
Hidden Algorithms and the Drawing of
Discontinuous Functions

David Tall (Warwick University, U.K)
& Bernard Winkelmann (Universität Bielefeld, Germany)

As computer software is increasingly used in mathematics, we are having to face the

problem that we may not fully understand precisely what is going on. There is a

genuine cause for concern that the hidden algorithms used by the software are

deceiving us. We should therefore carefully distinguish different ways we may claim

to "understand" an algorithm.

We will illustrate these difficulties by considering the problems encountered in

designing graph-plotting programs. We will demonstrate a novel way of drawing

graphs that (usually) shows a truer picture than most graph-plotters and use this

example to suggest a categorization of different modes of insight into the operation of

computer algorithms.

Difficulties with graph plotters

There are many function plotting programs on the market, but none of them actually

plot the true graph of a function. Essentially they either plot individual points, which

is very time-consuming, or they do the best of a difficult job by plotting points and

joining them up with straight lines (or as near straight as the pixels on the screen

allow). Each program has its own special ways of handling problems which may

occur, sometimes they succeed, sometimes they fail. In normal circumstances they

may give a good representation of the graph of the function but, pressed to extremes,

they may not give the true picture. Figure 1 is a plot of the graph of y=sin(1/x) drawn

using the FGP program1.

Figure 1

Near the origin the graph oscillates infinitely often in the range –1 to 1 and the

plotting routine fails to pick it up. Some graph plotters (such as Supergraph2) have the

- 2 -

option of changing the step-length, so by taking a longer time, a more precise picture

may be drawn. But there are other swings and roundabouts where Supergraph fails

and FGP is decidely superior. For example, in drawing graphs involving known

discontinuous functions, such as the "integer part function" INT (where INT(x) is the

largest integer which does not exceed x) or the signum function SGN (where

SGN(0)=0, SGN(x)=–1 for x negative and +1 for x positive), FGP scans the input

string and cunningly tells the program to switch to point-plotting only, without

joining. The result is that it draws a graph such as y=1/int(1/x) rather well (figure 2),

though it takes about 40 seconds to complete the picture.

Figure 2

Supergraph fails this test badly, joining up the separate parts of the graph, though it

does notice that the function becomes undefined at x=1 and marks it with a vertical

line of dashes (figure 3). A routine to cope with this difficulty (which does not occur

with the standard functions in the school curriculum) has been omitted in the tiny

BBC memory in favour of other options such as polar and parametric curves, and

dealing more carefully with the peculiarities of more typical "school mathematics"

functions such as the semi-circle y=√(1–x2).

Figure 3

An honest(?) plotting algorithm

It seems a straightforward matter to represent a graph on a VDU, given the limitation

of the number of pixels. It is simply a matter of choosing a small enough step length

and plotting individual points. The only problem is one of time. If the user is allowed

to input the function, how does the program know how small a step to take? A simple

method is to pass over the graph several times, the first time plotting the value at the

mid-point only, then successively halving the step-length and plotting intermediate

points. This doubles the density of points plotted on each pass and takes hardly any

- 3 -

longer than plotting points with a fixed step. It has the advantage of giving the user

the option to quit when the graph has been filled out sufficiently.

The algorithm to do this is extremely short. If the x-range is from xl to xh, the routine

begins with a step equal to xh–xl then, for each pass across the screen, it starts at

x=xl+step/2, calculating the value of the function, which we’ll call y=FNf(x), scaling

so that the point (x,y) is plotted as (FNX(x), FNY(y)) on-screen. The value of x is then

increased by the step value, and the process repeated until x exceeds xh, when the

step-length is halved and the procedure is repeated. This can be done in any

appropriate language, but it is better if the language has suitable error trapping, to

cope with places where the function is undefined. Though it looks ugly in BASIC, it

is actually extremely efficient. The main algorithm looks something like this:

100 step=xh–xl
110 x=xl+step/2
120 ON ERROR GOTO 140
130 y=FNf(x): PLOT FNX(x),FNY(y)
140 x=x+step: IF x<xh THEN 130
150 step=step/2 : GOTO 110

(The x- and y-ranges must be specified, and the functions FNf, FNX, FNY need

defining in a manner appropriate for the particular version of the language. Other

details, such as the way that the on error routine works, or the keyword for PLOT

may need modifying. On the BBC computer the command to plot the point x,y is

PLOT69,x,y.) The routine works by calculating and plotting the function in line 130;

if an error occurs in calculating the function, the routine jumps to line 140 and

continues to attempt to plot later points.

This routine is rather successful and draws some nice pictures. For example, figure 4

is the graph of y=int(x) from x=–5 to 5 after 5 passes, and figure 5 shows the result

after 10 passes, clearly filling out the necessary pixels on the graph without joining

across the jumps in the value. In this case the drawing routine on the BBC takes less

than a second for the first 5 passes, and gives a satisfactory picture, no different from

figure 5 after 8 passes, in less than five seconds.

