea of type of algorithm imuse, for
instance, knowing that a root of an equation is being computed by the Newton Raphson
rule, but is unaware of precisely how this implemented.

Specificinsight is wherthe user isfully aware of how the software is programmed
(though this, in practice, remains omggrtial for, even if theuser knows how aigh-
level languageworks, the implementatiorwithin the hardware islikely to include
features that are not understood).

Specific insight into computesoftware is rarely possible aven desirabldor the
majority of computeusers,but it is helpfulfor the student to have at leastternal

insight or, preferably, analogue insight. Here an external agent - a teacher - is desirable.
The concept image of a cybernetic system constructed in the mind of the user is likely to
be idiosyncratic and the teacheas afundamental role to plathrough guidance and
discussion. have elsewhere described the combination of a human teacher as guide
and mentorusing acomputer environmenfor teaching, pupil exploration, and
discussion as thenhanced Socratic Mod# teaching and learning (Tall 1986a).



Starting points for new curriculum sequences

Generic organizers on a computer allow us to devetp sequences iourriculum
development starting, not fromathematicafoundations but fromcognitiveroots. A
cognitive root is an anchoring concept which the ledinds easy to comprehend, yet
forms a basis on which a theamay bebuilt. For example, studenfdaying with a
graph magnifying program invariably formulatbe notion of local straightness
(looking straight under high magnification) - in fact they often proposdeswhich is
more subtle: the higher the magnification, tbever the curvature.Local straightness
proves to be a&ognitive rootfor the calculus. A student with thiglea carlook along
the graph of docally straight functiorand see the changimgadient,particularly if a
generic organizer is availablhich scansalong thegraph and builds ughe gradient
graph at the same time.

Without guidance the student would be unlikely to disc@llethe subtle and powerful
ideas embodied in this organizer. Fitstre is an impliciassumptiorthat thedrawing

of the originalgraph faithfully representthe gradient, inthe sensethat there are no
small oscillations on thgraph,too small torepresent. It usually needs a teacher, as
mentor, to suggeghat studentsmight reflect on hidden oversimplifications their
ideas by trying to think ohon locally-straightgraphs, such as thosgth “corners”
(such as y=p1]|) or withtiny oscillations(such as y=cosx+sin(100x)/100) fractal
graphs which don’t magnify to look straight at dlhese non-examples allow students
to understand not onlthe concept of a differentiablieinction, but toobtain some
experience of what may happen to cause a function to be non-differentiable.

Those experienced ithe current curriculum initiallytell me thatthey considersuch
ideas very deep and too subtte pupils to graspbut their experience gained over
many years in a pre-computer technology is misleading. Gthen appropriate
facilities, the reverse is true - students of quite modest abilitieattzark theideas with

a vigour that surprises the classroom teacher.

The difference between a mathematical and a cognitive approach

In designing a curriculunthe mathematicianries to “simplify” things, tohelp the
student, by reducinthe number of variablesvolved. For examplehe mathematical
concept of a derivative requires the limit of the expression

f(x+h)-f(x)
~—h



as h tends to zero, whidan be made mathematically “simpler” fiying x and only
allowing h to vary. The mathematician’s sequence of activitiethe beginning of the
calculus consists of:

(a) an “intuitive” approach to limits
(b) fix x to calculate the limit of K&?‘ﬂ& as h gets small and call the limit f'(x)
(c) vary x in f'(x) to get the derivative as a function.

Mathematics educatioresearchshows cognitive obstacles aachstage. Inthe first
place,the geometric idea afising asecant approaching a tangent is not cognitively
intuitive in the sense that it does not occur spontaneously. It also produces a number of
cognitive obstacles, for example, that matydentsencapsulate thprocessof getting

smaller as aonbjectthatis arbitrarily small - a cognitive infinitesmal (Cornu 1981).

An alternative sequence is:
(a) explore the notion of local straightness
(b) visualize the changing gradient of the graph as another graph

(c) relate the visual picture of the gradient to the numerical algorithm to
provide analogue insight into the underlying numerical computer process

(d) relate these experience to other representations, including the numerical
and algebraic limiting processes.

The new School Mathematics Project 16-19 curriculum - designed by tefmhtrsir

own use in schools - is based on this approEcwever, | foundhat culturalforces

in the teachers operated in an unexpected way. So disenchanted were they with student
difficulties with symbolic differentiation from first principleébkat the final link(d) has

been postponed to the second yeathefsyllabus. It concerns me teethat this final

link is notcemented early - in thierst year the students do noeven differentiate %

from first principles.

The cognitiveroot of local straightness isecalled as amnchoring concept whenever
new conceptsare introduced in theés.M.P. curriculum. For instance, first order
differential equations - where dy/dx is known as a function of x andrg approached
using ageneric organizecalled theSolution Sketcher a piece ofsoftwarethat will
draw a shortline segmentthrough a point withthe gradient calculatedfom the
expression for dy/dx. The student moveslthe segmenaround withthe cursor keys
(or mouse if the computer has one) and can leave the imprint lrig¢hg@egment at any
stage by pressing the space bardmking themouse). In this wayhe usercan enact
the building of asolution of a differential equation by fitting togethshort line
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segments end to end to give an approximate solatiore. Once thecognitive root is
established, the process is speeded upubymating the numericgrocess Again the
formalities of solving the equations symbolically have been postponed to a later time.