Figure 4

- 4 -

Figure 5

In extreme cases, where the curve is very long, a good picture may take a long time.

For example, figure 6 shows the routine drawing y=sin(1/x), with an added line in the

program to print the time in seconds after each pass. Fourteen passes have already

occurred, taking nearly nine minutes, and the picture was dumped in the middle of the

fifteenth pass, some nine minutes later. Very close inspection may just show that the

points are filled in more densely to the left of the origin on the latest pass, but it is not

that clear. It was not until after the middle of the eighteenth pass, nearly two and a

half hours later that the gaps in the screen image of the graph were filled in. By this

time the central part of the graph was just a solid block on the screen and could not be

used to read off values in any practical way. The chief purpose of this kind of

drawing is to give the user a clear qualitative impression of the graph.

Figure 6

Generalising the algorithm

The algorithm generalises easily to plotting parametric and polar curves. In the case

of parametric curves where x,y are given by formulae x=x(t), y=y(t), it is simply a

matter of successively bisecting the parametric range from t=tl to t=th, and

calculating x, y by functions, say x=FNx(t), y=FNy(t), to plot the point (x,y) on the

screen as before. Likewise a polar plot r=r(a) for radius r , angle a, can be drawn

using an a-range a=tl to a=th and calculating x=r(a)*cosa, y=r(a)*sina, to plot (x,y).

Figure 7 shows the graph r=a1/2–int(a1/2) drawn using

FNr(a)=a^(1/2)–INT(a^(1/2))

FNx(a)=FNr(a)*COS(a)

- 5 -

FNy(a)=FNr(a)*SIN(a)

and modifying the main routine to:

100 step=ah–al
110 a=al+step/2
120 ON ERROR GOTO 140
130 x=FNx(a):y=FNy(a): PLOT FNX(x),FNY(y)
140 a=a+step: IF a<ah THEN 130
150 step=step/2 : GOTO 110

Figure 7

The picture has been dumped to the printer halfway through a pass, and careful

inspection will show that the earlier whorls moving out from the origin have more

points plotted than the later ones. In this way one may imagine the extra points

dynamically filling in successive gaps.

Making a more friendly version

If one uses the program to explore, it soon becomes apparent that it would help to

surround it with more helpful routines. For example, one might wish to write the

input routines to allow evaluation of input, allowing expressions such as 2*PI, or one

may wish to allow automatic scaling or friendly zooming-in routines to help explore

interesting parts of the curve under magnification. We did this by introducing the

routine into Supergraph. The advanced version of this program allows the number of

steps in drawing to be specified, so we broadened the routine so that when a negative

number –n is used, the program interprets the command as a DOTplot with n passes.

The input n=0 is interpreted as a potentially infinite number of passes, terminated by

touching the ESCAPE key, though this is a luxury, because ‘infinity’ in this case is

about twenty. Any larger number takes such an interminable time!

The routines were also added to the SuperZoom version of Supergraph which allows

zooming in on cartesian graphs. The effects were striking. The graph of y=1/int(1/x)

looks fairly ‘continuous’ at the origin, and zooming in gives the same kind of picture.

(Why?) But if one zooms in at a nearby point in the form 1/n, say 1/10000, then an

appropriate magnification reveals the jump that occurs at each such point. (Figure 8.)

- 6 -

Figure 8

Does it always tell the truth?

Now we have an algorithm, albeit a sometimes slow one, which seems to be

straightforward to understand, can we be sure that it always tells the truth? Looking

through it, everything seems to be in order. The function seems to be calculated

correctly and plotted on the screen satisfactorily wherever it is defined. The only

weakness seems to be in the coarse pixel plotting.

If we believe the algorithm without being sceptical we deceive ourselves. There

remain a number of ways in which the program may give an unsatisfactory picture.

For instance, there may be internal vagaries in the way in which the computer carries

out its calculations, or there may be peculiarities in the way it does its plotting.

As an example, drawing the graph of y=xn for large values of n can give a computer

apoplexy. The BBC computer copes with n up to 63, drawing the graph for x negative

and positive, but for greater values of n it only draws the part of the graph where x is

positive. It seems that BBC BASIC calculates xn for positive integer n as if it were a

repeated product, but for n greater than 63 it reverts to computing it using the formula

exp(n*ln(x)). The latter fails for x negative. Thus if any unwary student investigates

the shape of the graph of xn, there may be surprises that were unforseen.

Computer plotting routines also have certain unexpected properties. For instance,

many current micro computers, including two recommended for use in British schools

(the BBC and the RML380Z), hold the screen coordinates as two byte integers. Each

coordinate is therefore written as a 16-digit number in binary notation. The most

significant bit, however, is used to indicate the sign. Therefore an integer up to 215–1

is represented satisfactorily, but negative numbers between –215+1 and –1 inclusive

are represented internally by adding 215. The crazy result is that if a number is

calculated to lie in the range 215 to 216–1, the computer represents it in the same way

as a negative number. Thus points way off the top of the computer screen are

considered as being below it. Fortunately these will be offscreen and will not affect

individual point plotting, but if one attempts to join up the points it can lead to the

lines crossing the screen...

- 7 -

Another, slightly strange, feature of plotting onscreen occurs because the graph

coordinates are held as integers, and therefore rounding must occur. This happens by

taking the integer part of the calculated screen coordinate. Thus theoretical points just

above a pixel boundary will be plotted within the pixel, but points just below will be

rounded down to the pixel below. Some graphs which oscillate just above or below

the axis (such as y=x2sin(1/x) near the origin) may exhibit the phenomenon that when

they get within a pixel of the axis, the oscillation may not show up in the same way

above and below.

Understanding algorithms

We now come to the question:

What insight into the underlying algorithms and procedures should the user of a
program have, in order to understand and interpret the output of the program?

In the specific case of graph plotters, the question refers to the understanding

necessary to interpret the drawings of the graphs. But the question is a much more

general one. When working with computers and software, a full insight is never

possible and may not even be desirable. Even the programmer relies on the belief that

the commands in his program are interpreted in a sensible way, the machine-code

buff must trust the circuits of the microprocessor, the hardware guru must rely on the

integrity of the physics and chemistry of the silicon circuits, and even the scientist

who understands the necessary properties of the silicon may now be working on such

a specific level that it is difficult to relate this knowledge through the chains of

relationships that link it to the broader issues of the higher level languages. (A similar

impossibility of a thorough understanding is even true in pure mathematics, but that’s

another story!)

Of course, the user should be able to understand why some function plotters give

connected graphs, even if the function to be drawn is discontinuous and, in a

complementary fashion, why the DOTplot routine gives a connected graph for

continuous functions if it runs long enough, even though it ‘obviously’ is only

plotting discrete points. (Are you sure of this? Try some hard examples, e.g.

f(x)=SGN(x)*(ABS(x)^(1/3)) which has a vertical tangent at the origin, provided one

takes f(0)=0. Or, if a multiline function definition facility is available, it may be

defined as

DEF FNf(x)
IF x<0 THEN = (–x)^(1/3)
IF x>0 THEN = x^(1/3)
 IF x=0 THEN =0

- 8 -

For this function, does the DOTplot routine always fill in to ‘look continuous’ near

the origin?)

In order to discuss the kinds of insight into the function of programs we need some

terminology, a simple language to describe insights into mathematical algorithms on

computers or, more generally, into programs that represent mathematical processes in

some sense. Since full insight is not possible, we regard these (to a certain degree) as

black boxes which have to be illuminated through some kind of insight. We

distinguish three different modes: specific insight, analogous insight and external

insight, which are in a certain sense independent of each other. Each of these may

also be realized at different levels of sophistication, from an overall global level down

to more detailed specifics within the machine.

External Insight

Sometimes we can describe exactly the (mathematical) result of an algorithm, even

when we have no idea how the algorithm is actually executed. For example, students

may know what the square-root function on a hand-held calculator (or in a higher

level language on a computer) does, even if they do not know any algorithm for

effectively finding it for themselves: it finds the best approximation (in computer

terms) for a number which, when squared, gives the original number back again.

From this knowledge students can give valid interpretations of results using and

relying on square-roots.

Here it is interesting to note that the numerical inaccuracies of most computer

calculations make it difficult to describe precisely the mathematical result of more

complicated procedures: the calculator or computer almost never gives the exact

square-root of its input. If it did, it would be so much easier to handle.

Computer algebra software (such as muMATHTM) is strikingly different in this

respect, in that it deals generally with the formulae, making only appropriate

algebraic simplifications, unless specifically requested for a numerical result. In this

case external insight is often sufficient. Modern computer algebras can handle the

algorithms of symbolic differentiation and integration. Differentiation is fairly

straightforward. It simply uses the rules of differentiation to break the formula down

in the standard manner. But integration is non-trivial. Early computer algebras used to

take the usual problem-solving way of looking for integrations by parts, suitable

substitutions and so on. These early programs seemed surprisingly stupid because

they could not spot a simple substitution that might be obvious to the naked eye of

someone with a little experience. It was often possible to get such symbolic

- 9 -

manipulators to differentiate a function and then find that it was not clever enough to

know the integral of the derivative... But now there is the Risch algorithm that

guarantees to give the integral as a formula, if there is one. This algorithm works

quite differently from the usual techniques of integration taught in schools and

universities but, even if we have no idea how it works, we can interpret the results

since we know (in theory) how to differentiate to check the accuracy of the result. To

do so does not give us any more understanding of how the algorithm works, but it

does give us confidence in the output of the algorithm in this specific case.