Versatile learning

Generic organizers may hesed togive a more overall holistigrasp of concepts,
linking them together in global, often visualway, asdistinct from the accent on
learning sequentigirocesses afmathematics in the traditionalirriculum. The plan is
to useglobal/holistic insight to provide a contexor relational understanding of
logical/sequentialprocessing.The combination of the complementarjodes of
global/holistic and logical/sequential learning is termexsatile(Brumby 1982).

Thomas (1988)developed a versatile approach to variables in algebra combining
several different modes of operationcyberneticenvironment involving both pupils
programming and using software é&waluate algebraiexpressions numerically, an
inanimateorganizerusing boxes witHettersfor labels and numbers insider values,

and interpersonalcooperation with other pupils aride teacher.The purpose of the
physical manipulation oboxes is tagive analogue insight into the@ay the computer
handles variablesThe software toevaluate expressionsaccepts either computer
notation ormathematicahotation andprovides acybernetic environment tevaluate
single expressions or mmpare theesults of two expressions, such as 3add 7a

or 2(a+b) and 2a+2b or#4)/(x-1) and x+1.

The improvement of experimental students over matched cohaisslseen documented
elsewhere (Tall & Thomas, 1988), but an analysis of student comments in interviews is
even more revealing (Thomas ®all 1989). Control pupils learningalgebrathrough
traditional manipulation ofsymbols weremuch more likely to readexpressions
sequentially fromeft to right and lessable tosee expressions or subexpressions as
objects in theirown right. Thusthey were mordikely to misread2+3c as 5c or

6 , N , :
consider; as different from 6+7 because the first is a fraction and the second is a sum.

Having solved 2p-1=5 to fing=3, faced withthe equatior2p-1=5, the experimental
students were more likely to see the equations were essetht@akame and bable to
say why, as can be seen from these comments taken from Thomas & Tall 1989:

Experimental (computer) group :
Pupil 1 : | can say that p and s have the same value...it's the same sum.

Pupil 2 : Well they are both the same...Yes, because they are both the same
but different letters.
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Pupil 3 : They are both...p and s both equal 3.

Pupil 4 : It's just a different letter but it would have to be 2 times 3 minus 1
equal to 5.

Pupil 5 : The same. Just using a different letter.

Pupil 8 : It is 3 the p and s...because they are basically the same sum, but are
different letters.

Pupil 9 : They are both the same. It's the same apart from the letters,exactly
the same except the letters.

Control group :
Those unsure of the relationship :
Pupil 10 : s could be 3 as well.
Pupil 12 : So s could be 3 as well.
Pupil 13 : They could both equal 4.
Those who needed to solve both equations:
Pupil 11 : Well what | have put is 2p equals 6 and 2s equals 6.

Pupil 14 : 2s...add the 1 and 5, 6 er 2 and 2, 6, 3 times, so s is 3 as well.

When they were then faced with the equation

2(p+1)-1=5,

the experimentadtudents werenore likely to see the linkwith the previous example,
noting p+1=3, so p=2, whilghe controlstudents werenore likely to feel the need to
start from scratch by multiplying out the brackets.

In addition to the evidence from the calculus and the early learnialgebra, wenave

further evidence of the enhancement of versatile learning in the linking of the algebraic
symbols for linear forms and the shapdtd straightine graphs using a gragblotter
(Blackett 1988), and in theuse of software tagive pupils abetter insightinto
trigonometric ratios (Blackett, in preparation). In the latter case, pupils were asked what
happens to the angles of a triangle if the side-lengths are doubled. Those using software
which drewtriangleswhen given appropriate datall realized that theangles were
unaltered. Of a lesable group taking a more standard paper apencil approach
(including drawing picturesppproximately three quarters assertédt the angles
would be doubled in size.

In the early seventies, long before computebgcame a practical reality in the
classroom, Skemp commented that it is an accident of evotbabhomosapienshas
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modes of verbal output and input through speechhaading, amode of visual input
(sight) but no mode of visual output:

“We have built-in loudspeakers, but not built-in projectors.”  (Skemp,1971)

He analyzed the different characteristics of algebraic and visual symbolism: the former
he saw as analytic, detailed, logical and sequential, the latter as integrative, holistic, and
capable of simultaneous representationiddas. It is mybelief that traditional
mathematics emphasizes the symbahd sequential at the expense of ititegrative

and holistic and that, whilshe proving of mathematicaideas require¢he former, the
building of suchideas also requirethe latter. Suitably programmesbftware can
provide a tool which compensates for the human deficiency in visual communciation.

The computer gives us an unrivalled opportunity of building newicula thatredress
the balancetowards amore versatile form of thinking appropriater the new
technological age.
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