A more familiar example may be the multiplication of two (not too big...) whole

numbers on calculators or computers. In this case we normally have additional

insights since we not only know the mathematical properties of the the product, but

also some efficient algorithm for calculating it for ourselves. Once more we are in a

position to check the veracity of the computer algorithm in specific cases, though we

can never be sure that it will always work. For instance, we should expect that 2*a

will always give the same result as a+a, but on the computer this may not happen.

(On the BBC computer, if one uses integer arithmetic, with A%=2^31–1, then one

gets different answers for 2*A% and A%+A%... (A ‘feature’ of the language, which

is a polite term for a known ‘bug’.))

For an understanding of the graphs of functions as represented on a computer screen,

an external insight – say on the basis of an understanding of the mathematical notion

of a graph as a subset of the pairs of real numbers – is normally insufficient because

the many discretizing, rounding, approximating and physical drawing processes

involved make notions such as connectedness, or giving at most one value for any

given argument, behave differently on the screen from the formal theory.

External insight into an algorithm is extremely valuable in mathematics and

programming, often rendering a more specific insight less essential. There is less

reason to worry about the black box character of, say, a BASIC command when the

result of its action can be easily described. Only if such an insight is difficult to obtain

because the mathematics is too complicated or not well understood, is more specific

insight required. Deplorably, this is the case with most numerical algorithms, and

consequently with graph plotters which use numerical algorithms to compute their

pictorial output.

Analogue Insight

As mentioned earlier, we are often able to execute algorithms ourselves which are

similar in essence to those of the machine. For example, we know how to multiply

- 10 -

whole numbers, so we have some kind of understanding of the machine algorithm,

even if it uses an essentially different algorithm internally. Since we have performed

graph-plotting by hand ourselves, by calculating tables of values then drawing and

connecting the points, we know of the short-comings and possible pit-falls of the

method, even if at critical points the computer internally uses more complicated

algorithms in its attempts to draw the graph.

In solving differential equations, we may know the simple algorithm taking a short

step along the tangent, then recalculating and repeating the process. Or we may know

the ‘improved Euler method’ which gets a better approximation to the solution curve

by averaging out the tangent directions at the beginning and end of a short tangential

step. In this case we are able to gain some insight into the possible pitfalls of more

complicated methods, such as the ‘Fourth order Runge-Kutta’, which performs a

more subtle averaging process in an attempt to get a better approximation to the

solution.

It is analogue insight which is obtained when we study simple forms of algorithms in

short programs in order to have a better understanding of the working of more

sophisticated software tools which operate such algorithms in a more robust setting.

For example, one might study the algorithms for calculating areas under a graph,

prior to using a well-protected program which not only calculates the areas, but

handles difficulties, such as the function becoming undefined in part of the range.

Specific Insight

Specific insight occurs when the user understands both the algorithm and the manner

in which it is implemented in the program. As we have seen earlier this is usually

understood at the level of programming in a specific language, with the internal detail

of the workings of the computer taken for granted. It is this mode of insight that is

desired when one gets a student to write short programs to understand how the

algorithms actually work in practice, though understanding at the language level may

sometimes be thwarted by specific ‘features’ of the language.

Conclusion

Looking deeply at the operations of the computer suggests that we must develop a

healthy scepticism over what is happening in the software and deep within the inner

workings of the machine. It is not wise to believe that computers always work in a

totally predictable and understandable way, because features of the software

- 11 -

implementation are always likely to produce odd results in extreme (or even not so

extreme) cases. Even though specific insight into the working of computer algorithms

may seem desirable, analogous insight at least gives a partial understanding of the

algorithmic behaviour whilst external insight allows a valuable check on the veracity

of the outcome. Software developers have a duty to inform the users of their

programs of undesirable ‘features’, and software users should always be on their

guard.

Notes

1. The FGP program is available from several sources for both BBC computer and the RML 380Z,

480Z. It is part of the ITMA "Micros in the Mathematics Classroom" available from Longman and also of

the "Secondary Mathematics with Micros" pack available from AUCBE, Endymion Rd, Hatfield,

Herfordshire AL10 8AU.

2. "Supergraph" is available for the BBC and BBC Master computers. It consists of a suite of programs

for plotting cartesian, polar, parametric curves and implicit functions in two dimensions, together with

surfaces in three dimensions. It is available from Glentop Publishers, Standfast House, Bath Place,

Barnet High Street, LONDON EN5 1ED or, at a 40% discount, from Rivendell Software, 21 Laburnum

Avenue, Kenilworth CV8 2DR.

